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Recalls on optimization and convexity
[ Jelele]

Convex set

o Aset C C R"is convex iff

Vx,y € C, Vtel0,1], tx+(1—t)y e C.

@ Intersection of convex sets is convex.

@ A closed convex set C is equal to the intersection of all
half-spaces containing it.
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Recalls on optimization and convexity
[e] lele]

Convex function

e The epigraph of a function f : R" — RU {400} is
epi(f) = {(x,t) eR" xR | t>f(x)}.

@ The domain of a function f is

dom(f) :={xeR" | f(x)<+oo}

@ The function f is said to be convex iff its epigraph is convex,
in other words iff

vt € [0,1], f(tx+ (1 —t)y) < tf(x)+ (1 — t)f(y).

@ The function f is said to be strictly convex iff

vt € (0,1), f(tx + (1 —t)y) < tf(x)+ (1 = t)f(y).
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Recalls on optimization and convexity
[e]e] o]

Convexity and differentiable

We assume sufficient regularity for the written object to exist.
o Iff:R— R.

f is convex iff ' non-decreasing.
If £’ strictly increasing then f is strictly convex.

f is above its tangeants : f(y) > f(x) + f'(x)(y — x).

f is convex iff f” > 0.

If £ > 0 then f is strictly convex.

R" >R

o f is convex iff Vf non-decreasing (i.e.
(VF(y) = VF(x) - (y =x) = 0). ,

o f is above its tangeants : f(y) > f(x) + VFf(x)(y — x).

o f is convex iff V2f(x) = 0 for all x.

o If V2f(x) = 0 for all x then f is strictly convex.

N o © © © © ©

o If
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Recalls on optimization and convexity
[e]e]e] ]

Video explanation

https://www.youtube.com/watch?v=qFO0aDJfEa4Y
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Recalls on optimization and convexity
[ leJele]e]

Convex differentiable optimization problem

Consider the following optimization problem.

ge]%&n" f(x) (P)
st. gi(x)=0 Vi € [ng]
hj(x) <0 vj € [n]

with

X = {X e R" | Vi e [nE], g,-(x) =0, Vje [n/], hj(X) < O}
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Recalls on optimization and convexity
[ leJele]e]

Convex differentiable optimization problem

Consider the following optimization problem.

ge]%&n" f(x) (P)
st. gi(x)=0 Vi € [ng]
hj(x) <0 vj € [n]

with

X = {X e R" | Vi e [nE], g,-(x) =0, Vje [n/], hj(X) < O}

e (P) is a convex optimization problem if f and X are convex.

)
e (P) is a convex differentiable optimization problem if f, and
h; (for j € [n]) are convex differentiable and g; (for i € [ng])
are affine
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Recalls on optimization and convexity
(o] Jelele]

KKT conditions

Let x* be an optimal solution to a differentiable optimization problem
(P). If the constraints are qualified at x* then there exists optimal
multipliers \* € R" and ;f € R™ satisfying

Z /\ﬁVg, )+ Z 1 Vh =0 first order condition
g(x*)=0 primal admissibility
h(x*) <0
w>0 dual admissibility
pihi(x*) =0, Vie[n] complementarity

The three last conditions are sometimes compactly written

0> h(x*) Lu>0.
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Recalls on optimization and convexity
00e00

Video explanation (at a later time)

Intro to constrained optimization
https://www.youtube.com/watch?v=vwUV2IDLP8Q
Explaining tangeancy of multipliers
https://www.youtube.com/watch?v=yugB-d5MjZA
Marginal interpretation of multipliers
https://www.youtube.com/watch?v=m-G3K2GPmEQ

14/02/2023 8 /29
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Recalls on optimization and convexity
(ele]e] Jo]

Slater condition

A convex optimization problem (P) satisfies the Slater condition if
there exists a strictly admissible xo € R” that is

Vi € [HE]7 g,'(Xo) =0, Vje [n/], hj(Xo) < 0.

