ENPC - Operations Research and Transport - 2019

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (7pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player.

	a	b
a	$(-5,-5)$	$(1,-1)$
b	$(-1,1)$	$(0,0)$

1. Find the Nash equilibrium(s), social optimum(s) and Pareto optimum(s)
2. We now want to consider random strategies. More precisely we consider that player one play a with probability p_{1} and player 2 play a with probability p_{2} (independently of the action of 1). We assume that each wants to maximize its expected reward.
(a) For given p_{1} and p_{2} what is the expected reward of player 1 ?
(b) For a given p_{2} what are the set of p_{1} maximizing the expected reward of player 1 ?
(c) Justify that, when looking for a Nash-Equilibrium, only 3 value of p_{1} and p_{2} should be considered, and give the reward matrix associated.
(d) What are the Nash Equilibrium(s)? Is it better than in the original deterministic version?

Solution. 1. (1.5pt) NE : (a,b), (b,a) ; OS and Pareto : (a,b), (b,a), (b,b)
2. (a) (1pt) The reward obtained by 1 is $-5 p_{1} p_{2}+p_{1}\left(1-p_{2}\right)-p_{2}\left(1-p_{1}\right)=-5 p_{1} p_{2}+p_{1}-p_{2}=p_{1}\left(1-5 p_{2}\right)-p_{2}$
(b) (1.5pt) For $p_{2}>1 / 5$, the optimal p_{1} is 0 . For $p_{2}<1 / 5$ the optimal p_{1} is 1 . For $p_{2}=1 / 5$, every $p_{1} \in[0,1]$ is optimal.
(c) (2pt) By symmetry we have the same result for p_{2}, hence we have

	0	0.2	1
0	$(0,0)$	$(-0.2,0.2)$	$(-1,1)$
0.2	$(0.2,-0.2)$	$(-0.2,-0.2)$	$(-1.8,-0.2)$
1	$(1,-1)$	$(-0.2,-1.8)$	$(-5,-5)$

(d) (1pt) The Nash Equilibrium is $(0.2,0.2)$, with a social value of -0.4 which is worse than 0 . However it is symmetric.

Exercice 2 (13pts). Consider a (finite) directed, strongly connected, graph $G=(V, E)$. We consider K origindestination vertex pair $\left\{o^{k}, d^{k}\right\}_{k \in \llbracket 1, K \rrbracket}$. We denote by (G, ℓ, r) the congestion game with inflow vector r.

- r^{k} is the intensity of the flow of users entering in o^{k} and exiting in d^{k};
- \mathcal{P}_{k} is the set of all simple (i.e. without cycle) paths from o^{k} to d^{k}, and by $\mathcal{P}=\bigcup_{k=1}^{K} \mathcal{P}_{k}$;
- f_{p} the number of users taking path $p \in \mathcal{P}$ per hour (intensity);

Figure 1: A graph example

- $f=\left\{f_{p}\right\}_{p \in \mathcal{P}}$ the vector of path intensity;
- $x_{e}=\sum_{p \ni e} f_{p}$ the flux of user taking the edge $e \in E$;
- $x=\left\{x_{e}\right\}_{e \in E}$ the vector of edge intensity;
- $x(f)$ is the vector of edge-intensity induced by the path intensity f;
- $\ell_{e}: \mathbb{R} \rightarrow \mathbb{R}^{+}$the cost incurred by a given user to take edge e, if the edge-intensity is x_{e};
- $L_{e}\left(x_{e}\right):=\int_{0}^{x_{e}} \ell_{e}(u) d u$.

We say that an admissible flow f^{ε}, for $\varepsilon \in[0,1[$ is a ε-Nash Equilibrium if

$$
\forall k \in \llbracket 1, K \rrbracket, \quad \forall p_{1}, p_{2} \in \mathcal{P}_{k}, \quad f_{p_{1}}^{\varepsilon}>0 \quad \Longrightarrow \ell_{p_{1}}\left(f^{\varepsilon}\right) \leq(1+\varepsilon) \ell_{p_{2}}\left(f^{\varepsilon}\right)
$$

We want to compare the cost of a given ε-equilibrium of (G, ℓ, r), denoted $f^{\varepsilon, r}$, with the cost of the social optimum $f^{S O, 2 r}$ of $(G, \ell, 2 r)$, that is the same game with twice the inflows. Accordingly we denote $x^{\varepsilon, r}=x\left(f^{\varepsilon, r}\right)$, and $x^{S O, 2 r}=x\left(f^{S O, 2 r}\right)$. Finally, edge-loss ℓ_{e} are assumed to be non-negative and non-decreasing.

Both parts are largely independent.

Part I : an example

We consider, for $\varepsilon \in[0,1[$, the congestion game (G, ℓ, r) given in Figure ?? with the unique origin destination pair $o-d$. Here, g_{δ} is a continuous non-decreasing function with value 0 on $\left.]-\infty, 1-\delta\right]$ and value $1+\varepsilon$ on $[1,+\infty[$.

