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Convex set

A set C ⊂ Rn is convex iff

∀x , y ∈ C , ∀t ∈ [0, 1], tx + (1− t)y ∈ C .

Intersection of convex sets is convex.

A closed convex set C is equal to the intersection of all
half-spaces containing it.
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Convex function

The epigraph of a function f : Rn → R ∪ {+∞} is

epi(f ) :=
{
(x , t) ∈ Rn × R | t ≥ f (x)

}
.

The domain of a function f is

dom(f ) :=
{
x ∈ Rn | f (x) < +∞

}
The function f is said to be convex iff its epigraph is convex,
in other words iff

∀t ∈ [0, 1], f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y).

The function f is said to be strictly convex iff

∀t ∈ (0, 1), f (tx + (1− t)y) < tf (x) + (1− t)f (y).
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Convexity and differentiable

We assume sufficient regularity for the written object to exist.

If f : R → R.
f is convex iff f ′ non-decreasing.
If f ′ strictly increasing then f is strictly convex.

f is above its tangeants : f (y) ≥ f (x) + f ′(x)(y − x).
f is convex iff f ′′ ≥ 0.
If f ′′ > 0 then f is strictly convex.

If f : Rn → R
f is convex iff ∇f non-decreasing (i.e.
(∇f (y)−∇f (x)) · (y − x) ≥ 0).

f is above its tangeants : f (y) ≥ f (x) +∇f (x)(̇y − x).
f is convex iff ∇2f (x) ⪰ 0 for all x .
If ∇2f (x) ≻ 0 for all x then f is strictly convex.
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Video explanation

https://www.youtube.com/watch?v=qF0aDJfEa4Y
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Convex differentiable optimization problem

Consider the following optimization problem.

min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

with

X :=
{
x ∈ Rn | ∀i ∈ [nE ], gi (x) = 0, ∀j ∈ [nI ], hj(x) ≤ 0

}
.

(P) is a convex optimization problem if f and X are convex.

(P) is a convex differentiable optimization problem if f , and
hj (for j ∈ [nI ]) are convex differentiable and gi (for i ∈ [nE ])
are affine
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KKT conditions

Theorem (KKT)

Let x♯ be an optimal solution to a differentiable optimization problem
(P). If the constraints are qualified at x♯ then there exists optimal
multipliers λ♯ ∈ RnE and µ♯ ∈ RnI satisfying



∇f (x♯) +
n∑

i=1

λ♯
i∇gi (x

♯) +

nI∑
j=1

µ♯
i∇hj(x

♯) = 0 first order condition

g(x♯) = 0 primal admissibility

h(x♯) ≤ 0

µ ≥ 0 dual admissibility

µihi (x
♯) = 0, ∀i ∈ [nI ] complementarity

The three last conditions are sometimes compactly written

0 ≥ h(x♯) ⊥ µ ≥ 0.
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Video explanation (at a later time)

Intro to constrained optimization
https://www.youtube.com/watch?v=vwUV2IDLP8Q

Explaining tangeancy of multipliers
https://www.youtube.com/watch?v=yuqB-d5MjZA

Marginal interpretation of multipliers
https://www.youtube.com/watch?v=m-G3K2GPmEQ
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Slater condition

A convex optimization problem (P) satisfies the Slater condition if
there exists a strictly admissible x0 ∈ Rn that is

∀i ∈ [nE ], gi (x0) = 0, ∀j ∈ [nI ], hj(x0) < 0.

If the Slater condition is satisfied, then the constraints are qualified
at any x ∈ X .
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Another optimality condition (convex case)

Theorem

If (P) is a convex differentiable optimization problem, then x ♯ ∈ X
is an optimal solution iff

∀y ∈ X , ∇f (x) · (y − x) ≥ 0.
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The set-up

G = (V ,E ) is a directed graph

xe for e ∈ E represent the flux (number of people per hour)
taking edge e

ℓe : R → R+ the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair
{
ok , dk

}
k∈[K ]

,

such that there exists at least one path from ok to dk .

rk is the rate of people going from ok to dk

Pk the set of all simple (i.e. without cycle) path form ok to dk

We denote fp the flux of people taking path p ∈ Pk
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Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p∋e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ∀e ∈ E , xe ≥ 0
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System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is ℓe(xe).

The cost for the system for edge e is thus xeℓe(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xeℓe(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ [K ]

xe =
∑
p∋e

fp e ∈ E

fp ≥ 0 p ∈ P
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Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f ) :=
∑
p∋e

fp, and x = (xe)e∈E .

Define the loss along a path ℓp(f ) =
∑
e∈p

ℓe
(∑
p′∋e

fp′︸ ︷︷ ︸
xe(f )

)

The total cost is thus

C (f ) =
∑
p∈P

fpℓp(f ) =
∑
e∈E

xeℓe(xe(f )) = C (x(f )).
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Path intensity problem

min
f

∑
p∈P

fpℓp(f ) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ [K ]

fp ≥ 0 p ∈ P
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Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”

A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ [K ], ∀(p, p′) ∈ P2
k , fp > 0 =⇒ ℓp(f ) ≤ ℓp′(f ).

