ENPC - Operations Research and Transport - 2019

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected
objects are forbidden. Every note is allowed.

Exercice 1 (7pts). Consider a game where rewards (to be maximized) are given by the following table where
actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of
player.

a b
a | (-5,-5) (1,-1)
b | (-1,1) (0,0)

1. Find the Nash equilibrium(s), social optimum(s) and Pareto optimum(s)

2. We now want to consider random strategies. More precisely we consider that player one play a with probability
p1 and player 2 play a with probability ps (independently of the action of 1). We assume that each wants to
maximize its expected reward.

(a) For given p; and py what is the expected reward of player 17
(b) For a given pa what are the set of p; maximizing the expected reward of player 17

(¢) Justify that, when looking for a Nash-Equilibrium, only 3 value of p; and ps should be considered, and
give the reward matrix associated.

(d) What are the Nash Equilibrium(s)? Is it better than in the original deterministic version?
Solution. 1. (1.5pt) NE : (a,b), (b,a) ; OS and Pareto : (a,b), (b,a), (b,b)

2. (a) (1pt) The reward obtained by 1is —5p1pa+p1(l —p2) —p2(l —p1) = —5p1p2 +p1 —p2 = p1(1 —5p2) — pa

(b) (1.5pt) For py > 1/5, the optimal p; is 0. For ps < 1/5 the optimal py is 1. For p; = 1/5, every p; € [0, 1]
is optimal.

(c) (2pt) By symmetry we have the same result for ps, hence we have

0 0.2 1
0 0,00 (-02,02) (1,1
02| (02,-0.2) (-0.2,-0.2) (-1.8,-0.2)
1 (1,-1)  (-0.2,-18) (-5, -5)

(d) (1pt) The Nash Equilibrium is (0.2,0.2), with a social value of —0.4 which is worse than 0. However it
is symmetric.

Exercice 2 (13pts). Consider a (finite) directed, strongly connected, graph G = (V, E). We consider K origin-
destination vertex pair {ok', dk}ke[[1 K] We denote by (G, ¢, r) the congestion game with inflow vector r.

e ¥ is the intensity of the flow of users entering in o* and exiting in d¥;
e P, is the set of all simple (i.e. without cycle) paths from o* to d*, and by P = UkK:1 Pr ;

e f, the number of users taking path p € P per hour (intensity);



Figure 1: A graph example

f= {fp}peP the vector of path intensity;

xe = Y fp the flux of user taking the edge e € E;
poe

T = {xe}eeE the vector of edge intensity;

x(f) is the vector of edge-intensity induced by the path intensity f;

l, : R — RT the cost incurred by a given user to take edge e, if the edge-intensity is x.;

Le(we) == [y Le(u)du.

We say that an admissible flow f¢, for € € [0, 1] is a e-Nash Equilibrium if
Vk € [1,K], Vpi,p2€Pr, [y, >0 =L, (f°) < (L+e)lp,(f°).

We want to compare the cost of a given e-equilibrium of (G, ¢,r), denoted f©", with the cost of the social
optimum f%9-2" of (G, ¢, 2r), that is the same game with twice the inflows. Accordingly we denote 2" = z(f*"),
and 992" = x(f59:2"). Finally, edge-loss £, are assumed to be non-negative and non-decreasing.

Both parts are largely independent.

Part I : an example

We consider, for e € [0, 1], the congestion game (G, ¢,r) given in Figure 7?7 with the unique origin destination pair
o — d. Here, g5 is a continuous non-decreasing function with value 0 on | — 00,1 — §] and value 1+ ¢ on [1, +oo].

1. Show that a flow f&! getting 1 through o — a — b — d, and 0 on other paths, is a e-Nash Equilibrium of
(G,£,1).

2. Construct an admissible flow of (G, ¢,2) of cost 46 + 2(1 — &)(1 — §).

3. Show that the social optimum of (G, ¥¢,2) can be found by solving an unidimensional optimization problem,
and propose an adapted optimization algorithm.

Solution. 1. (1pt) There are 4 possible paths : 0 —d, 0—a—d, o—a—b—d, o—b—d. For f&! their cost is 2,
l1+e+1—e=2 2+2¢and 2. Thus &' is an e-Nash Equilibrium.