If the Slater condition is satisfied, then the constraints are qualified
at any x € X.
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Recalls on optimization and convexity
0000e

Another optimality condition (convex case)

If (P) is a convex differentiable optimization problem, then xfe X
is an optimal solution iff

Vye X, Vi(x)-(y—x)>0

V. Leclere Wardrop Equilibrium 14/02/2023
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Modelling a traffic assignement problem
00000

The set-up

e G =(V,E)is a directed graph

@ x. for e € E represent the flux (number of people per hour)
taking edge e

@ /. :R — R™ the cost incurred by a given user to take edge e
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Modelling a traffic assignement problem
00000

The set-up

e G =(V,E)is a directed graph

@ x. for e € E represent the flux (number of people per hour)
taking edge e

@ /. :R — R™ the cost incurred by a given user to take edge e

@ We consider K origin-destination vertex pair {ok, dk}ke[K]'
such that there exists at least one path from o* to d*.

o ry is the rate of people going from o* to d*

@ Py the set of all simple (i.e. without cycle) path form o* to d*

@ We denote f, the flux of people taking path p € Py
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Modelling a traffic assignement problem
(o] Jele]e]

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK
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Modelling a traffic assignement problem
(o] Jele]e]

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK

People going through an edge are on a simple path taking this edge

Xe = pr.

poe
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Modelling a traffic assignement problem
(o] Jele]e]

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK

People going through an edge are on a simple path taking this edge

Xe = pr.

poe

The flux are non-negative

VpeP, f,>0, and Vee E, x>0
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Modelling a traffic assignement problem
(e]e] lele]

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE

e Given x, the cost of taking edge e for one person is £c(xe).
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Modelling a traffic assignement problem
(e]e] lele]

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE

e Given x, the cost of taking edge e for one person is £c(xe).

@ The cost for the system for edge e is thus x/e(xe).
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Modelling a traffic assignement problem
(e]e] lele]

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE

e Given x, the cost of taking edge e for one person is £c(xe).
@ The cost for the system for edge e is thus x/e(xe).
@ Thus minimizing the system costs consists in solving

n;yip erﬂe(xe) (SO)

ecE
st.one= Y 1 k € [K]
PEPK
Xe=Y _f ecE
poe
fp >0 p € P
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Modelling a traffic assignement problem
(e]e]e] Jo]

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.
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Modelling a traffic assignement problem
(e]e]e] Jo]

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -

poe
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Modelling a traffic assignement problem
(e]e]e] Jo]

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -

p>e
@ Define the loss along a path ¢,(f) = de( Z for )
ecp p'se
——
xe(f)

V. Leclere
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Modelling a traffic assignement problem
(e]e]e] Jo]

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -

p>e
@ Define the loss along a path ¢,(f) = de( Z for )
ecp p'se
——
xe(f)

@ The total cost is thus

C(F) =) folp(f) = D xele(xe(F)) = C(x(F)):

pEP ecE
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Modelling a traffic assignement problem

[e]e]e]e] }

Path intensity problem

V. Leclere

min > flp(f)

pEP

s.t. = Z fo

PEPK
fp >0

Wardrop Equilibrium
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Modelling a traffic assignement problem
@®00000000

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. " Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
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Modelling a traffic assignement problem
@®00000000

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. " Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”

A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

Vke K], Y(p,p)eP:  £,>0 = {(f)<{y(f)
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Modelling a traffic assignement problem
O@0000000

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
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Modelling a traffic assignement problem
O@0000000

A new cost function

We are going to show that a user-equilibrium f is defined as a

vector satisfying the KKT conditions of a certain optimization
problem.

Let define a new edge-loss function by

Le(xe) = / Le(u)du.
0
The Wardrop potential is defined (for edge intensity) as

W(f) = W(x(f)) = Y Le(xe(f))-

ecE

V. Leclere
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Modelling a traffic assignement problem
[o]e] lelelelele]e)

User optimum problem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

miP W(x)
s.t. re = Z " k € [K]
PEPK
= Z fo ecE
poe
fr, >0 peP
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Modelling a traffic assignement problem

000@00000

In path intensity formulation

mfin ZLe(pr)

ecE poe
s.t. re = Z fo k € [K]
PEP«
fp >0 pc P

/2023 19 /29
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Modelling a traffic assignement problem
000e00000

