Introduction 00000000 Robust LP

xample 0000000 Robust combinatorial

Conclusion

Robust Optimization : A tutorial

V. Leclère (ENPC)

January 10, 2023

Introduction ●○○○○○○○	Solution approaches	Robust LP 000000000000000000000000000000000000	Example 00000000	Robust combinatorial	Conclusion 00000

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

Introduction	Solution approaches	Robust LP 000000000000000000000000000000000000	Example 00000000	Robust combinatorial 0000000	Conclusion 00000

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

An optimization problem

A generic optimization problem can be written

 $\min_{x} \quad L(x) \\ s.t. \quad g(x) \le 0$

where

- x is the decision variable
- *L* is the objective function
- g is the constraint function

An optimization problem with uncertainty

Adding uncertainty ξ in the mix

 $\min_{x} \quad L(x, \tilde{\xi}) \\ s.t. \quad g(x, \tilde{\xi}) \leq 0$

Remarks:

- $\tilde{\xi}$ is unknown. Two main way of modelling it:
 - $\tilde{\xi} \in R$ with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO)
 - ξ is a random variable with known probability law. This is the Stochastic Programming approach (SP).

Cost is not well defined.

- RO : $\max_{\xi \in R} L(x,\xi)$.
- SP : $\mathbb{E}[L(x, \xi)]$.

• Constraints are not well defined.

- RO : $g(x,\xi) \leq 0$, $\forall \xi \in R$.
- SP : $g(x, \xi) \leq 0$, $\mathbb{P} a.s.$.

An optimization problem with uncertainty

Adding uncertainty ξ in the mix

 $\min_{x} \quad L(x, \tilde{\xi}) \\ s.t. \quad g(x, \tilde{\xi}) \leq 0$

Remarks:

- $\tilde{\xi}$ is unknown. Two main way of modelling it:
 - ξ̃ ∈ R with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO).
 - ξ is a random variable with known probability law. This is the Stochastic Programming approach (SP).

Cost is not well defined.

- RO : $\max_{\xi \in R} L(x, \xi)$.
- SP : $\mathbb{E}[L(x,\xi)]$.

• Constraints are not well defined.

- RO : $g(x,\xi) \leq 0$, $\forall \xi \in R$.
- SP : $g(x, \boldsymbol{\xi}) \leq 0$, $\mathbb{P} a.s.$

An optimization problem with uncertainty

Robust LP

Adding uncertainty ξ in the mix

Solution approaches

 $\min_{x} \quad L(x, \tilde{\xi}) \\ s.t. \quad g(x, \tilde{\xi}) \leq 0$

Example

Robust combinatorial

Conclusion

Remarks:

Introduction

- $\tilde{\xi}$ is unknown. Two main way of modelling it:
 - ξ̃ ∈ R with a known uncertainty set R, and a pessimistic approach. This is the robust optimization approach (RO).
 - ξ is a random variable with known probability law. This is the Stochastic Programming approach (SP).
- Cost is not well defined.
 - RO : $\max_{\xi \in R} L(x,\xi)$.
 - SP : $\mathbb{E}[L(x, \xi)]$.

Constraints are not well defined.

- $\mathsf{RO}: g(x,\xi) \leq 0, \quad \forall \xi \in \mathbf{R}.$
- SP : $g(x, \boldsymbol{\xi}) \leq 0$, $\mathbb{P} a.s.$

Example 00000000 Robust combinatorial

Conclusion

Requirements and limits

- Stochastic optimization :
 - requires a law of the uncertainty $\boldsymbol{\xi}$
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization :
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization :
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Example 0000000

Requirements and limits

- Stochastic optimization :
 - requires a law of the uncertainty $\boldsymbol{\xi}$
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization :
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization :
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Example

Robust combinatoria

Requirements and limits

- Stochastic optimization :
 - requires a law of the uncertainty $\boldsymbol{\xi}$
 - can be hard to solve (generally require discretizing the support and blowing up the dimension of the problem)
 - there exists specific methods (like Bender's decomposition)
- Robust optimization :
 - requires an uncertainty set R
 - can be overly conservative, even for reasonable R
 - complexity strongly depend on the choice of R
- Distributionally robust optimization :
 - is a mix between robust and stochastic optimization
 - consists in solving a stochastic optimization problem where the law is chosen in a robust way
 - is a fast growing fields with multiple recent results
 - but is still hard to implement than other approaches

Introduction ○○○○●○○	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Example 00000000	Conclusion 00000

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

Some numerical tests on real-life LPs

From Ben-Tal and Nemirovski

- take LP from Netlib library
- look at non-integer coefficients, assuming that they are not known with perfect certainty
- What happens if you change them by 0.1% ?
 - constraints can be violated by up to 450%
 - $\mathbb{P}(violation > 0) = 0.5$
 - $\mathbb{P}(violation > 150\%) = 0.18$
 - $\mathbb{E}[violation] = 125\%$

What do you want from robust optimization ?

- finding a solution that is less sensible to modified data, without a great increase of price
- choosing an uncertainty set *R* that:
 - offer robustness guarantee
 - yield an easily solved optimization problem

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?

2 Solving the robust optimization problem

- 3 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 6 Robust Combinatorial Problem
- 6 Conclusion

Solution approaches

0000

The robust optimization problem we want to solve is¹

Robust LP

 $\min_{x} L(x)$ s.t. $g(x,\xi) \le 0$ $\forall \xi \in R$

Example

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

Reformulation: replace $g(x,\xi) \le 0$ $\forall \xi \in R$, by $\sup_{\xi \in R} g(x,\xi) \le 0$, then explicit the sup.

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Introduction

Robust combinatorial

Conclusion

Solution approaches

0000

The robust optimization problem we want to solve is¹

Robust LP

 $\min_{x} L(x)$ s.t. $g(x,\xi) \le 0 \qquad \forall \xi \in R$

Example

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

```
Reformulation: replace g(x,\xi) \le 0  \forall \xi \in R,
by \sup_{\xi \in R} g(x,\xi) \le 0,
then explicit the sup.
```

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Introduction

Robust combinatorial

Conclusion

Solution approaches

0000

The robust optimization problem we want to solve is¹

Robust LP

 $\min_{x} L(x)$ s.t. $g(x,\xi) \le 0 \qquad \forall \xi \in R$

Example

Robust combinatorial

Conclusion

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

Reformulation: replace $g(x,\xi) \le 0$ $\forall \xi \in R$, by $\sup_{\xi \in R} g(x,\xi) \le 0$, then explicit the sup.

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Solution approaches

0000

The robust optimization problem we want to solve is¹

Robust LP

 $\min_{x} L(x)$ s.t. $g(x,\xi) \le 0 \qquad \forall \xi \in R$

Example

Robust combinatorial

Conclusion

Two main approaches are possible:

Constraint generation: replace R by a finite set of ξ , that is we replace an "infinite number of contraints" by a finite number of them.

```
Reformulation: replace g(x, \xi) \le 0  \forall \xi \in R,
by \sup_{\xi \in R} g(x, \xi) \le 0,
then explicit the sup.
```

¹For simplicity reason we dropped w.l.o.g. the uncertainty in the objective.