2. (Ipt) Weput dono—d,1—9§/2ono—a—dand1—46/20ono0—b—d.
3. (2.5pts) The global cost is

2f1+ (fa+ f3)gs(fo + f3) + (1 — &) fa + (1 — &) f3 + g5(f3)



we can improve the cost of any admissible flow by shifting from path 3 to path 4 (as gs is increasing), thus
an optimal flow have f3 = 0. By monotonicity, an optimal solution have fo = fy, and as f1 + fo+ fs+ fa =2
we reduce the problem to

in 2(2—2 2
[ min ( f1) +2f495(f1)

which can be further reduced to

in 2(2—2f,) +2
fin, 22 2fa) + 2fags(fa)

Part IT : bounding the cost of e-Nash Equilibrium

We construct new loss functions /. (z) given by

B e,r : < pET
T.(2) = Le(z57) ifx<ux
Le(x) else

Accordingly we denote £,(f) = > eep lo(ze(f)) and

Clz) =Y wele(ze) and  C(z) =Y zele(e).

eclk ecE

For k € [1, K], denote A\g(z) the minimum cost of an og-dg-path with costs given by edge-intensity vector x.

4.
O.

10.
11.

Give an interpretation of an e-Nash Equilibrium. What happens if ¢ = 07
Show that C(z57) < (14 &) Y, ree(257).
Show that, for any z € R‘fl, To(le(we) — Le(ze)) < 2L (2ET).
Deduce that, C(x59:2") — C(299:2") < C(z57).
Show that, for all p € Py, £,(f592") > Ag(a®7).
Show that
Z gp(fso,m)f;o,zr > LC(%‘E’T)

peEP 1+e

Find a constant K. such that C(z5") < K.C(2°9:2").

Using part I show that this bound is tight.

Solution. 1. (0.5pts) An e-Nash equilibrium is a flux such that each user can win at most £ by changing

2.

3.

4.

trajectory with fixed cost. If € = 0 we recover the Wardrop equilibrium.

(Ipt) f=" is a e-Nash equilibrium, thus for every p € Py we have f576,(f") < (1 +¢)f5" Ae(z(f*7)), and
summing over all p € P yields the result.

(Ipt) le(xe) — le(e) is null if z, > 25", and equal to £o(257") — le(x.) < Le(z5") otherwise. Multiplying by

x. we have the result both for . > z¢" and for z. < 25".
(1pt)

0(1,50,27‘) _ C(:L’SO72T) _ Z xfOQr(Ee(xfOQr) o ge(meQr))
eckE
<Y Al e (af")
ecE
=C(z™")



5. (1pt) We have £,,(0) > A\i(z5"), and as £, is non-decreasing we get £,(f592") > A (7).
6. (1.5pts)

Z 0,(fSO2r) fS02r > Z Z Ae(z=7) f702T by previous question
peEP k pEPk
= Z Ak(m67T)rk
> 2 C(fom) by question ?7?
T 1l+e¢

7. (1.5pts) We have

C(xSO,%) > Z Zp(fSO,Qr)fz;S'O,ZT _ C(xs,r)

peEP
2

1+¢
1—¢
— C(z5"
1+¢ (z°7)

v

C(z®") = C(z*")

8. (1pt) In the example of part I we have C'(z5') = 2 + 2¢, and an admissible flow for the double rate with cost
20 4+ (1 —e)(1 — 9). Letting § goes to zero yields the result.

9. (1.5pts) Consider p € P*. Then £,(fY5") = ¢x. Furthermore,
fSOQT Ze fSOZT Zg UET _Ck
cEE ecE
where the inequality comes from monotonicity of /., and definition of /.

10. (0.5pts)

z) = Z folu(f) and Cla) = Z folo(f)

fep fer

11. (2pts)

fSO 27“ Z Z fSO 27[ fSO 27‘)

k=1 pePx
> E Ch E fSO ,2r
= PEPK

ZCkrk

Il Il
% 1M I

C(f7ET)
12. (1pts) Combining previous results we have
C«(fUE,r) S C‘«(xSO,Qr) S C(xUE,r) + C(.ISO’QT),

which give the result, that can be interpreted as ”optimizing flux cannot allow more than twice the inflows
rates without increasing global cost”.

Exercice 3 (1pt). Present two operation research problems encountered by Air France.