In path intensity formulation

mfin ZLe(pr)

ecE poe
s.t. re = Z fo k € [K]
PEP«
fp >0 pc P

with Lagrangian

K

L(F, A\ ) = W(F) + Z)\k(rk -y fp) +3 by

k=1 PEPx pEP

Wardrop Equilibrium
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Modelling a traffic assignement problem

0O000@0000

Now note that we have

0 af(zL Zf>

ecE p’'de
_Za
eep
= Le(xe(F)) = £,(F),
ecp

Xe
Recall that Lo(xe) ::/ Le(u)du
0

V. Leclere Wardrop Equilibrium
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Modelling a traffic assignement problem

0O0000e000

The constraints of (UE) are qualified. First-order KKT conditions reads

V. Leclere

OL(f, A,
(afpu):ﬁp(f)—AHMp:O Vp € Pk, Yk € [1, K]
OL(F, A, 1)
T:fk—z:fpzo Vk € [1,K]

PEPx
ptp=0o0rf,=0 VpeP
MP§07fP20 VPEP

Wardrop Equilibrium 14/02/2023
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Modelling a traffic assignement problem

0O0000e000

The constraints of (UE) are qualified. First-order KKT conditions reads

OL(f, A,
%%/U:EAO—AVH@:O Vp € Pk, Yk € [1, K]
OL(F, A, 1)
T:fk—z:fpzo Vk € [1,K]

PEPx
ptp=0o0rf,=0 VpeP
MP§07fP20 VPEP

f satisfies the KKT conditions iff for all origin-destination pair k € [K],
and all path p € P, we have

0o(F) =M iff, >0
>N\ iff=0
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Modelling a traffic assignement problem

0O0000e000

The constraints of (UE) are qualified. First-order KKT conditions reads

OL(f, A
‘4%#JQ:€AQ_AVH@:0 Vp € Pk, Yk € [1, K]
P
OL(F, A, 1)
T:fk—z:fpzo Vk € [1,K]
PEPx
ptp=0o0rf,=0 VpeP
MP§07fP20 VPEP

f satisfies the KKT conditions iff for all origin-destination pair k € [K],
and all path p € P, we have

0o(F) =M iff, >0
>N\ iff=0

In other words, if the path p € Py is used, then its cost is A, and all
other path p’ € P; have a greater or equal cost, which is the definition of
a User Equilibrium.

V. Leclére Wardrop Equilibrium 14/02/2023
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Modelling a traffic assignement problem
000000800

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Assume that the loss function fe are non-decreasing for all e € E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)
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Modelling a traffic assignement problem

0OO00000e00

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Assume that the loss function fe are non-decreasing for all e € E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

Proof : the cost is convex as composition of convex and affine
functions, thus KKT is a necessary and sufficient condition for
optimality.
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Modelling a traffic assignement problem
000000080

Convex case : characterization

define the system cost of a flow f for a given flow f', as

CP(F) = xe(F)le(xe(F)).

ecE
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Modelling a traffic assignement problem
000000080

Convex case : characterization

define the system cost of a flow f for a given flow f', as

CP(F) = xe(F)le(xe(F)).

ecE

Assume that the cost functions {. are continuous and
non-decreasing. Then, fYE is a user equilibrium iff

vfe Fad, CPU(FUE) < ™ (h),

where F9 s the set of admissible flows.
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Modelling a traffic assignement problem

0OO0000000e

By convexity (fYF) is an optimal solution to (UE) iff

VW(fU) - (F—fU!) >0,  VfeF

V. Leclere Wardrop Equilibrium ©23 24 /29



Modelling a traffic assignement problem
00000000 e

By convexity (fYF) is an optimal solution to (UE) iff

VW(fU) - (F—fU!) >0,  VfeF

which is equivalent to

ow oW .
Do () = D S (FEVR"E, vfer
P P
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Modelling a traffic assignement problem

0OO0000000e

By convexity (fYF) is an optimal solution to (UE) iff

VW(fU) - (F—fU!) >0,  VfeF

which is equivalent to

ow oW .
> S () > > S (FEVR"E, vfer
P

PEP , pEP
£p(fUE) £p(fUE)

which can be written

fUE

c™(FUEy < ™ (F),  VFfe F*.