Constraint generation algorithm

Solution approaches

Robust LP

```
Data: Problem parameters, reference uncertainty \xi_0

Result: approximate value with gap;

for k \in \mathbb{N} do

| solve \tilde{v} = \min_{x} \{L(x) \mid g(x, \xi_{\kappa}) \leq 0 \ \forall \kappa \leq k\} \quad \rightsquigarrow x_k;

solve s = \max_{x} g(x_k, \xi) \quad \rightsquigarrow \xi_{k+1};

if s \leq 0 then

| Robust optimization problem solved,

with value \tilde{v} and optimal solution x_k
```

Example

Robust combinatorial

Conclusion

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

This is easy to implement and can be numerically efficient.

Constraint generation algorithm

Robust LP

Solution approaches

```
Data: Problem parameters, reference uncertainty \xi_0

Result: approximate value with gap;

for k \in \mathbb{N} do

| solve \tilde{v} = \min_{x} \{L(x) \mid g(x, \xi_{\kappa}) \leq 0 \ \forall \kappa \leq k\} \quad \rightsquigarrow x_k;

solve s = \max_{x} g(x_k, \xi) \quad \rightsquigarrow \xi_{k+1};

if s \leq 0 then

| Robust optimization problem solved,

with value \tilde{v} and optimal solution x_k
```

Example

Robust combinatorial

Conclusion

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

This is easy to implement and can be numerically efficient.

Constraint generation algorithm

Robust LP

Solution approaches

```
Data: Problem parameters, reference uncertainty \xi_0

Result: approximate value with gap;

for k \in \mathbb{N} do

| solve \tilde{v} = \min_{x} \{L(x) \mid g(x, \xi_{\kappa}) \leq 0 \ \forall \kappa \leq k\} \quad \rightsquigarrow x_k;

solve s = \max_{x} g(x_k, \xi) \quad \rightsquigarrow \xi_{k+1};

if s \leq 0 then

| Robust optimization problem solved,

with value \tilde{v} and optimal solution x_k
```

Example

Robust combinatorial

Conclusion

Algorithm 1: Constraint Generation Algorithm

Note that we are solving a problem similar to the deterministic problem with an increasing number of constraints.

This is easy to implement and can be numerically efficient.

Reformulation principle

0000

Solution approaches

Introduction

We can write the robust optimization problem as

Robust LP

 $\min_{x} L(x)$ s.t. $\sup_{\xi \in R} g(x,\xi) \le 0$

Example

Robust combinatorial

Conclusion

Now, there are two ways of simplifying this problem :

- we can explicitly compute $\bar{g}(x) = \sup_{\xi \in R} g(x,\xi);$
- by duality we can write sup g(x, ξ) = min h(x, η) _{ξ∈R} h(x, η) ≤ 0 is equivalent to ∃η such that h(x, η) ≤ 0, i.e. just add η as a variable in your optimization problem

Reformulation principle

0000

Solution approaches

Introduction

We can write the robust optimization problem as

Robust LP

 $\min_{x} L(x)$ s.t. $\sup_{\xi \in R} g(x,\xi) \le 0$

Example

Robust combinatorial

Conclusion

Now, there are two ways of simplifying this problem :

- we can explicitly compute $\bar{g}(x) = \sup_{\xi \in R} g(x, \xi);$
- by duality we can write $\sup_{\xi \in R} g(x, \xi) = \min_{\eta \in Q} h(x, \eta)$

⇒ $\min_{\eta \in Q} h(x, \eta) \le 0$ is equivalent to $\exists \eta$ such that $h(x, \eta) \le 0$, i.e. just add η as a variable in your optimization problem

V. Leclère

Introduction 00000000	Solution approaches	Robust LP ●○○○○○○○○○○○○○○○○○	Example 00000000	Robust combinatorial	Conclusio 00000

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem

8 Robust optimization for Linear Programm

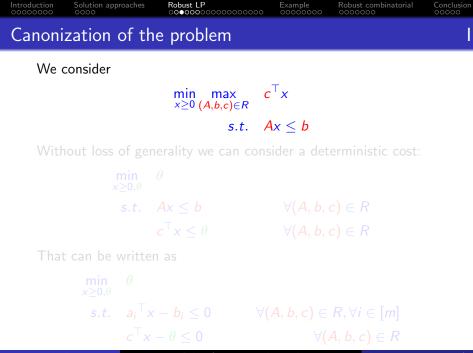
- Reformulating the problem
- Ellipsoidal uncertainty set
- Polyhedral uncertainty set
- Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 6 Robust Combinatorial Problem
- 6 Conclusion

Introduction 0000000	Solution approaches	Robust LP ○●000000000000000000000000000000000000	Example 00000000	Conclusion 00000

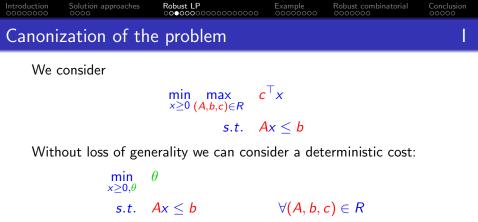
Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion



January 10, 2023 10 / 39

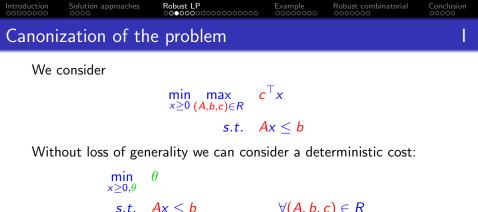


 $c^{\top}x \leq \theta$ $\forall (A, b, c) \in R$

That can be written as

 $\min_{\substack{x \ge 0, \theta \\ s.t.}} \theta$ $s.t. \quad a_i^\top x - b_i \le 0$ $c^\top x - \theta < 0$

$\forall (A, b, c) \in R, \forall i \in [m]$



		. (, . , . , . ,	~
С	$^{\top}x \leq heta$	$\forall (A, b, c)$	∈ R

That can be written as

 $\begin{array}{ll} \min_{\substack{x \geq 0, \theta}} & \theta \\ s.t. & a_i^\top x - b_i \leq 0 \\ c^\top x - \theta \leq 0 \end{array} & \forall (A, b, c) \in R, \forall i \in [m] \\ \forall (A, b, c) \in R \end{array}$

Canonization of the problem

We now consider

$$\min_{\substack{x \ge 0}} c^{\top} x \\ s.t. \quad a_i^{\top} x - b_i \le 0$$

 $\forall (A, b) \in R, \forall i \in [m]$

Let R_i be the projection of R onto coordinate i. We have in particular $R \subset R_1 \times \cdots \times R_m$. But note that, in the robust constraint, R can be replaced by $R_1 \times \cdots \times R_m$, indeed,

