
ENPC - Operations Research and Transport - 2021

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected
objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where
actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of
player. For example, if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains 1.

a b c
a (1,-1) (0,0) (0,2)
b (0,5) (5,3) (3,2)
c (-1,3) (6,3) (3,5)

1. Find the Nash equilibrium(s)

2. Find the social optimum(s)

3. Find the Pareto optimum(s)

Solution. • (c,c)

• (c,b)

• (c,b), (c,c)

Exercice 2 (5pts). Consider the following weighted graph.
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1. (2pts) Use Dijkstra’s algorithm to find the cost of the shortest path between node a and node f . The results
can be presented in a table of the labels where each column corresponds to a node of the graph, and each line
to an iteration of the Dijkstra algorithm.

2. (2pts) Find a topological ordering for the graph. Use the topological ordering to compute the cost of the
shortest path from a to every nodes by Dynamic Programming.

3. (1pts) Give the shortest path from a to f .

Exercice 3 (8pts). Consider a (finite) directed, strongly connected, graph G = (V,E). We consider K origin-
destination vertex pair

{
ok, dk

}
k∈J1,KK. We denote by (G, ℓ, r, c) the constrained congestion game with inflow-

outflow vector rate r and capacity constraint vector c.
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• rk is the intensity of the flow of users entering in ok and exiting in dk;

• Pk is the set of all simple (i.e. without cycle) paths from ok to dk, and by P =
⋃K

k=1 Pk ;

• fp the number of users taking path p ∈ P per hour (intensity);

• f =
{
fp
}
p∈P the vector of path intensity;

• xe =
∑
p∋e

fp the flux of user taking the edge e ∈ E;

• x =
{
xe

}
e∈E

the vector of edge intensity;

• x(f) is the vector of edge-intensity induced by the path intensity f ;

• ℓe : R → R+ the cost incurred by a given user to take edge e, if the edge-intensity is xe;

• Le(xe) :=
∫ xe

0
ℓe(u)du;

• ce is the maximum flow for arc e.

For a constrained congestion game we say that an admissible flow (f, x) is a user-equilibrium if

∀k ∈ [K], ∀p, p′ ∈ P, fp > 0 =⇒

{
ℓp(f) ≤ ℓp′(f) or

∃e ∈ p′\p, xe(f) = ce
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Figure 1: A simple example, each edge carry the pair (ℓ, c) with the cost function as the first argument (constant
here), and the capacity as the second argument. The only origin destination pair is a− d with a rate of 1.

1. (1pts) Justify the definition of a user-equilibrium in this setting.

2. (1.5pts) On the example shown in Figure 1, find an optimal flow. Show the existence of a user equilibrium
with cost 0.5. Comment on the price of anarchy of this example.

3. (2.5pts) Suggest an optimization problem of the form

(CCG) min
f

W (x(f))

s.t. f ∈ X

where X is a polyhedron given by linear constraints, such that its solution is a user equilibrium for the
constrained congestion game. Prove that the solution is indeed a user equilibrium.



4. (2pts) Let x and x̃ be admissible arc-intensity flow for (G, ℓ, r, c), such that∑
e∈E

ℓe(xe)x̃e <
∑
e∈E

ℓe(xe)xe.

Show that f such that x = x(f) is not an optimal solution of (CCG).

5. (1pts) Show that there exists a user equilibrium xUE such that, for all admissible arc-intensity x̃,∑
e∈E

ℓe(x
UE
e )xUE

e ≤
∑
e∈E

ℓe(x
UE
e )x̃e.

Solution. 1. Nobody can take a strictly better path than the one he is on: other path are either more costly or
saturated.

2. If 0.5 go on a− b− c− d, then the other 0.5 has to go on a− d, incurring a social cost of 0.5 while all other
paths are saturated. The optimal flow consists, for example, in splitting half on a− b−d and half on a− c−d
for a social cost of 0. Hence the ”price of anarchy” (the notion is harder to define in this constrained setting)
is unbounded, even for constant cost function. Indeed the cost function are actually not constant at all : they
jump from 0 to +∞ at 0.5 on two edges.