V. Leclere Wardrop Equilibrium 14/02/2023

24 /



Price of anarchy

®00000

© Price of anarchy
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Price of anarchy
[o] lelele]e]

Definition

Definition

Consider increasing loss functions /.. Let fUE be a user
equilibrium, and 99 be a system optimum. Then the price of
anarchy of our network is given by

A

Let l. be the affine function xe v beXe + Ce, With be,ce > 0. Then
the price of anarchy is lower than 4/3, and the bound is tight.
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Price of anarchy
[e]e] lele]e]

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

(f)

fUE

C(f¥{y < ¢
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

C(fE) < " (f)

= Z (bexgE + c:e)xe

ecE

fUE
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

C(fYE) < cf“E(f)

—Z 4—(:e

ecE

< Z [(bexe + ce)xe + %be (XéJE)ﬂ as (xe — xéJE/2)2 >0
ecE
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

C(fYE) < cf“E(f)

—Z 4—(:e

ecE

< Z [(bexe + ce)xe + %be (XéJE)ﬂ as (xe — xéJE/2)2 >0
eckE

< C(f)—i—%Z(b +ce) UE as ceerEzo

ecE
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

fUE

C(f¥{y < ¢ (f)
= Z E4 ce
ecE
< ; [(bexe Fexet 3he ()] as (xe — xVE/2P2 2 0
< C(f)—i—%Z(b +ce) UE as ceerEzo

ecE

= C(f) + %C’(UE(fUE)

Hence we have 3/4C(fYE) < C(f).
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Price of anarchy

[e]e] lele]e}

Let f be a feasible flow, and fYE be the user equilibrium. For ease of
notation we fix xYE = x(fYF), and x = x(f).
By Theorem we have

fUE

C(f¥{y < ¢ (f)
= Z E4 ce
ecE
< ; [(bexe Fexet 3he ()] as (xe — xVE/2P2 2 0
< C(f)—i—%Z(b +ce) UE as ceerEzo

ecE

= C(f) + %C’(UE(fUE)

Hence we have 3/4C(fYE) < C(f).
Minimizing over admissible flow f ends the proof.

V. Leclére Wardrop Equilibrium 14/02/2923 26 / 29



Price of anarchy
[e]e]e] le]e]

Pigou’'s Example

Figure: Pigou example

On a graph with two nodes: one origin, one destination, a total
flow of 1, a fixed cost of 1 on one edge, and a cost of x"N on the
other, where N € N and x is the intensity of the flow using this
edge (see Figure 1).

@ Compute the system optimum for a given N.

@ Compute the user equilibrium for a given N.

© Compute the price of anarchy on this network when N — oc.
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Price of anarchy
000080

Exercise for next week (3.2)

Consider a (finite) directed, strongly connected, graph G = (V, E). We
consider K origin-destination vertex pair {ok, dk}ke[K]’ such that there

exists at least one path from o* to d*.
We want to find bounds on the price of anarchy, assuming that, for each
arce, lo:RT 5 RT is non-decreasing, and that we have

xbe(x) < 7le(x),  V¥x €R*

@ Recall which optimization problems solves the social optimum x>°
and the user equilibrium xYE.

@ Let x be a feasable vector of arc-intensity. Show that

W(x) < C(x) < yW(x).
@ Show that the price of anarchy C(xYE)/C(x>°) is lower than 7.
@ If the cost per arc /. are polynomial of order at most p with

non-negative coefficient, find a bound on the price of anarchy. Is
this bound sharp?
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Price of anarchy
O0000e

Further video content

This is a research seminar by one of the expert in the domain. The
first half is very interesting to get a better intuition of the
concepts. The second half is more dedicated to the proof of the
result presented in the talk.
https://www.youtube.com/watch?v=e30_tMsN2t8

V. Leclére Wardrop Equilibrium 14/02/2023 29 /29


https://www.youtube.com/watch?v=e3O_tMsN2t8

	Recalls on optimization and convexity
	Recalls on convexity
	Optimization Recalls

	Modelling a traffic assignement problem
	System optimum
	Wardrop equilibrium

	Price of anarchy

