Exam Stochastic Optimization - part I 31 January 2023

duration 1.5 hours, paper documents allowed

Exercise 1. We consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(x)+g(x)
$$

where for all $i \in\{1, \ldots, N\}, f_{i}$ is a differentiable convex function whose gradient is L Lipschitz and g is a convex, lower-semi-continuous function whose proximal operator is easy to compute. We shall denote $f(x)=\frac{1}{N} \sum_{i=1}^{N} f_{i}(x)$ and $F(x)=f(x)+g(x)$.
Notation: $U(\{1, \ldots, N\})$ is the uniform distribution over the set $\{1, \ldots, N\}$ and $B(p)$ is the Bernoulli distribution with mean p. We denote the conditional expection with $\mathbb{E}_{k}\left[X_{k}\right]=\mathbb{E}\left[X_{k} \mid i_{0}, b_{0}, \ldots, i_{k}, b_{k}\right]$.
The goal of this exercise is to study the convergence of the following prox-SVRG algorithm

$$
\begin{aligned}
& \left.x_{0} \in \mathbb{R}^{d}, w_{0}=x_{0}, \gamma>0, p \in\right] 0,1[\\
& \forall k \in \mathbb{N}^{:} \\
& \quad i_{k+1} \sim U(\{1, \ldots, N\}) \\
& G_{k+1}=\nabla f\left(w_{k}\right)+\nabla f_{i_{k+1}}\left(x_{k}\right)-\nabla f_{i_{k+1}}\left(w_{k}\right) \\
& x_{k+1}=\operatorname{prox}_{\gamma g}\left(x_{k}-\gamma G_{k+1}\right) \\
& b_{k+1} \sim B(p) \\
& w_{k+1}=\left(1-b_{k+1}\right) w_{k}+b_{k+1} x_{k}
\end{aligned}
$$

We shall not assume the strong convexity of F, only its convexity. We will proceed by proving the following points.

1. Show that

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2}
$$

2. Show that for any $x_{*} \in \arg \min _{x} F(x)$

$$
g\left(x_{k+1}\right)+\left\langle G_{k+1}, x_{k+1}-x_{k}\right\rangle+\frac{1}{2 \gamma}\left\|x_{k+1}-x_{k}\right\|^{2} \leq g\left(x_{*}\right)+\left\langle G_{k+1}, x_{*}-x_{k}\right\rangle+\frac{1}{2 \gamma}\left\|x_{k}-x_{*}\right\|^{2}-\frac{1}{2 \gamma}\left\|x_{k+1}-x_{*}\right\|^{2}
$$

3. Show that

$$
\mathbb{E}_{k}\left[\left\langle G_{k+1}, x_{*}-x_{k}\right\rangle\right]=\left\langle\nabla f\left(x_{k}\right), x_{*}-x_{k}\right\rangle
$$

4. Show that for all $\alpha>0$

$$
\left\langle G_{k+1}-\nabla f\left(x_{k}\right), x_{k}-x_{k+1}\right\rangle \leq \frac{\alpha}{2}\left\|G_{k+1}-\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2 \alpha}\left\|x_{k}-x_{k+1}\right\|^{2}
$$

5. Show that

$$
\left\|G_{k+1}-\nabla f\left(x_{k}\right)\right\|^{2} \leq 2\left\|\nabla f_{i_{k+1}}\left(x_{k}\right)-\nabla f_{i_{k+1}}\left(x_{*}\right)\right\|^{2}+2\left\|\nabla f_{i_{k+1}}\left(w_{k}\right)-\nabla f_{i_{k+1}}\left(x_{*}\right)\right\|^{2}
$$

6. Denote $\mathcal{D}_{k}=\frac{1}{N} \sum_{i=1}^{N}\left\|\nabla f_{i}\left(w_{k}\right)-\nabla f_{i}\left(x_{*}\right)\right\|^{2}$. Show that

$$
\mathbb{E}\left[\mathcal{D}_{k+1} \mid i_{0}, b_{0}, \ldots, i_{k}\right]=p \mathbb{E}_{k}\left[\left\|\nabla f_{i_{k+1}}\left(x_{k}\right)-\nabla f_{i_{k+1}}\left(x_{*}\right)\right\|^{2}\right]+(1-p) \mathcal{D}_{k}
$$

7. Show that

$$
\mathbb{E}_{k}\left[\left\|\nabla f_{i_{k+1}}\left(x_{k}\right)-\nabla f_{i_{k+1}}\left(x_{*}\right)\right\|^{2}\right] \leq 2 L\left(f\left(x_{*}\right)-f\left(x_{k}\right)-\left\langle\nabla f\left(x_{k}\right), x_{*}-x_{k}\right\rangle\right)
$$

8. Chose values for the proof constants α and β that ensure

$$
\mathbb{E}_{k}\left[F\left(x_{k+1}\right)+\beta \mathcal{D}_{k+1}+\frac{1}{2 \gamma}\left\|x_{k+1}-x_{k}\right\|^{2}\right] \leq F\left(x_{*}\right)+\beta \mathcal{D}_{k}+\frac{1}{2 \gamma}\left\|x_{k}-x_{*}\right\|^{2}+\left(\frac{L}{2}-\frac{1}{2 \gamma}+\frac{1}{2 \alpha}\right)\left\|x_{k+1}-x_{k}\right\|^{2}
$$

9. What range of step sizes ensures that $\left(\frac{L}{2}-\frac{1}{2 \gamma}+\frac{1}{2 \alpha}\right)\left\|x_{k+1}-x_{k}\right\|^{2} \leq 0$?
10. Suppose γ satisfies the condition of the previous question and denote $\bar{x}_{K}=\frac{1}{K} \sum_{k=1}^{K}$. Show that

$$
\mathbb{E}\left[F\left(\bar{x}_{K}\right)-F\left(x_{*}\right)\right] \leq \frac{\beta \mathcal{D}_{0}+\frac{1}{2 \gamma}\left\|x_{0}-x_{*}\right\|^{2}}{K}
$$

11. Compare with the convergence rate of other algorithms we have seen during the course.