 $\begin{aligned} f_i(x,\xi_i) &\leq 0, \quad \forall i \in [m], \quad \forall \xi \in R \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \cdots \times R_m \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall \xi_i, \in R_i \quad \forall i \in [m] \end{aligned}$

Canonization of the problem

We now consider

$$\min_{\substack{x \ge 0}} c^{\top} x \\ s.t. \quad a_i^{\top} x - b_i \le 0 \qquad \forall (A, b) \in R, \forall i \in [m]$$

Let R_i be the projection of R onto coordinate i. We have in particular $R \subset R_1 \times \cdots \times R_m$. But note that, in the robust constraint, R can be replaced by $R_1 \times \cdots \times R_m$, indeed,

 $\begin{aligned} f_i(x,\xi_i) &\leq 0, \quad \forall i \in [m], \quad \forall \xi \in R \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \cdots \times R_m \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall \xi_i, \in R_i \quad \forall i \in [m] \end{aligned}$

Canonization of the problem

We now consider

$$\min_{\substack{x \ge 0}} c^{\top} x \\ s.t. \quad a_i^{\top} x - b_i \le 0 \qquad \forall (A, b) \in R, \forall i \in [m]$$

Let R_i be the projection of R onto coordinate i. We have in particular $R \subset R_1 \times \cdots \times R_m$. But note that, in the robust constraint, R can be replaced by $R_1 \times \cdots \times R_m$, indeed,

 $\begin{aligned} f_i(x,\xi_i) &\leq 0, \quad \forall i \in [m], \quad \forall \xi \in R \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall i \in [m], \forall \xi \in R_1 \times \cdots \times R_m \\ &\iff \quad f_i(x,\xi_i) \leq 0, \quad \forall \xi_i, \in R_i \quad \forall i \in [m] \end{aligned}$

Robust LP Robust combinatorial Ш

Canonization of the problem

We now consider

$$\min_{\substack{x \ge 0}} c^{\top} x \\ s.t. \quad a_i^{\top} x - b_i \le 0$$

 $\forall (a_i, b_i) \in R_i, \forall i \in [m]$

Canonization of the problem

We now consider

$$\begin{array}{ll} \min_{x \geq 0} & c^\top x \\ s.t. & a^\top x - b \leq 0 \qquad \quad \forall (a, b) \in R \end{array}$$

,

Ш

Canonization of the problem

We now consider

 $\begin{array}{ll} \min_{x \geq 0} & c^\top x \\ s.t. & a^\top x - b \leq 0 & \forall (a, b) \in R , \end{array}$

To model correlation we set

 $a = \bar{a} + P\zeta$ $b = \bar{b} + p^{\top}\zeta$

where (\bar{a}, \bar{b}) are the nominal value, and ζ is the primitive/residual uncertainty.

Ш

Canonization of the problem

We now consider

 $\begin{array}{ll} \min_{x \geq 0} & c^\top x \\ s.t. & a^\top x - b \leq 0 & \forall (a, b) \in R , \end{array}$

To model correlation we set

 $a = \bar{a} + P\zeta$ $b = \bar{b} + p^{\top}\zeta$

where (\bar{a}, \bar{b}) are the nominal value, and ζ is the primitive/residual uncertainty.

The robust constraint now reads

$$(\bar{a}^{\top}x - \bar{b}) + (P^{\top}x - p)^{\top}\zeta \leq 0 \qquad \forall \zeta \in \mathcal{Z}$$

Example: assume that a is a random variable with mean \overline{a} and covariance Σ . Then, a natural reformulation would be

 $a=\bar{a}+\Sigma^{1/2}\zeta,$

so that ζ is centered with uncorrelated coordinates.

Finally, w.l.o.g. we assume that b is deterministic (can be obtained by adding a variable x_{n+1} constrained to be equal to 1).

Example: assume that a is a random variable with mean \overline{a} and covariance Σ . Then, a natural reformulation would be

 $a=\bar{a}+\Sigma^{1/2}\zeta,$

so that ζ is centered with uncorrelated coordinates.

Finally, w.l.o.g. we assume that b is deterministic (can be obtained by adding a variable x_{n+1} constrained to be equal to 1).

Introduction 00000000	Solution approaches	Robust LP ○○○○○○●○○○○○○○○○○	Example 00000000	Conclusion

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

An explicit worst case value

• We consider an ellipsoidal uncertainty set

Robust LP

$$R = \left\{ \xi = \left\{ \bar{a} + P\zeta \right\}_i \quad | \quad ||\zeta||_2 \le \rho \right\}$$

Example

• Here we can, for a given x, explicitly compute

$$\sup_{\xi \in R} \xi^{\top} x = \bar{a}^{\top} x + \sup_{\|\zeta\|_2 \le \rho} (P\zeta)^{\top} x$$
$$= \bar{a}^{\top} x + \rho \|P^{\top} x\|_2$$

• Hence, constraint

$$\sup_{\xi \in R} \xi^\top x \le b$$

can be written

$$\bar{a}^{\top}x + \rho \|P^{\top}x\|_2 \le b$$

Robust combinatorial

An explicit worst case value

Solution approaches

Introduction

• We consider an ellipsoidal uncertainty set

Robust LP

$$R = \left\{ \boldsymbol{\xi} = \left\{ \boldsymbol{\bar{a}} + \boldsymbol{P}\boldsymbol{\zeta} \right\}_{i} \quad | \quad \|\boldsymbol{\zeta}\|_{2} \le \rho \right\}$$

Example

• Here we can, for a given x, explicitly compute

$$\sup_{\boldsymbol{\xi}\in R} \boldsymbol{\xi}^{\top} \boldsymbol{x} = \bar{\boldsymbol{a}}^{\top} \boldsymbol{x} + \sup_{\|\boldsymbol{\zeta}\|_{2} \le \rho} (\boldsymbol{P}\boldsymbol{\zeta})^{\top} \boldsymbol{x}$$
$$= \bar{\boldsymbol{a}}^{\top} \boldsymbol{x} + \rho \|\boldsymbol{P}^{\top} \boldsymbol{x}\|_{2}$$

• Hence, constraint

$$\sup_{\xi \in R} \xi^\top x \le b$$

can be written

$$\bar{a}^{\top}x + \rho \| P^{\top}x \|_2 \le b$$

Robust combinatorial

Conclusion

An explicit worst case value

Solution approaches

Introduction

• We consider an ellipsoidal uncertainty set

Robust LP

$$R = \left\{ \boldsymbol{\xi} = \left\{ \boldsymbol{\bar{a}} + \boldsymbol{P}\boldsymbol{\zeta} \right\}_i \quad | \quad \|\boldsymbol{\zeta}\|_2 \le \rho \right\}$$