1. Show that a flow $f^{\varepsilon, 1}$ getting 1 through $o \rightarrow a \rightarrow b \rightarrow d$, and 0 on other paths, is a ε-Nash Equilibrium of $(G, \ell, 1)$.
2. Construct an admissible flow of $(G, \ell, 2)$ of cost $4 \delta+2(1-\varepsilon)(1-\delta)$.
3. Show that the social optimum of $(G, \ell, 2)$ can be found by solving an unidimensional optimization problem, and propose an adapted optimization algorithm.

Solution. 1. (1pt) There are 4 possible paths : $o-d, o-a-d, o-a-b-d, o-b-d$. For $f^{\varepsilon, 1}$ their cost is 2 , $1+\varepsilon+1-\varepsilon=2,2+2 \varepsilon$ and 2 . Thus $f^{\varepsilon, 1}$ is an ε-Nash Equilibrium.
2. (1pt) We put δ on $o-d, 1-\delta / 2$ on $o-a-d$ and $1-\delta / 2$ on $o-b-d$.
3. (2.5pts) The global cost is

$$
2 f_{1}+\left(f_{2}+f_{3}\right) g_{\delta}\left(f_{2}+f_{3}\right)+(1-\varepsilon) f_{2}+(1-\varepsilon) f_{3}+g_{\delta}\left(f_{3}\right)
$$

we can improve the cost of any admissible flow by shifting from path 3 to path 4 (as g_{δ} is increasing), thus an optimal flow have $f_{3}=0$. By monotonicity, an optimal solution have $f_{2}=f_{4}$, and as $f_{1}+f_{2}+f_{3}+f_{4}=2$ we reduce the problem to

$$
\min _{f_{4} \in[0,1]} 2\left(2-2 f_{4}\right)+2 f_{4} g_{\delta}\left(f_{4}\right)
$$

which can be further reduced to

$$
\min _{f_{4} \in[1-\delta, 1]} 2\left(2-2 f_{4}\right)+2 f_{4} g_{\delta}\left(f_{4}\right)
$$

Part II : bounding the cost of ε-Nash Equilibrium

We construct new loss functions $\bar{\ell}_{e}(x)$ given by

$$
\bar{\ell}_{e}(x)= \begin{cases}\ell_{e}\left(x^{\varepsilon, r}\right) & \text { if } x \leq x^{\varepsilon, r} \\ \ell_{e}(x) & \text { else }\end{cases}
$$

Accordingly we denote $\bar{\ell}_{p}(f)=\sum_{e \in p} \bar{\ell}_{e}\left(x_{e}(f)\right)$ and

$$
C(x)=\sum_{e \in E} x_{e} \ell_{e}\left(x_{e}\right) \quad \text { and } \quad \bar{C}(x)=\sum_{e \in E} x_{e} \bar{\ell}_{e}\left(x_{e}\right)
$$

For $k \in \llbracket 1, K \rrbracket$, denote $\lambda_{k}(x)$ the minimum cost of an $o_{k}-d_{k}$-path with costs given by edge-intensity vector x.
4. Give an interpretation of an ε-Nash Equilibrium. What happens if $\varepsilon=0$?
5. Show that $C\left(x^{\varepsilon, r}\right) \leq(1+\varepsilon) \sum_{k=1}^{K} r_{k} \lambda_{k}\left(x^{\varepsilon, r}\right)$.
6. Show that, for any $x \in \mathbb{R}_{+}^{|E|}, x_{e}\left(\bar{\ell}_{e}\left(x_{e}\right)-\ell_{e}\left(x_{e}\right)\right) \leq x_{e}^{\varepsilon, r} \ell_{e}\left(x_{e}^{\varepsilon, r}\right)$.
7. Deduce that, $\bar{C}\left(x^{S O, 2 r}\right)-C\left(x^{S O, 2 r}\right) \leq C\left(x^{\varepsilon, r}\right)$.
8. Show that, for all $p \in \mathcal{P}_{k}, \bar{\ell}_{p}\left(f^{S O, 2 r}\right) \geq \lambda_{k}\left(x^{\varepsilon, r}\right)$.
9. Show that

$$
\sum_{p \in \mathcal{P}} \bar{\ell}_{p}\left(f^{S O, 2 r}\right) f_{p}^{S O, 2 r} \geq \frac{2}{1+\varepsilon} C\left(x^{\varepsilon, r}\right)
$$

10. Find a constant K_{ε} such that $C\left(x^{\varepsilon, r}\right) \leq K_{\varepsilon} C\left(x^{S O, 2 r}\right)$.
11. Using part I show that this bound is tight.

