
ENPC - Operations Research and Transport - 2019

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected
objects are forbidden. Every note is allowed.

Exercice 1 (7pts). Consider a game where rewards (to be maximized) are given by the following table where
actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of
player.

a b
a (-5,-5) (1,-1)
b (-1,1) (0,0)

1. Find the Nash equilibrium(s), social optimum(s) and Pareto optimum(s)

2. We now want to consider random strategies. More precisely we consider that player one play a with probability
p1 and player 2 play a with probability p2 (independently of the action of 1). We assume that each wants to
maximize its expected reward.

(a) For given p1 and p2 what is the expected reward of player 1?

(b) For a given p2 what are the set of p1 maximizing the expected reward of player 1?

(c) Justify that, when looking for a Nash-Equilibrium, only 3 value of p1 and p2 should be considered, and
give the reward matrix associated.

(d) What are the Nash Equilibrium(s)? Is it better than in the original deterministic version?

Solution. 1. (1.5pt) NE : (a,b), (b,a) ; OS and Pareto : (a,b), (b,a), (b,b)

2. (a) (1pt) The reward obtained by 1 is −5p1p2+p1(1−p2)−p2(1−p1) = −5p1p2+p1−p2 = p1(1−5p2)−p2

(b) (1.5pt) For p2 > 1/5, the optimal p1 is 0. For p2 < 1/5 the optimal p1 is 1. For p2 = 1/5, every p1 ∈ [0, 1]
is optimal.

(c) (2pt) By symmetry we have the same result for p2, hence we have

0 0.2 1
0 (0, 0) (-0.2, 0.2) (-1, 1)
0.2 (0.2, -0.2) (-0.2, -0.2) (-1.8, -0.2)
1 (1, -1) (-0.2, -1.8) (-5, -5)

(d) (1pt) The Nash Equilibrium is (0.2,0.2), with a social value of −0.4 which is worse than 0. However it
is symmetric.

Exercice 2 (13pts). Consider a (finite) directed, strongly connected, graph G = (V,E). We consider K origin-
destination vertex pair

{
ok, dk

}
k∈J1,KK. We denote by (G, ℓ, r) the congestion game with inflow vector r.

• rk is the intensity of the flow of users entering in ok and exiting in dk;

• Pk is the set of all simple (i.e. without cycle) paths from ok to dk, and by P =
⋃K

k=1 Pk ;

• fp the number of users taking path p ∈ P per hour (intensity);
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Figure 1: A graph example

• f =
{
fp
}
p∈P the vector of path intensity;

• xe =
∑
p∋e

fp the flux of user taking the edge e ∈ E;

• x =
{
xe

}
e∈E

the vector of edge intensity;

• x(f) is the vector of edge-intensity induced by the path intensity f ;

• ℓe : R → R+ the cost incurred by a given user to take edge e, if the edge-intensity is xe;

• Le(xe) :=
∫ xe

0
ℓe(u)du.

We say that an admissible flow fε, for ε ∈ [0, 1[ is a ε-Nash Equilibrium if

∀k ∈ J1,KK, ∀p1, p2 ∈ Pk, fε
p1

> 0 =⇒ ℓp1(f
ε) ≤ (1 + ε)ℓp2(f

ε).

We want to compare the cost of a given ε-equilibrium of (G, ℓ, r), denoted fε,r, with the cost of the social
optimum fSO,2r of (G, ℓ, 2r), that is the same game with twice the inflows. Accordingly we denote xε,r = x(fε,r),
and xSO,2r = x(fSO,2r). Finally, edge-loss ℓe are assumed to be non-negative and non-decreasing.

Both parts are largely independent.

Part I : an example

We consider, for ε ∈ [0, 1[, the congestion game (G, ℓ, r) given in Figure ?? with the unique origin destination pair
o− d. Here, gδ is a continuous non-decreasing function with value 0 on ]−∞, 1− δ] and value 1 + ε on [1,+∞[.

1. Show that a flow fε,1 getting 1 through o → a → b → d, and 0 on other paths, is a ε-Nash Equilibrium of
(G, ℓ, 1).

2. Construct an admissible flow of (G, ℓ, 2) of cost 4δ + 2(1− ε)(1− δ).

3. Show that the social optimum of (G, ℓ, 2) can be found by solving an unidimensional optimization problem,
and propose an adapted optimization algorithm.

Solution. 1. (1pt) There are 4 possible paths : o− d, o− a− d, o− a− b− d, o− b− d. For fε,1 their cost is 2,
1 + ε+ 1− ε = 2, 2 + 2ε and 2. Thus fε,1 is an ε-Nash Equilibrium.

2. (1pt) We put δ on o− d, 1− δ/2 on o− a− d and 1− δ/2 on o− b− d.