Example

• Here we can, for a given x, explicitly compute

$$\sup_{\boldsymbol{\xi}\in R} \boldsymbol{\xi}^{\top} \boldsymbol{x} = \bar{\boldsymbol{a}}^{\top} \boldsymbol{x} + \sup_{\|\boldsymbol{\zeta}\|_{2} \le \rho} (\boldsymbol{P}\boldsymbol{\zeta})^{\top} \boldsymbol{x}$$
$$= \bar{\boldsymbol{a}}^{\top} \boldsymbol{x} + \rho \|\boldsymbol{P}^{\top} \boldsymbol{x}\|_{2}$$

• Hence, constraint

$$\sup_{\substack{\boldsymbol{\xi}\in R\\\boldsymbol{\xi}\in R}}\boldsymbol{\xi}^{\top}\boldsymbol{x}\leq \boldsymbol{b}$$

can be written

$$\bar{\boldsymbol{a}}^{\top}\boldsymbol{x} + \rho \|\boldsymbol{P}^{\top}\boldsymbol{x}\|_2 \leq \boldsymbol{b}$$

Robust combinatorial

Conclusion

SOCP problem

• An Second Order Cone Programming constraint is a constraint of the form

$$\|Ax+b\|_2 \le c^\top x + d$$

- An SOCP problem is a (continuous) optimization problem with linear cost and linear and SOCP constraints
- There exists powerful software to solve SOCP (e.g. CPLEX, Gurobi, MOSEK...) with dedicated interior points methods
- There exist a duality theory akin to the LP duality theory
- If a robust optimization problem can be cast as an SOCP the formulation is deemed efficient

Solution approaches	Robust LP ○○○○○○○○○○○○○○○○○	Example 00000000	Conclusion 00000

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- ④ Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

Introduction Solution approaches Robust LP

Example

Robust combinatorial

Conclusic 00000

Linear duality : recalls

• Recall that, if finite,

as the same value as

 $\begin{array}{ll} \max_{\xi} & \xi^{\top} x \\ s.t. & D\xi \leq d \end{array}$ $\begin{array}{ll} \min_{\eta} & \eta^{\top} d \\ s.t. & \eta^{\top} D = x \\ & \eta \geq 0 \end{array}$

Thus,

$$\sup_{\xi:D\xi \leq d} \xi^{\top} x \leq b \iff \min_{\eta \geq 0: \eta^{\top} D = x} \eta^{\top} d \leq b$$
$$\iff \exists \eta \geq 0, \quad \eta^{\top} D = x, \quad \eta^{\top} d \leq b$$

Introduction Solution approaches Rot

Robust LP

Example

Robust combinatorial

l Concli 0000

Linear duality : recalls

• Recall that, if finite,

as the same value as

 $\begin{array}{ll} \max_{\xi} & \xi^{\top} x \\ s.t. & D\xi \leq d \end{array}$ $\begin{array}{ll} \min_{\eta} & \eta^{\top} d \\ s.t. & \eta^{\top} D = x \\ & \eta \geq 0 \end{array}$

Thus,

$$\sup_{\boldsymbol{\xi}: D\boldsymbol{\xi} \leq d} \boldsymbol{\xi}^\top \boldsymbol{x} \leq \boldsymbol{b} \quad \Longleftrightarrow \quad \min_{\boldsymbol{\eta} \geq 0: \boldsymbol{\eta}^\top D = \boldsymbol{x}} \boldsymbol{\eta}^\top \boldsymbol{d} \leq \boldsymbol{b} \\ \iff \quad \exists \boldsymbol{\eta} \geq \boldsymbol{0}, \quad \boldsymbol{\eta}^\top D = \boldsymbol{x}, \quad \boldsymbol{\eta}^\top \boldsymbol{d} \leq \boldsymbol{b}$$

Polyhedral uncertainty

Solution approaches

Introduction

• We consider a polyhedral uncertainty set

Robust LP

 $R = \left\{ \xi \mid D\xi \leq d \right\}$

• Then the robust optimization problem

$$\min_{\substack{x \ge 0 \\ s.t.}} c^{\top} x$$
$$\sup_{\boldsymbol{\xi} \in R} \boldsymbol{\xi}^{\top} x \le h$$

reads

$$\min_{\substack{x \ge 0, \eta \ge 0}} c^{\top} x$$
$$s.t. \quad \eta^{\top} d \le h$$
$$\eta^{\top} d = x$$

Robust combinatorial

Introduction 00000000	Solution approaches	Robust LP	Example 00000000	Robust combinatorial	Conclusion 00000

Contents

Introduction and motivations

- How to add uncertainty in an optimization problem
- Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem

8 Robust optimization for Linear Programm

- Reformulating the problem
- Ellipsoidal uncertainty set
- Polyhedral uncertainty set
- Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 6 Robust Combinatorial Problem

6 Conclusion

Introduction 00000000	Solution approaches	Robust LP ○○○○○○○○○○○○○○○○○○○○	Example 00000000	Robust combinatorial	Conclusio
Soyster	r model				
The	problem				
	min	$c^{\top}x$			
		$ ilde{A} x \leq b$	٧Â	$\check{A}\in R$	
		$\underline{x} \leq \mathbf{x} \leq \overline{\mathbf{x}}$			
wher	re each coefficie	ent $ ilde{a}_{ij} \in [ar{a}_{ij} - \delta_{ij}, ar{a}_{ij}]$	$\delta_{ij} + \delta_{ij}$]		

Introduction 00000000	Solution approaches	Robust LP ○○○○○○○○○○○○●○○○○	Example 00000000	Robust combinatorial	Conclusion 00000
Soyster	model				

The problem

 $\min_{x} \quad c^{\top}x \\ \sup_{\tilde{A} \in R} \tilde{A}x \leq b \\ \underline{x} \leq x \leq \bar{x}$

where each coefficient $\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$

Introduction	Solution approaches	Robust LP	Example	Robust combinatorial	Conclusion
00000000		000000000000000000000000000000000000	00000000	0000000	00000
Soyster	model				

The problem

$$\min_{x} c^{\top} x$$

$$\sup_{\tilde{A} \in R} \tilde{A} x \le b$$

$$x \le x \le \bar{x}$$

where each coefficient $\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$ can be written

$$\min_{\mathbf{x}} \quad c^{\top} \mathbf{x}$$
$$\sum_{j} \bar{a}_{ij} \mathbf{x}_{j} + \sum_{j} \delta_{ij} |\mathbf{x}_{j}| \le b_{i} \qquad \forall i$$
$$\underline{\mathbf{x}} \le \mathbf{x} \le \bar{\mathbf{x}}$$

Introduction 00000000	Solution approaches	Robust LP ०००००००००००००●००००	Example 00000000	Robust combinatorial	Conclusion 00000
Soyster	model				