3. The user equilibrium problem naturally extends to

min
f

W (x(f))

s.t. xe =
∑
p∋e

fp

rk =
∑
p∈Pk

fp

fp ≥ 0

x(f) ≤ c

Following the proof of Theorem 3.1 we introduce the Lagrangian

L(f, λ, µ, γ) := L(f, λ, µ) := W (f) +

K∑
k=1

λk

(
rk −

∑
p∈Pk

fp

)
+

∑
p∈P

µpfp +
∑
e∈E

γe(xe(f)− ce)

leading to the following KKT conditions

ℓp(f)− λk + µp +
∑

e∈p γe = 0 ∀p ∈ Pk,∀k ∈ J1,KK
rk −

∑
p∈Pk

fp = 0 ∀k ∈ J1,KK
µp = 0 or fp = 0 ∀p ∈ P
µp ≤ 0, fp ≥ 0 ∀p ∈ P
γe = 0 or xe(f) = ce ∀e ∈ E

γe ≥ 0 ∀e ∈ E

the result follows : if either fp = 0 or xe(f) = ce for some e ∈ p′, then ℓp(f) can be greater than λk which is
still the shortest path.

4. The set of admissible flow is convex, thus xλ = (1− λ)x+ λx̃ is admissible. And we have

W (xλ) = W (x+ λ(x̃− x))

= W (x) + λ
[∑
e∈E

ℓe(xe)x̃e −
∑
e∈E

ℓe(xe)xe

]
+ o(λ)

Meaning that, for λ > 0 small enough, xλ yields a better W than x.



5. Problem (CCG) is convex and X is a compact polyhedron. There exists an optimal solution to (CCG).
Constraint are qualified and this optimal solution satisfy the KKT solution, thus being a user equilibrium.
Finally, by the previous question, xUE being an optimal solution, we can’t have the strict inequality hence
the result.

Exercice 4 (5 points). Consider the following problem

min
x∈R2

1

2
(x1 −

1

2
)2 +

1

2
x2
2

s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

A plot of the different points used during the iterations would be usefull.

1. (2pts) Starting at x(0) = (1, 1) compute the first iteration (i.e. find x(1)) of the Frank Wolfe algorithm (with
optimal step size).

2. (1pts) Give the lower and upper bound obtained by this first iteration.

3. (2pts) Do a second iteration. Have we reached the optimum?

Solution. 1. We have f(x) = 1
2 (x1 − 1

2 )
2 + 1

2x
2
2, and ∇f(x) =

(
x1 − 1

2
x2

)
. Thus, at iteration k = 0, ∇f(x(0)) =(

1
2
1

)
we have to solve miny∈X

1
2y1 + y2, leading to y(0) =

(
0
0

)
, and d(0)) = y(0) − x(0) =

(
−1
−1

)
. The

line-search problem reads

min
t∈[0,1]

f(1− t, 1− t) =
1

2
(
1

2
− t)2 +

1

2
(1− t)2

by derivation the minimum is attained for t satisfying −( 12 − t)− (1− t) = 0, thus t(0) = 3/4, and x(1) =

(
1
4
1
4

)
.

2. UB = f(x(1)) = 1
16 .

LB = f(x(0))−∇f(x(0))⊤x(0) +miny∈X ∇f(x(0))⊤y = 5
8 − 3

2 + 0 = − 7
8 .

3. For k = 1, we have ∇f(x(1)) =

(
− 1

4
1
4

)
leading to y(1) =

(
1
0

)
and d(1) = y(1) − x(1) =

(
3
4

− 1
4

)
. The line search

problem reads

min
t∈[0,1]

f(
1

4
+

3t

4
,
1

4
− t

4
) =

1

2
(−1

4
+

3t

4
)2 +

1

2
(
1

4
− t

4
)2 =

1

32
[(3t− 1)2 + (t− 1)2]

attained for t solving 3(3t − 1) + (t − 1) = 0, that is t(1) = 2
5 , and x(2) =

(
11
20
3
20

)
. This is not the optimal

solution (which is

(
1
2
0

)
).


