Stochastic Optimization - 2 hours

Vincent Leclère

16/01/2020

Name: _____

1 Linear quadratic control (11 points)

We consider the following problem

$$\min_{\boldsymbol{x}_1, \boldsymbol{x}_2} \qquad \mathbb{E}\left[\frac{1}{2}(\boldsymbol{x}_1 - \boldsymbol{\xi}_1)^2 + \frac{1}{2}(\boldsymbol{x}_2 - \boldsymbol{\xi}_2)^2 + \frac{1}{2}(\boldsymbol{x}_2 - \boldsymbol{x}_1)^2\right]$$
(1a)

s.t.
$$\sigma(\boldsymbol{x}_1) \subset \sigma(\boldsymbol{\xi}_1)$$
 (1b)

$$\sigma(\boldsymbol{x}_2) \subset \sigma(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \tag{1c}$$

(1d)

where $\boldsymbol{\xi}_i$ are centered random variable (i.e. with $\mathbb{E}[\boldsymbol{\xi}_i] = 0$) with finite covariance matrix Σ . This means that, $var(\boldsymbol{\xi}_i) = \Sigma_{i,i}$ and $cov(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) = \Sigma_{1,2}$. When possible the result are to be given in function of the coefficient of Σ .

1. (1 point) Assuming that $\boldsymbol{\xi}_1$ and $\boldsymbol{\xi}_2$ are deterministic, find the optimal solution to Problem (1) in function of x_0, ξ_1, ξ_2 and k, and show that the optimal value is of the form

$$V^{det}(\xi_1,\xi_2) = \kappa(\xi_2 - \xi_1)^2,$$

 κ to be determined.

2. (2 points) Using Question 1 propose a natural open-loop solution to Problem (1) and compute the associated upper bound. Can you also give a lower bound ?

3. (1 point) Using Question 1 give a lower bound of Problem (1).

4. (4 points) Assume that $\boldsymbol{\xi}_1$ and $\boldsymbol{\xi}_2$ are independent. Solve Problem (1) giving both the value and optimal strategy.

5. (2 points) For generic $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$ prove that the policy obtained in the previous question is ε -optimal for Problem (1), where ε is to be given in function of Σ .

2 A unit commitment problem (11 points)

We consider an energy production company which has a set of production unit \mathcal{I} . Each unit $i \in \mathcal{I}$ is either on $(x^i = 1)$ or off $(x^i = 0)$ for the day (decided the day before). If it is on, its production u_t^i at time $t \in [\![1, 24]\!]$ should be in $[\underline{\mathbf{u}}^i, \overline{u}^i]$. Turning on a unit has a cost c^i (for the day), while the production cost per hour is e^i .

Let's denote z_t the production of the company sold on the market, and $\varepsilon_t \ge 0$ the lost production, i.e. $\sum_{i \in \mathcal{I}} u_t^i = z_t + \varepsilon_t$. For each hour there is a demand d_t such that $z_t \in [0.8d_t, 1.2d_t]$ almost surely. The company is paid $p_t z_t$ at time t.

 d_t and p_t are revealed at the beginning of hour t. u_t^i is decided once they are revealed. The company aims at minimizing the expected cost.

1. (3 points) Write the problem has a multistage stochastic program and give the information structure. Justify the choice of expectation in the objective.

2. (2 points) Justify that this problem can be reduced to a two stage program. Specify the decomposition in first stage and second stage program.

3. (1 point) Give a simple necessary and sufficient condition under which this problem has finite value. Give a necessary and sufficient condition for the decomposition to present relatively complete recourse.

4. (2 points) Assuming that you have a sample of S = 1000 scenarios of $(d_t, p_t)_{t \in [\![1,24]\!]}$. Write the extensive formulation SAA approximation of the above two-stage program as a MILP. Precise the number and type of first stage and second stage variables.

5. (3 points) Is the SAA problem better addressed by Progressive Hedging or L-Shaped method ? Justify your answer. Write the master and slave problems.