The problem

$$\min_{x} c^{\top} x$$

$$\sup_{\tilde{A} \in R} \tilde{A} x \le b$$

$$x \le x \le \bar{x}$$

where each coefficient $\tilde{a}_{ij} \in [\bar{a}_{ij} - \delta_{ij}, \bar{a}_{ij} + \delta_{ij}]$ can be written

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\top} \mathbf{x} \\ \sum_{j} \bar{\mathbf{a}}_{ij} \mathbf{x}_{j} + \sum_{j} \delta_{ij} \mathbf{y}_{j} \le \mathbf{b}_{i} \qquad \forall i \\ \underline{\mathbf{x}} \le \mathbf{x} \le \bar{\mathbf{x}} \\ \mathbf{y}_{j} \ge \mathbf{x}_{j}, \quad \mathbf{y}_{j} \ge -\mathbf{x}_{j}$$

Cardinality constrained LP

Soyster's model is over conservative, we want to consider a model where only Γ_i coefficient per line have non-zero errors, leading to

$$\min_{x,y} \quad c^{\top}x \\ \sum_{j} \bar{a}_{ij}x_{j} + \max_{S_{i}:|S_{i}|=\Gamma_{i}} \sum_{j \in S_{i}} \delta_{ij}y_{j} \le b_{i} \qquad \forall i$$
$$\frac{x \le x \le \bar{x}}{y_{i} \ge x_{j}}, \quad y_{i} \ge -x_{i}$$

Cardinality constrained LP

Soyster's model is over conservative, we want to consider a model where only Γ_i coefficient per line have non-zero errors, leading to

$$\begin{split} \min_{x,y} \quad c^{\top}x \\ & \sum_{j} \bar{a}_{ij}x_{j} + \beta_{i} \leq b_{i} \\ & S_{i}:|S_{i}| = \Gamma_{i}\sum_{j \in S_{i}} \delta_{ij}y_{j} \leq \beta_{i} \\ & \underline{x} \leq x \leq \bar{x} \\ & y_{j} \geq x_{j}, \quad y_{j} \geq -x_{j} \end{split}$$

Cardinality constrained LP

Solution approaches

Introduction

This means that, for line i we take a margin of

Robust LP

$$eta_i(x, {\sf \Gamma}_i) := \max_{m{S}_i: |m{S}_i| = {\sf \Gamma}_i} \sum_{j \in m{S}_i} \delta_{ij} |x_j|$$

00000000000

Example

which can be obtained as

$$eta_i(x, \Gamma_i) = \max_{\substack{z \ge 0}} \sum_j \delta_{ij} |x_j| z_{ij}$$
 $\sum_j z_{ij} \le \Gamma_i \qquad [\lambda_i]$
 $z_{ij} \le 1 \qquad [\mu_{ij}]$

This LP can be then dualized to be integrated in the original LP.

Robust combinatorial

Ш

Introduction 00000000 Solution approaches

Robust LP ○○○○○○○○○○○○○○○○

Example

Robust combinator 0000000 Conclusion

Ш

Cardinality constrained LP

ļ

$$eta_i(\mathbf{x}, \Gamma_i) = \max_{\mathbf{z} \ge 0} \quad \sum_j \delta_{ij} |x_j| z_{ij} \ \sum_j z_{ij} \le \Gamma_i \qquad [\lambda_i] \ z_{ij} \le 1 \qquad [\mu_{ij}]$$

Robust LP

Example 00000000 Robust combinat

Conclusion

Ш

Cardinality constrained LP

$$egin{aligned} eta_i(\mathbf{x}, \Gamma_i) &= \max_{\mathbf{z} \geq 0} \quad \sum_j \delta_{ij} |x_j| z_{ij} \ &\sum_j z_{ij} \leq \Gamma_i \quad & [\lambda_i] \ &z_{ij} \leq 1 \quad & [\mu_{ij}] \end{aligned}$$

$$eta_i(x, \Gamma_i) = \max_{z \ge 0} \min_{\lambda, \mu \ge 0} \quad \sum_j \delta_{ij} |x_j| z_{ij} + \lambda_i \Big(\Gamma_i - \sum_j z_{ij} \Big)
onumber \ + \sum_j \mu_{ij} \Big(1 - z_{ij} \Big)$$

Robust LP

Example 00000000 Robust combinat

Conclusion

Ш

Cardinality constrained LP

$$egin{aligned} eta_i(\mathbf{x}, \Gamma_i) &= \max_{\mathbf{z} \geq 0} \quad \sum_j \delta_{ij} |x_j| z_{ij} \ &\sum_j z_{ij} \leq \Gamma_i \quad & [\lambda_i] \ &z_{ij} \leq 1 \quad & [\mu_{ij}] \end{aligned}$$

$$\beta_{i}(\mathbf{x}, \Gamma_{i}) = \max_{z \ge 0} \min_{\lambda, \mu \ge 0} \sum_{j} \delta_{ij} |\mathbf{x}_{j}| \mathbf{z}_{ij} + \lambda_{i} \left(\Gamma_{i} - \sum_{j} \mathbf{z}_{ij} \right) \\ + \sum_{j} \mu_{ij} \left(1 - \mathbf{z}_{ij} \right) \\ = \min_{\lambda, \mu \ge 0} \max_{z \ge 0} \lambda_{i} \Gamma_{i} + \sum_{j} \mu_{ij} \\ + \sum_{j} \mathbf{z}_{ij} \left(\delta_{ij} |\mathbf{x}_{j}| - \lambda_{i} - \mu_{ij} \right)$$

Robust LP

Example 00000000 Robust combinat

Conclusion

Cardinality constrained LP

$$eta_i(x, \Gamma_i) = \max_{z \ge 0} \quad \sum_j \delta_{ij} |x_j| z_{ij} \ \sum_j z_{ij} \le \Gamma_i \qquad [\lambda_i] \ z_{ij} \le 1 \qquad [\mu_{ij}]$$

$$\beta_{i}(x, \Gamma_{i}) = \max_{z \ge 0} \min_{\lambda, \mu \ge 0} \sum_{j} \delta_{ij} |x_{j}| z_{ij} + \lambda_{i} \left(\Gamma_{i} - \sum_{j} z_{ij} \right) \\ + \sum_{j} \mu_{ij} \left(1 - z_{ij} \right) \\ = \min_{\lambda, \mu \ge 0} \lambda_{i} \Gamma_{i} + \sum_{j} \mu_{ij} \\ \text{s.t.} \qquad \delta_{ij} |x_{j}| \le \lambda_{i} + \mu_{ij}$$

