ENPC - Operations Research and Transport - 2019

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (7pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player.

	a	b
a	(-5, -5)	(1,-1)
b	(-1,1)	(0,0)

- 1. Find the Nash equilibrium(s), social optimum(s) and Pareto optimum(s)
- 2. We now want to consider random strategies. More precisely we consider that player one play a with probability p_1 and player 2 play a with probability p_2 (independently of the action of 1). We assume that each wants to maximize its expected reward.
 - (a) For given p_1 and p_2 what is the expected reward of player 1?
 - (b) For a given p_2 what are the set of p_1 maximizing the expected reward of player 1?
 - (c) Justify that, when looking for a Nash-Equilibrium, only 3 value of p_1 and p_2 should be considered, and give the reward matrix associated.
 - (d) What are the Nash Equilibrium(s)? Is it better than in the original deterministic version?

Solution. 1. (1.5pt) NE : (a,b), (b,a) ; OS and Pareto : (a,b), (b,a), (b,b)

- 2. (a) (1pt) The reward obtained by 1 is $-5p_1p_2 + p_1(1-p_2) p_2(1-p_1) = -5p_1p_2 + p_1 p_2 = p_1(1-5p_2) p_2$
 - (b) (1.5pt) For $p_2 > 1/5$, the optimal p_1 is 0. For $p_2 < 1/5$ the optimal p_1 is 1. For $p_2 = 1/5$, every $p_1 \in [0, 1]$ is optimal.
 - (c) (2pt) By symmetry we have the same result for p_2 , hence we have

	0	0.2	1
0	(0, 0)	(-0.2, 0.2)	(-1, 1)
0.2	(0.2, -0.2)	(-0.2, -0.2)	(-1.8, -0.2)
1	(1, -1)	(-0.2, -1.8)	(-5, -5)

(d) (1pt) The Nash Equilibrium is (0.2, 0.2), with a social value of -0.4 which is worse than 0. However it is symmetric.

Exercice 2 (13pts). Consider a (finite) directed, strongly connected, graph G = (V, E). We consider K origindestination vertex pair $\{o^k, d^k\}_{k \in [1,K]}$. We denote by (G, ℓ, r) the congestion game with inflow vector r.

- r^k is the intensity of the flow of users entering in o^k and exiting in d^k ;
- \mathcal{P}_k is the set of all simple (i.e. without cycle) paths from o^k to d^k , and by $\mathcal{P} = \bigcup_{k=1}^K \mathcal{P}_k$;
- f_p the number of users taking path $p \in \mathcal{P}$ per hour (intensity);

Figure 1: A graph example

- $f = \{f_p\}_{p \in \mathcal{P}}$ the vector of path intensity;
- $x_e = \sum_{p \ni e} f_p$ the flux of user taking the edge $e \in E$;
- $x = \{x_e\}_{e \in E}$ the vector of edge intensity;
- x(f) is the vector of edge-intensity induced by the path intensity f;
- $\ell_e : \mathbb{R} \to \mathbb{R}^+$ the cost incurred by a given user to take edge e, if the edge-intensity is x_e ;
- $L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$

We say that an admissible flow f^{ε} , for $\varepsilon \in [0, 1]$ is a ε -Nash Equilibrium if

$$\forall k \in \llbracket 1, K \rrbracket, \quad \forall p_1, p_2 \in \mathcal{P}_k, \quad f_{p_1}^{\varepsilon} > 0 \implies \ell_{p_1}(f^{\varepsilon}) \le (1+\varepsilon)\ell_{p_2}(f^{\varepsilon}).$$

We want to compare the cost of a given ε -equilibrium of (G, ℓ, r) , denoted $f^{\varepsilon, r}$, with the cost of the social optimum $f^{SO,2r}$ of $(G, \ell, 2r)$, that is the same game with twice the inflows. Accordingly we denote $x^{\varepsilon,r} = x(f^{\varepsilon,r})$, and $x^{SO,2r} = x(f^{SO,2r})$. Finally, edge-loss ℓ_e are assumed to be non-negative and non-decreasing.

Both parts are largely independent.

Part I : an example

We consider, for $\varepsilon \in [0, 1[$, the congestion game (G, ℓ, r) given in Figure ?? with the unique origin destination pair o - d. Here, g_{δ} is a continuous non-decreasing function with value 0 on $] - \infty, 1 - \delta]$ and value $1 + \varepsilon$ on $[1, +\infty[$.

