

Exam Stochastic Optimization – part I

30 January 2024

duration 1.5 hours, paper documents allowed

The goal of this exercise is to propose a unification of the proofs of stochastic gradient descent and randomized coordinate descent.

We consider the optimization problem

$$\min_{x \in \mathbb{R}^d} F(x)$$

where F is a convex and differentiable function whose gradient is L -Lipschitz continuous and we suppose that $\exists x^* \in \arg \min F$.

We assume that there exists a function $g : \mathbb{R}^d \times \xi$ and a random variable $\xi \sim \mathcal{D}$ such that

$$\mathbb{E}_{\xi \sim \mathcal{D}}[g(x, \xi)] = \nabla F(x) .$$

We shall also assume that there exists real numbers A, B and C such that

$$\mathbb{E}_{\xi \sim \mathcal{D}}[\|g(x, \xi)\|^2] \leq 2A(F(x) - F(x_*)) + B\|\nabla F(x)\|^2 + C \quad (1)$$

PART I

- Suppose that $F(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(x, \xi)]$, $g(x, \xi) = \nabla f(x, \xi)$, $\mathbb{E}_{\xi \sim \mathcal{D}}[g(x, \xi)] = \nabla F(x)$ and $\mathbb{E}_{\xi \sim \mathcal{D}}[\|g(x, \xi) - \nabla F(x)\|^2] \leq \sigma^2$.

Show that g satisfies (1) with $B = 1$ and values of A and C to be determined.

- Suppose that $\xi \sim U(\{1, \dots, d\})$ and $g(x, \xi) = d\nabla_{\xi} F(x)e_{\xi}$, which means it is a vector with one nonzero element equal to d times the partial derivative of F .

Show that g satisfies (1) with $C = 0$.

- Suppose that $F(x) = \mathbb{E}_{\xi \sim \mathcal{D}}[f(x, \xi)]$ where $\forall \xi$, $\nabla f(x^*, \xi) = 0$ and $(x \mapsto f(x, \xi))$ is convex with a L -Lipschitz gradient. Show that $g = \nabla f$ satisfies (1) with $C = 0$.

PART II

Our goal now is to propose a unified analysis of the following generic stochastic gradient method where the convergence result would depend on A, B and C .

$$\begin{aligned} \xi_{k+1} &\sim \mathcal{D} \\ x_{k+1} &= x_k - \gamma_k g(x_k, \xi_{k+1}) \end{aligned}$$

where (γ_k) is a deterministic sequence of positive step sizes. We shall denote the conditional expectation knowing the past as $\mathbb{E}_k[\cdot] = \mathbb{E}[\cdot | \xi_1, \dots, \xi_k]$.

1. Explain why $F(x^*) \geq F(x_k) + \langle \nabla F(x_k), x^* - x_k \rangle + \frac{1}{2L} \|\nabla F(x_k)\|^2$.
2. Show that $\|x_{k+1} - x^*\|^2 = \|x_k - x^*\|^2 - 2\gamma_k \langle g(x_k, \xi_{k+1}), x_k - x^* \rangle + \|x_{k+1} - x_k\|^2$.
3. Show that

$$\mathbb{E}_k[\|x_{k+1} - x^*\|^2] \leq \|x_k - x^*\|^2 + 2(\gamma_k - \gamma_k^2 A)(F(x^*) - F(x_k)) + (\gamma_k^2 B - \frac{\gamma_k}{L}) \|\nabla F(x_k)\|^2 + \gamma_k^2 C$$

4. Under what conditions on (γ_k) do we have

$$\mathbb{E} \left[\sum_{k=0}^{K-1} 2(\gamma_k - \gamma_k^2 A)(F(x_k) - F(x^*)) \right] \leq \|x_0 - x^*\|^2 + \sum_{k=0}^{K-1} \gamma_k^2 C ?$$

5. Give a point \bar{x}_K and a sequence (γ_k) for which $F(\bar{x}_K) - F(x^*)$ converges to 0

PART III

Particularize the bound found in PART II to the 3 cases proposed in PART I. Comment on the quality of the bound found.