Exam

Robust 0

st combinatorial

Conclusion

IV

Cardinality constrained LP

In the end we obtain

$$\begin{array}{ll} \min_{\mathbf{x},\beta,\lambda,\mu} & c^{\top}\mathbf{x} \\ & \sum_{j} \bar{\mathbf{a}}_{ij}\mathbf{x}_{j} + \beta_{i} \leq b_{i} & \forall i \\ & \lambda_{i}\Gamma_{i} + \sum_{j} \mu_{ij} \leq \beta_{i} & \forall i \\ & \delta_{ij}\mathbf{x}_{j} \leq \lambda_{i} + \mu_{ij} & \forall i,j \\ & -\delta_{ij}\mathbf{x}_{j} \leq \lambda_{i} + \mu_{ij} & \forall i,j \\ & \lambda \geq 0, \quad \mu \geq 0 \\ & \mathbf{x} \leq \mathbf{x} \leq \bar{\mathbf{x}} \end{array}$$

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Example ●0000000	Robust combinatorial	Conclusion 00000

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
- 6 Conclusion

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦		Conclusion 00000

Setting

- Objective: assign facilities to satisfy demand
- horizon *T*, *i* ∈ [*F*] candidate facility location, *j* ∈ [*N*] customer demands
- η unit produce price
- At location *i*: *c_i* unit production cost, *C_i* unit capacity price, *K_i* opening cost
- *d_{i,j}* shipping cost
- $D_{j,\tau}$ demand at location j at time au
- $x_{i,j, au} \in [0,1]$ proportion of demand j satisfied by i at time au
- $P_{i,\tau} \in \mathbb{R}^+$ amount of good produced
- $I_i \in \{0,1\}$ boolean of opening i
- Z_i capacity at i

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Robust combinatorial 0000000	Conclusion 00000
~ ·				

Setting

- Objective: assign facilities to satisfy demand
- horizon *T*, *i* ∈ [*F*] candidate facility location, *j* ∈ [*N*] customer demands
- η unit produce price
- At location *i*: *c_i* unit production cost, *C_i* unit capacity price, *K_i* opening cost
- *d_{i,j}* shipping cost
- $D_{j,\tau}$ demand at location j at time τ
- $x_{i,j, au} \in [0,1]$ proportion of demand j satisfied by i at time au
- $P_{i,\tau} \in \mathbb{R}^+$ amount of good produced
- $I_i \in \{0,1\}$ boolean of opening i
- Z_i capacity at i

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Robust combinatorial 0000000	Conclusion 00000
-				

Setting

- Objective: assign facilities to satisfy demand
- horizon *T*, *i* ∈ [*F*] candidate facility location, *j* ∈ [*N*] customer demands
- η unit produce price
- At location *i*: *c_i* unit production cost, *C_i* unit capacity price, *K_i* opening cost
- *d_{i,j}* shipping cost
- $D_{j,\tau}$ demand at location j at time τ
- $x_{i,j, au} \in [0,1]$ proportion of demand j satisfied by i at time au
- $P_{i,\tau} \in \mathbb{R}^+$ amount of good produced
- $I_i \in \{0, 1\}$ boolean of opening i
- Z_i capacity at i

Robust combina

Conclus 00000

Nominal formulation

max	$\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) x_{i,j,\tau} D_{j,\tau} - \varepsilon_{\tau}$	$\sum_{i \in [T], i \in [F]} c_i P_{i,\tau}$	
	income - transportation	prod. cost	
	$-\underbrace{\sum_{i\in[F]}C_iZ_i}_{\text{capa. cost}}-\underbrace{\sum_{i\in[F]}K_iI_i}_{\text{opening cost}}$		
s.t.	$\sum_{i\in[F]}x_{i,j,\tau}\leq 1$		$\forall j, \tau$
	$\sum_{j \in [N]} x_{i,j,\tau} D_{j,\tau} \le P_{i,\tau}$		$\forall i, \tau$
	$x_{i,j, au} \ge 0$		$\forall i, j, \tau$
	$P_{i,\tau} \leq Z_i, Z_i \leq MI_i,$		$\forall i, \tau$
	$I_i \in \{0,1\}$		$\forall i$

We assume that the demand $D_{j,\tau}$ are unknown. We consider

$$R = \left\{ \boldsymbol{D} \mid \sum_{j \in [N], \tau \in [T]} \left(\frac{\boldsymbol{D}_{j,\tau} - \bar{\boldsymbol{D}}_{j,\tau}}{\varepsilon_{\tau} \bar{\boldsymbol{D}}_{j,\tau}} \right)^2 \le \rho^2 \right\}$$

where

•
$$\overline{D}_{j,\tau}$$
 is the nominal demand;

- ε_t is related to demand variability;
- ρ is a robustness parameter.

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Example 0000●000	Robust combinatoria	l Conclusion
Robust formulation					
First	step: identifying	uncertainty			
max	heta				
s.t.	$\sum_{\tau \in [T], i \in [F], j \in [N]} ($	$(\eta - \mathbf{d}_{i,j}) \mathbf{x}_{i,j,\tau} \mathbf{D}_{j,\tau} - \mathbf{d}_{i,j}$	$\sum_{\tau\in[T],i\in[F]}c_i$	$P_{i,\tau}$	
	-	$-\sum_{i\in[F]}C_iZ_i-\sum_{i\in[F]}K_i$	$I_i \ge \theta$		$\forall D \in R$
	$\sum_{i\in[F]} x_{i,j,\tau} \leq 1$				$\forall j, \tau$
	$\sum_{j\in[N]} x_{i,j,\tau} D_{j,\tau} \leq$	$\leq P_{i, au}$		$\forall i, \tau,$	$\forall D \in R$
	$x_{i,j, au} \ge 0$				$\forall i, j, \tau$
	$P_{i,\tau} \leq Z_i, Z_i$	$\leq MI_i$,			$\forall i, \tau$
	$I_i \in \{0,1\}$				∀i

Normalization

Second step: normalize (and decorrelate) demand.

$$\zeta_{j,\tau} = \frac{D_{j,\tau} - \bar{D}_{j,\tau}}{\varepsilon_{\tau} \bar{D}_{j,\tau}}$$

So that $D \in R$ iff $\zeta \in \mathbb{Z} := \{\zeta \mid \|\zeta\|_2 \le \rho\}.$

Thus, the "incomes-transportation cost" becomes

 $\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau},$

and the production capacity constraint reads

$$\sum_{j \in [N]} x_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{j \in [N]} x_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau} \le P_{i,\tau} \qquad \forall i,\tau.$$

Normalization

Second step: normalize (and decorrelate) demand.

$$\zeta_{j, au} = rac{D_{j, au} - ar{D}_{j, au}}{arepsilon_ au ar{D}_{j, au}}$$

So that $D \in R$ iff $\zeta \in \mathcal{Z} := \{\zeta \mid \|\zeta\|_2 \le \rho\}$.