- 1. Show that a flow $f^{\varepsilon,1}$ getting 1 through $o \to a \to b \to d$, and 0 on other paths, is a ε -Nash Equilibrium of $(G, \ell, 1)$.
- 2. Construct an admissible flow of $(G, \ell, 2)$ of cost $4\delta + 2(1 \varepsilon)(1 \delta)$.
- 3. Show that the social optimum of $(G, \ell, 2)$ can be found by solving an unidimensional optimization problem, and propose an adapted optimization algorithm.
- **Solution.** 1. (1pt) There are 4 possible paths : o d, o a d, o a b d, o b d. For $f^{\varepsilon,1}$ their cost is 2, $1 + \varepsilon + 1 \varepsilon = 2$, $2 + 2\varepsilon$ and 2. Thus $f^{\varepsilon,1}$ is an ε -Nash Equilibrium.
 - 2. (1pt) We put δ on o d, $1 \delta/2$ on o a d and $1 \delta/2$ on o b d.
 - 3. (2.5pts) The global cost is

$$2f_1 + (f_2 + f_3)g_{\delta}(f_2 + f_3) + (1 - \varepsilon)f_2 + (1 - \varepsilon)f_3 + g_{\delta}(f_3)$$

we can improve the cost of any admissible flow by shifting from path 3 to path 4 (as g_{δ} is increasing), thus an optimal flow have $f_3 = 0$. By monotonicity, an optimal solution have $f_2 = f_4$, and as $f_1 + f_2 + f_3 + f_4 = 2$ we reduce the problem to

$$\min_{f_4 \in [0,1]} 2(2-2f_4) + 2f_4 g_\delta(f_4)$$

which can be further reduced to

$$\min_{f_4 \in [1-\delta,1]} 2(2-2f_4) + 2f_4g_\delta(f_4)$$

Part II : bounding the cost of ε -Nash Equilibrium

We construct new loss functions $\bar{\ell}_e(x)$ given by

$$\bar{\ell}_e(x) = \begin{cases} \ell_e(x^{\varepsilon,r}) & \text{ if } x \le x^{\varepsilon,r} \\ \ell_e(x) & \text{ else} \end{cases}$$

Accordingly we denote $\bar{\ell}_p(f) = \sum_{e \in p} \bar{\ell}_e(x_e(f))$ and

$$C(x) = \sum_{e \in E} x_e \ell_e(x_e)$$
 and $\bar{C}(x) = \sum_{e \in E} x_e \bar{\ell}_e(x_e).$

For $k \in [1, K]$, denote $\lambda_k(x)$ the minimum cost of an $o_k - d_k$ -path with costs given by edge-intensity vector x.

- 4. Give an interpretation of an ε -Nash Equilibrium. What happens if $\varepsilon = 0$?
- 5. Show that $C(x^{\varepsilon,r}) \leq (1+\varepsilon) \sum_{k=1}^{K} r_k \lambda_k(x^{\varepsilon,r}).$
- 6. Show that, for any $x \in \mathbb{R}^{|E|}_+$, $x_e(\bar{\ell}_e(x_e) \ell_e(x_e)) \le x_e^{\varepsilon, r} \ell_e(x_e^{\varepsilon, r})$.
- 7. Deduce that, $\overline{C}(x^{SO,2r}) C(x^{SO,2r}) \leq C(x^{\varepsilon,r}).$
- 8. Show that, for all $p \in \mathcal{P}_k$, $\bar{\ell}_p(f^{SO,2r}) \geq \lambda_k(x^{\varepsilon,r})$.
- 9. Show that

$$\sum_{p\in\mathcal{P}}\bar{\ell}_p(f^{SO,2r})f_p^{SO,2r}\geq \frac{2}{1+\varepsilon}C(x^{\varepsilon,r})$$