V. Leclère Wardrop Equilibrium 14/02/2♡23 16 / 29
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A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
ℓe(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f ) = W (x(f )) =
∑
e∈E

Le(xe(f )).
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User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

min
x ,f

W (x)

s.t. rk =
∑
p∈Pk

fp k ∈ [K ]

xe =
∑
p∋e

fp e ∈ E

fp ≥ 0 p ∈ P

V. Leclère Wardrop Equilibrium 14/02/2♡23 18 / 29
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Proof I

In path intensity formulation

min
f

∑
e∈E

Le
(∑

p∋e

fp
)

s.t. rk =
∑
p∈Pk

fp k ∈ [K ]

fp ≥ 0 p ∈ P

with Lagrangian

L(f , λ, µ) := W (f ) +
K∑

k=1

λk

(
rk −

∑
p∈Pk

fp
)
+

∑
p∈P

µpfp.
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Proof II

Now note that we have

∂W

∂fp
(f ) =

∂

∂fp

(∑
e∈E

Le(
∑
p′∋e

fp′)

)
=

∑
e∈p

∂

∂xe
Le(xe(f ))

=
∑
e∈p

ℓe(xe(f )) = ℓp(f ),

Recall that Le(xe) :=

∫ xe

0

ℓe(u)du.
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Proof III

The constraints of (UE) are qualified. First-order KKT conditions reads

∂L(f , λ, µ)

∂fp
= ℓp(f )− λk + µp = 0 ∀p ∈ Pk ,∀k ∈ J1,KK

∂L(f , λ, µ)

∂λk
= rk −

∑
p∈Pk

fp = 0 ∀k ∈ J1,KK

µp = 0 or fp = 0 ∀p ∈ P
µp ≤ 0, fp ≥ 0 ∀p ∈ P

f satisfies the KKT conditions iff for all origin-destination pair k ∈ [K ],
and all path p ∈ Pk we have{

ℓp(f ) = λk if fp > 0

ℓp(f ) ≥ λk if fp = 0

In other words, if the path p ∈ Pk is used, then its cost is λk , and all

other path p′ ∈ Pi have a greater or equal cost, which is the definition of

a User Equilibrium.
V. Leclère Wardrop Equilibrium 14/02/2♡23 21 / 29
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Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Theorem

Assume that the loss function ℓe are non-decreasing for all e ∈ E .
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

Proof : the cost is convex as composition of convex and affine
functions, thus KKT is a necessary and sufficient condition for
optimality.

V. Leclère Wardrop Equilibrium 14/02/2♡23 22 / 29
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Convex case : characterization

define the system cost of a flow f for a given flow f ′, as

C f ′(f ) :=
∑
e∈E

xe(f )ℓe
(
xe(f

′)
)
.

Theorem

Assume that the cost functions ℓe are continuous and
non-decreasing. Then, f UE is a user equilibrium iff

∀f ∈ F ad , C f UE (f UE ) ≤ C f UE (f ),

where F ad is the set of admissible flows.

V. Leclère Wardrop Equilibrium 14/02/2♡23 23 / 29
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Proof

By convexity (f UE ) is an optimal solution to (UE) iff

∇W (f UE ) · (f − f UE ) ≥ 0, ∀f ∈ F ad

which is equivalent to∑
p∈P

∂W

∂fp
(f UE )︸ ︷︷ ︸

ℓp(f UE )

fp ≥
∑
p∈P

∂W

∂fp
(f UE )︸ ︷︷ ︸

ℓp(f UE )

f UEp , ∀f ∈ F ad

which can be written

C f UE (f UE ) ≤ C f UE (f ), ∀f ∈ F ad .
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Definition

Definition

Consider increasing loss functions ℓe . Let f
UE be a user

equilibrium, and f SO be a system optimum. Then the price of
anarchy of our network is given by

PoA :=
C (f UE )

C (f SO)
≥ 1.

Theorem

Let ℓe be the affine function xe 7→ bexe + ce , with be , ce ≥ 0. Then
the price of anarchy is lower than 4/3, and the bound is tight.
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Proof

Let f be a feasible flow, and f UE be the user equilibrium. For ease of
notation we fix xUE = x(f UE ), and x = x(f ).
By Theorem we have

C (f UE ) ≤ C f UE (f )

=
∑
e∈E

(
bex

UE
e + ce

)
xe

≤
∑
e∈E

[(
bexe + ce

)
xe +

1

4
be
(
xUEe

)2]
as (xe − xUEe /2)2 ≥ 0

≤ C (f ) +
1

4

∑
e∈E

(
bex

UE
e + ce

)
xUEe as cex

UE
e ≥ 0

= C (f ) +
1

4
C f UE (f UE )

Hence we have 3/4C (f UE ) ≤ C (f ).
Minimizing over admissible flow f ends the proof.
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Pigou’s Example

do

xN

1

Figure: Pigou example

On a graph with two nodes: one origin, one destination, a total
flow of 1, a fixed cost of 1 on one edge, and a cost of xN on the
other, where N ∈ N and x is the intensity of the flow using this
edge (see Figure 1).

1 Compute the system optimum for a given N.

2 Compute the user equilibrium for a given N.

3 Compute the price of anarchy on this network when N → ∞.
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Exercise for next week (3.2)

Consider a (finite) directed, strongly connected, graph G = (V ,E ). We
consider K origin-destination vertex pair

{
ok , dk

}
k∈[K ]

, such that there

exists at least one path from ok to dk .
We want to find bounds on the price of anarchy, assuming that, for each
arc e, ℓe : R+ → R+ is non-decreasing, and that we have

xℓe(x) ≤ γLe(x), ∀x ∈ R+

1 Recall which optimization problems solves the social optimum xSO

and the user equilibrium xUE .

2 Let x be a feasable vector of arc-intensity. Show that
W (x) ≤ C (x) ≤ γW (x).

3 Show that the price of anarchy C (xUE )/C (xSO) is lower than γ.

4 If the cost per arc ℓe are polynomial of order at most p with
non-negative coefficient, find a bound on the price of anarchy. Is
this bound sharp?
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Further video content

This is a research seminar by one of the expert in the domain. The
first half is very interesting to get a better intuition of the
concepts. The second half is more dedicated to the proof of the
result presented in the talk.
https://www.youtube.com/watch?v=e3O_tMsN2t8
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