Thus, the "incomes-transportation cost" becomes

 $\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau},$

and the production capacity constraint reads

$$\sum_{j \in [N]} x_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{j \in [N]} x_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau} \le P_{i,\tau} \qquad \forall i,\tau.$$

Normalization

Second step: normalize (and decorrelate) demand.

$$\zeta_{j, au} = rac{D_{j, au} - ar{D}_{j, au}}{arepsilon_ au ar{D}_{j, au}}$$

So that $D \in R$ iff $\zeta \in \mathbb{Z} := \{\zeta \mid \|\zeta\|_2 \le \rho\}.$

Thus, the "incomes-transportation cost" becomes

$$\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau},$$

and the production capacity constraint reads

$$\sum_{j\in[N]} x_{i,j,\tau} \bar{D}_{j,\tau} + \sum_{j\in[N]} x_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} \zeta_{j,\tau} \leq P_{i,\tau} \qquad \forall i,\tau.$$

We collect the coefficient of ζ in the cost:

$$Q_{j,\tau}(\mathbf{x}) := -\sum_{i \in [F]} (\eta - d_{i,j}) \mathbf{x}_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau}$$

so the "incomes-transportation cost" becomes

$$\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) x_{i,j,\tau} \overline{D}_{j,\tau} - \underbrace{\sup_{\zeta \in \mathcal{Z}} Q(x)^{\top} \zeta}_{=\rho \| Q(x) \|_2}.$$

Similarly, the production capacity constraint is reformulated as

 $\sum_{j \in [N]} x_{i,j,\tau} \bar{D}_{j,\tau} + \rho \| V_{i,\tau} \|_2 \le P_{i,\tau} \qquad \forall i,\tau$

where
$$V_{i,\tau,j} := \varepsilon_{\tau} x_{i,j,\tau} \overline{D}_{j,\tau}$$
.

We collect the coefficient of ζ in the cost:

$$Q_{j, au}(\mathbf{x}) := -\sum_{i\in[F]} (\eta - d_{i,j}) \mathbf{x}_{i,j, au} \varepsilon_{ au} \bar{D}_{j, au}$$

so the "incomes-transportation cost" becomes

$$\sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) \mathsf{x}_{i,j,\tau} \overline{D}_{j,\tau} - \underbrace{\sup_{\boldsymbol{\zeta} \in \mathcal{Z}} Q(\mathbf{x})^{\top} \boldsymbol{\zeta}}_{=\rho \| Q(\mathbf{x}) \|_{2}}.$$

Similarly, the production capacity constraint is reformulated as

$$\sum_{j \in [N]} x_{i,j,\tau} \bar{D}_{j,\tau} + \rho \| V_{i,\tau} \|_2 \le P_{i,\tau} \qquad \forall i,\tau$$

where $V_{i,\tau,j} := \varepsilon_{\tau} x_{i,j,\tau} \overline{D}_{j,\tau}$.

Global robust formulation as a MISOCP

Robust LP

$$\begin{split} \max_{x \ge 0, P, Z, l \in \{0,1\}} & \sum_{\tau \in [T], i \in [F], j \in [N]} (\eta - d_{i,j}) x_{i,j,\tau} \bar{D}_{j,\tau} - \rho \|Q(x)\|_{2} \\ \text{s.t.} & - \sum_{\tau \in [T], i \in [F]} c_{i} P_{i,\tau} - \sum_{i \in [F]} C_{i} Z_{i} - \sum_{i \in [F]} K_{i} I_{i} \ge \theta \\ Q_{j,\tau}(x) &= - \sum_{i \in [F]} (\eta - d_{i,j}) x_{i,j,\tau} \varepsilon_{\tau} \bar{D}_{j,\tau} & \forall j, \tau \\ & \sum_{i \in [F]} x_{i,j,\tau} \le 1 & \forall j, \tau \\ & \sum_{i \in [F]} x_{i,j,\tau} \bar{D}_{j,\tau} + \rho \|V_{i,\tau}(x)\|_{2} \le P_{i,\tau} & \forall i, \tau \\ & V_{i,\tau,j}(x) = \varepsilon_{\tau} x_{i,j,\tau} \bar{D}_{j,\tau} \forall i, \tau, j \\ & P_{i,\tau} \le Z_{i}, \quad Z_{i} \le M I_{i}, & \forall i, \tau \end{split}$$

Example

Introduction	Solution approaches	Robust LP	Example	Robust combinatorial	Conclusion
00000000		೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	00000000	●000000	00000

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem
 - Conclusion

A combinatorial optimization problem with cardinality constraint

Example

Robust combinatorial

Conclusion

We consider a combinatorial optimization problem:

Robust LP

 $\min_{\substack{x \in \{0,1\}^N \\ \tilde{c} \in R}} \max_{\tilde{c} \in R} \tilde{c}^\top x$ s.t. $x \in X$

where *R* is such that each $\tilde{c}_i \in [\bar{c}_i, \bar{c}_i + \delta_i]$, with at most Γ coefficient deviating from \bar{c}_i .

Thus, the problem reads

Solution approaches

$$(P) \quad \min_{x \in \{0,1\}^N} \quad \bar{c}^\top x + \max_{|S| \le \Gamma} \sum_{i \in S} \delta_i x_i$$

s.t. $x \in X$

wlog we assume that the *i* are ordered by decreasing cost uncertainty span : $\delta_1 \ge \delta_2 \ge \cdots \ge \delta_n$.

V. Leclère

Introduction

Robust Optimization : A tutorial

A combinatorial optimization problem with cardinality constraint

Example

Robust combinatorial

Conclusion

We consider a combinatorial optimization problem:

Robust LP

 $\min_{\substack{x \in \{0,1\}^N \\ \boldsymbol{\varepsilon} \in R}} \max_{\boldsymbol{\varepsilon} \in R} \boldsymbol{\varepsilon}^\top x$ s.t. $x \in X$

where *R* is such that each $\tilde{c}_i \in [\bar{c}_i, \bar{c}_i + \delta_i]$, with at most Γ coefficient deviating from \bar{c}_i .

Thus, the problem reads

Solution approaches

$$(P) \quad \min_{x \in \{0,1\}^N} \quad \bar{c}^\top x + \max_{|S| \le \Gamma} \sum_{i \in S} \delta_i x_i$$

s.t. $x \in X$

wlog we assume that the *i* are ordered by decreasing cost uncertainty span : $\delta_1 \geq \delta_2 \geq \cdots \geq \delta_n$.

V. Leclère

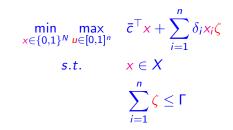
Introduction

Robust Optimization : A tutorial

Introduction Solution approaches Robust LP Conclusion C

Solving the robust combinatorial problem

We can write (P) as



For a given $x \in X$ we dualize the inner maximization LP problem

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{\substack{x,y,\theta \\ s.t.}} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} y_j$$

$$s.t. \quad x \in X$$

$$y_j + \theta \ge \delta_j x_j$$

$$y_j, \theta \ge 0$$

Note that an optimal solution satisfies

$$y_j = (\delta_j x_j - \theta)^+ = (\delta_j - \theta)^+ x_j$$

as $x_j \in \{0, 1\}$, and $\theta \ge 0$.