- 10. Find a constant K_{ε} such that $C(x^{\varepsilon,r}) \leq K_{\varepsilon}C(x^{SO,2r})$.
- 11. Using part I show that this bound is tight.
- **Solution.** 1. (0.5pts) An ε -Nash equilibrium is a flux such that each user can win at most ε by changing trajectory with fixed cost. If $\varepsilon = 0$ we recover the Wardrop equilibrium.
 - 2. (1pt) $f^{\varepsilon,r}$ is a ε -Nash equilibrium, thus for every $p \in \mathcal{P}_k$ we have $f_p^{\varepsilon,r}\ell_p(f^{\varepsilon,r}) \leq (1+\varepsilon)f_p^{\varepsilon,r}\lambda_k(x(f^{\varepsilon,r}))$, and summing over all $p \in \mathcal{P}$ yields the result.
 - 3. (1pt) $\bar{\ell}_e(x_e) \ell_e(x_e)$ is null if $x_e \ge x_e^{\varepsilon,r}$, and equal to $\ell_e(x_e^{\varepsilon,r}) \ell_e(x_e) \le \ell_e(x_e^{\varepsilon,r})$ otherwise. Multiplying by x_e we have the result both for $x_e \ge x_e^{\varepsilon,r}$ and for $x_e \le x_e^{\varepsilon,r}$.
 - 4. (1pt)

$$\bar{C}(x^{SO,2r}) - C(x^{SO,2r}) = \sum_{e \in E} x_e^{SO,2r} (\bar{\ell}_e(x_e^{SO,2r}) - \ell_e(x_e^{SO,2r}))$$
$$\leq \sum_{e \in E} x_e^{\varepsilon,r} \ell_e(x_e^{\varepsilon,r})$$
$$= C(x^{\varepsilon,r})$$

- 5. (1pt) We have $\bar{\ell}_p(0) \ge \lambda_k(x^{\varepsilon,r})$, and as $\bar{\ell}_p$ is non-decreasing we get $\bar{\ell}_p(f^{SO,2r}) \ge \lambda_k(x^{\varepsilon,r})$.
- 6. (1.5 pts)

$$\begin{split} \sum_{p \in \mathcal{P}} \bar{\ell}_p(f^{SO,2r}) f_p^{SO,2r} &\geq \sum_k \sum_{p \in \mathcal{P}_k} \lambda_k(x^{\varepsilon,r}) f_p^{SO,2r} & \text{by previous question} \\ &= \sum_k \lambda_k(x^{\varepsilon,r}) r_k \\ &\geq \frac{2}{1+\varepsilon} C(f^{\varepsilon,r}) & \text{by question } \ref{eq:product} \end{split}$$

7. (1.5 pts) We have

$$C(x^{SO,2r}) \ge \sum_{p \in \mathcal{P}} \bar{\ell}_p(f^{SO,2r}) f_p^{SO,2r} - C(x^{\varepsilon,r})$$
$$\ge \frac{2}{1+\varepsilon} C(x^{\varepsilon,r}) - C(x^{\varepsilon,r})$$
$$= \frac{1-\varepsilon}{1+\varepsilon} C(x^{\varepsilon,r})$$

- 8. (1pt) In the example of part I we have $C(x^{\varepsilon,1}) = 2 + 2\varepsilon$, and an admissible flow for the double rate with cost $2\delta + (1 \varepsilon)(1 \delta)$. Letting δ goes to zero yields the result.
- 9. (1.5pts) Consider $p \in \mathcal{P}^k$. Then $\ell_p(f^{UE,r}) = c_k$. Furthermore,

$$\bar{\ell}_p(f^{SO,2r}) = \sum_{e \in E} \bar{\ell}_e(x_e(f^{SO,2r})) \ge \sum_{e \in E} \ell_e(x_e^{UE,r}) = c_k$$

where the inequality comes from monotonicity of ℓ_e , and definition of $\bar{\ell}_e$.

10. (0.5 pts)

$$C(x) = \sum_{f \in \mathcal{P}} f_p \ell_p(f)$$
 and $\bar{C}(x) = \sum_{f \in \mathcal{P}} f_p \bar{\ell}_p(f).$

11. (2pts)

$$\bar{C}(f^{SO,2r}) = \sum_{k=1}^{K} \sum_{p \in \mathcal{P}_k} f_p^{SO,2r} \bar{\ell}_p(f^{SO,2r})$$
$$\geq \sum_{k=1}^{K} c_k \sum_{p \in \mathcal{P}_k} f_p^{SO,2r}$$
$$= \sum_{k=1}^{K} 2c_k r^k$$
$$= 2C(f^{UE,r})$$

12. (1pts) Combining previous results we have

$$2C(f^{UE,r}) \le \bar{C}(x^{SO,2r}) \le C(x^{UE,r}) + C(x^{SO,2r}),$$

which give the result, that can be interpreted as "optimizing flux cannot allow more than twice the inflows rates without increasing global cost".

Exercice 3 (1pt). Present two operation research problems encountered by Air France.