3. (2.5pts) The global cost is

2f1 + (f2 + f3)gδ(f2 + f3) + (1− ε)f2 + (1− ε)f3 + gδ(f3)



we can improve the cost of any admissible flow by shifting from path 3 to path 4 (as gδ is increasing), thus
an optimal flow have f3 = 0. By monotonicity, an optimal solution have f2 = f4, and as f1 + f2 + f3 + f4 = 2
we reduce the problem to

min
f4∈ [0,1]

2(2− 2f4) + 2f4gδ(f4)

which can be further reduced to
min

f4∈ [1−δ,1]
2(2− 2f4) + 2f4gδ(f4)

Part II : bounding the cost of ε-Nash Equilibrium

We construct new loss functions ℓ̄e(x) given by

ℓ̄e(x) =

{
ℓe(x

ε,r) if x ≤ xε,r

ℓe(x) else

Accordingly we denote ℓ̄p(f) =
∑

e∈p ℓ̄e(xe(f)) and

C(x) =
∑
e∈E

xeℓe(xe) and C̄(x) =
∑
e∈E

xeℓ̄e(xe).

For k ∈ J1,KK, denote λk(x) the minimum cost of an ok-dk-path with costs given by edge-intensity vector x.

4. Give an interpretation of an ε-Nash Equilibrium. What happens if ε = 0?

5. Show that C(xε,r) ≤ (1 + ε)
∑K

k=1 rkλk(x
ε,r).

6. Show that, for any x ∈ R|E|
+ , xe(ℓ̄e(xe)− ℓe(xe)) ≤ xε,r

e ℓe(x
ε,r
e ).

7. Deduce that, C̄(xSO,2r)− C(xSO,2r) ≤ C(xε,r).

8. Show that, for all p ∈ Pk, ℓ̄p(f
SO,2r) ≥ λk(x

ε,r).

9. Show that ∑
p∈P

ℓ̄p(f
SO,2r)fSO,2r

p ≥ 2

1 + ε
C(xε,r)

10. Find a constant Kε such that C(xε,r) ≤ KεC(xSO,2r).

11. Using part I show that this bound is tight.

Solution. 1. (0.5pts) An ε-Nash equilibrium is a flux such that each user can win at most ε by changing
trajectory with fixed cost. If ε = 0 we recover the Wardrop equilibrium.

2. (1pt) fε,r is a ε-Nash equilibrium, thus for every p ∈ Pk we have fε,r
p ℓp(f

ε,r) ≤ (1 + ε)fε,r
p λk(x(f

ε,r)), and
summing over all p ∈ P yields the result.

3. (1pt) ℓ̄e(xe) − ℓe(xe) is null if xe ≥ xε,r
e , and equal to ℓe(x

ε,r
e ) − ℓe(xe) ≤ ℓe(x

ε,r
e ) otherwise. Multiplying by

xe we have the result both for xe ≥ xε,r
e and for xe ≤ xε,r

e .

4. (1pt)

C̄(xSO,2r)− C(xSO,2r) =
∑
e∈E

xSO,2r
e (ℓ̄e(x

SO,2r
e )− ℓe(x

SO,2r
e ))

≤
∑
e∈E

xε,r
e ℓe(x

ε,r
e )

= C(xε,r)



5. (1pt) We have ℓ̄p(0) ≥ λk(x
ε,r), and as ℓ̄p is non-decreasing we get ℓ̄p(f

SO,2r) ≥ λk(x
ε,r).

6. (1.5pts) ∑
p∈P

ℓ̄p(f
SO,2r)fSO,2r

p ≥
∑
k

∑
p∈Pk

λk(x
ε,r)fSO,2r

p by previous question

=
∑
k

λk(x
ε,r)rk

≥ 2

1 + ε
C(fε,r) by question ??

7. (1.5pts) We have

C(xSO,2r) ≥
∑
p∈P

ℓ̄p(f
SO,2r)fSO,2r

p − C(xε,r)

≥ 2

1 + ε
C(xε,r)− C(xε,r)

=
1− ε

1 + ε
C(xε,r)

8. (1pt) In the example of part I we have C(xε,1) = 2+ 2ε, and an admissible flow for the double rate with cost
2δ + (1− ε)(1− δ). Letting δ goes to zero yields the result.

9. (1.5pts) Consider p ∈ Pk. Then ℓp(f
UE,r) = ck. Furthermore,

ℓ̄p(f
SO,2r) =

∑
e∈E

ℓ̄e(xe(f
SO,2r)) ≥

∑
e∈E

ℓe(x
UE,r
e ) = ck

where the inequality comes from monotonicity of ℓe, and definition of ℓ̄e.

10. (0.5pts)

C(x) =
∑
f∈P

fpℓp(f) and C̄(x) =
∑
f∈P

fpℓ̄p(f).

11. (2pts)

C̄(fSO,2r) =

K∑
k=1

∑
p∈Pk

fSO,2r
p ℓ̄p(f

SO,2r)

≥
K∑

k=1

ck
∑
p∈Pk

fSO,2r
p

=

K∑
k=1

2ckr
k

= 2C(fUE,r)

12. (1pts) Combining previous results we have

2C(fUE,r) ≤ C̄(xSO,2r) ≤ C(xUE,r) + C(xSO,2r),

which give the result, that can be interpreted as ”optimizing flux cannot allow more than twice the inflows
rates without increasing global cost”.

Exercice 3 (1pt). Present two operation research problems encountered by Air France.