Solving the robust combinatorial problem

Thus we can write (P) as

$$\min_{\substack{x,y,\theta}} \quad \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} y_j$$
s.t. $x \in X$
 $y_j + \theta \ge \delta_j x_j$
 $y_j, \theta \ge 0$

Note that an optimal solution satisfies

$$y_j = (\delta_j x_j - \theta)^+ = (\delta_j - \theta)^+ x_j$$

as $x_j \in \{0, 1\}$, and $\theta \ge 0$.

Solving the robust combinatorial problem

Robust LP

Thus we can write (P) as

Solution approaches

$$\begin{array}{ll} \min_{\theta \geq 0} \min_{x} & \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} x_{j} (\delta_{j} - \theta)^{+} \\ s.t. & x \in X \end{array}$$

Example

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$. Therefore, we have

$$val(P) = \min_{\ell \in [n]} Z^\ell$$

where

Introduction

$$Z^{\ell} = \min_{x \in X, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad \bar{c}^{\top} x + \Gamma \theta + \sum_{j=1}^{\ell-1} x_j (\delta_j - \theta)$$

Robust combinatorial

0000000

Conclusion

Ш

Solving the robust combinatorial problem

Robust LP

Thus we can write (P) as

Solution approaches

$$egin{aligned} \min_{ heta \geq 0} & ar{c}^{ op} x + \Gamma heta + \sum_{j=1}^n x_j (\delta_j - heta)^+ \ s.t. & x \in X \end{aligned}$$

Example

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$. Therefore, we have

$$val(P) = \min_{\ell \in [n]} Z^\ell$$

where

Introduction

$$Z^{\ell} = \min_{x \in X, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad \bar{c}^{\top} x + \Gamma \theta + \sum_{j=1}^{\ell-1} x_j (\delta_j - \theta)$$

Robust combinatorial

0000000

Conclusion

Ш

Solving the robust combinatorial problem

Robust LP

Thus we can write (P) as

Solution approaches

$$\begin{array}{ll} \min_{\theta \geq 0} \min_{x} & \bar{c}^{\top}x + \Gamma\theta + \sum_{j=1}^{n} x_{j} (\delta_{j} - \theta)^{+} \\ s.t. & x \in X \end{array}$$

Example

We can now decompose the problem for $\theta \in [\delta_{\ell}, \delta_{\ell-1}]$ where $\delta_{n+1} = 0$ and $\delta_0 = +\infty$. Therefore, we have

$$\mathit{val}(P) = \min_{\ell \in [n]} Z^\ell$$

where

Introduction

$$Z^{\ell} = \min_{x \in X, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad \bar{c}^{\top} x + \Gamma \theta + \sum_{j=1}^{\ell-1} x_j (\delta_j - \theta)$$

Robust combinatorial

Ш

0000000

Robust LP Robust combinatorial Example 0000000 IV

Solving the robust combinatorial problem

As the problem is linear in θ we have that

$$Z^{\ell} = \min_{\mathbf{x} \in \mathbf{X}, \theta \in [\delta_{\ell}, \delta_{\ell-1}]} \quad \bar{c}^{\top} \mathbf{x} + \Gamma \theta + \sum_{j=1}^{\ell-1} x_j (\delta_j - \theta)$$

is attained for
$$\theta = \delta_{\ell}$$
 or $\theta = \delta_{\ell-1}$.
So in the end, we have

$$val(P) = \min_{\ell \in [n]} G^{\ell}$$

where

$$G^{\ell} = \Gamma \delta_{\ell} + \min_{\mathbf{x} \in X} \left\{ \bar{c}^{\top} \mathbf{x} + \sum_{j=1}^{\ell} \underbrace{(\delta_j - \delta_{\ell})}_{>0} \mathbf{x}_j \right\}$$

Introduction Solution approaches Robust LP Example Robust combinatorial

Algorithm for the robust problem

• For $\ell \in [n]$, solve

$$G^{\ell} = \Gamma \delta_{\ell} + \min_{\mathbf{x} \in X} \quad \left\{ \bar{c}^{\top} \mathbf{x} + \sum_{i=1}^{\ell} (\delta_i - \delta_{\ell}) \mathbf{x}_j \right\}$$

with optimal solution x_{ℓ}

- 2 Set $\ell^* \in \arg\min_{\ell \in [n]} G^\ell$
- **3** Return $val(P) = G^{\ell^*}$ and $x^* = x_{\ell}$

Introduction 00000000	Solution approaches	Robust LP ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Example 00000000	Robust combinatorial	Conclusion ●0000

Contents

- Introduction and motivations
 - How to add uncertainty in an optimization problem
 - Why shall you do Robust Optimization ?
- 2 Solving the robust optimization problem
- 8 Robust optimization for Linear Programm
 - Reformulating the problem
 - Ellipsoidal uncertainty set
 - Polyhedral uncertainty set
 - Cardinality constrained LP
- 4 Robust facility location example (Bertsimas & Den Herthog)
- 5 Robust Combinatorial Problem

6 Conclusion

Why do robust optimization ?

- Because you want to account for some uncertainty
- Because you want to have a solution that resists to changes in data
- Because your data is unprecise and robustness yield better out-of-sample result
- Because you do not have the law of the uncertainty
- Because you can control the robustness level
- Because your problem is "one-shot"

Which uncertainty set to choose ?

- An uncertainty set that is computationally tractable
- An uncertainty set that yields good results
- An uncertainty set that have some theoretical soundness
- An uncertainty set that take available data into account
- Select uncertainty set / level through cross-validation

• Yes: with some assumption over the randomness (e.g. bounded and symmetric around \bar{a}) some uncertainty set (e.g. ellipsoidal) have a probabilistic guarantee :

 $orall {oldsymbol{\xi}} \in {\it R}_arepsilon, \quad {\it g}(x,{oldsymbol{\xi}}) \leq 0 \qquad \Longrightarrow \qquad \mathbb{P} \Big({\it g}(x,{oldsymbol{\xi}}) \leq 0 \Big) \geq 1-arepsilon$

- Yes: in some cases approximation scheme for nominal problem can be extended to robust problem (e.g. cardinal uncertainty in combinatorial problem)
- Yes: using relevant data we can use statistical tools to construct a robust set *R* that imply a probabilistic guarantee

Conclusion

Example 00000000 Robust combinatorial

Conclusion

D. Bertsimas, D. Brown, C. Caramanis Theory and applications of robust optimization Siam Review, 2011.

- D. Bertsimas and D. Den Hertog Robust and adaptive optimization *Dynamic Ideas, 2022.*
- BL Gorissen, I. Yanikoglu and D. den Hertog A practical guide to robust optimization *Omega*, 2015.
- D. Bertsimas and M. Sim The price of robustness Operations research, 2004.
- A. Ben Tal, L El Ghaoui, A. Nemirovski Robust optimization *Springer, 2009.*