Solution. 1. (0.5pts) An ε-Nash equilibrium is a flux such that each user can win at most ε by changing trajectory with fixed cost. If $\varepsilon=0$ we recover the Wardrop equilibrium.
2. (1pt) $f^{\varepsilon, r}$ is a ε-Nash equilibrium, thus for every $p \in \mathcal{P}_{k}$ we have $f_{p}^{\varepsilon, r} \ell_{p}\left(f^{\varepsilon, r}\right) \leq(1+\varepsilon) f_{p}^{\varepsilon, r} \lambda_{k}\left(x\left(f^{\varepsilon, r}\right)\right)$, and summing over all $p \in \mathcal{P}$ yields the result.
3. (1pt) $\bar{\ell}_{e}\left(x_{e}\right)-\ell_{e}\left(x_{e}\right)$ is null if $x_{e} \geq x_{e}^{\varepsilon, r}$, and equal to $\ell_{e}\left(x_{e}^{\varepsilon, r}\right)-\ell_{e}\left(x_{e}\right) \leq \ell_{e}\left(x_{e}^{\varepsilon, r}\right)$ otherwise. Multiplying by x_{e} we have the result both for $x_{e} \geq x_{e}^{\varepsilon, r}$ and for $x_{e} \leq x_{e}^{\varepsilon, r}$.
4. (1pt)

$$
\begin{aligned}
\bar{C}\left(x^{S O, 2 r}\right)-C\left(x^{S O, 2 r}\right) & =\sum_{e \in E} x_{e}^{S O, 2 r}\left(\bar{\ell}_{e}\left(x_{e}^{S O, 2 r}\right)-\ell_{e}\left(x_{e}^{S O, 2 r}\right)\right) \\
& \leq \sum_{e \in E} x_{e}^{\varepsilon, r} \ell_{e}\left(x_{e}^{\varepsilon, r}\right) \\
& =C\left(x^{\varepsilon, r}\right)
\end{aligned}
$$

5. (1pt) We have $\bar{\ell}_{p}(0) \geq \lambda_{k}\left(x^{\varepsilon, r}\right)$, and as $\bar{\ell}_{p}$ is non-decreasing we get $\bar{\ell}_{p}\left(f^{S O, 2 r}\right) \geq \lambda_{k}\left(x^{\varepsilon, r}\right)$.
6. (1.5pts)

$$
\begin{array}{rlrl}
\sum_{p \in \mathcal{P}} \bar{\ell}_{p}\left(f^{S O, 2 r}\right) f_{p}^{S O, 2 r} & \geq \sum_{k} \sum_{p \in \mathcal{P}_{k}} \lambda_{k}\left(x^{\varepsilon, r}\right) f_{p}^{S O, 2 r} & & \\
& =\sum_{k} \lambda_{k}\left(x^{\varepsilon, r}\right) r_{k} & \text { by previous question } \\
& \geq \frac{2}{1+\varepsilon} C\left(f^{\varepsilon, r}\right) & \text { by question ?? }
\end{array}
$$

7. (1.5pts) We have

$$
\begin{aligned}
C\left(x^{S O, 2 r}\right) & \geq \sum_{p \in \mathcal{P}} \bar{\ell}_{p}\left(f^{S O, 2 r}\right) f_{p}^{S O, 2 r}-C\left(x^{\varepsilon, r}\right) \\
& \geq \frac{2}{1+\varepsilon} C\left(x^{\varepsilon, r}\right)-C\left(x^{\varepsilon, r}\right) \\
& =\frac{1-\varepsilon}{1+\varepsilon} C\left(x^{\varepsilon, r}\right)
\end{aligned}
$$

8. (1pt) In the example of part I we have $C\left(x^{\varepsilon, 1}\right)=2+2 \varepsilon$, and an admissible flow for the double rate with cost $2 \delta+(1-\varepsilon)(1-\delta)$. Letting δ goes to zero yields the result.
9. (1.5pts) Consider $p \in \mathcal{P}^{k}$. Then $\ell_{p}\left(f^{U E, r}\right)=c_{k}$. Furthermore,

$$
\bar{\ell}_{p}\left(f^{S O, 2 r}\right)=\sum_{e \in E} \bar{\ell}_{e}\left(x_{e}\left(f^{S O, 2 r}\right)\right) \geq \sum_{e \in E} \ell_{e}\left(x_{e}^{U E, r}\right)=c_{k}
$$

where the inequality comes from monotonicity of ℓ_{e}, and definition of $\bar{\ell}_{e}$.
10. (0.5 pts)

$$
C(x)=\sum_{f \in \mathcal{P}} f_{p} \ell_{p}(f) \quad \text { and } \quad \bar{C}(x)=\sum_{f \in \mathcal{P}} f_{p} \bar{\ell}_{p}(f)
$$

11. (2pts)

$$
\begin{aligned}
\bar{C}\left(f^{S O, 2 r}\right) & =\sum_{k=1}^{K} \sum_{p \in \mathcal{P}_{k}} f_{p}^{S O, 2 r} \bar{\ell}_{p}\left(f^{S O, 2 r}\right) \\
& \geq \sum_{k=1}^{K} c_{k} \sum_{p \in \mathcal{P}_{k}} f_{p}^{S O, 2 r} \\
& =\sum_{k=1}^{K} 2 c_{k} r^{k} \\
& =2 C\left(f^{U E, r}\right)
\end{aligned}
$$

12. (1pts) Combining previous results we have

$$
2 C\left(f^{U E, r}\right) \leq \bar{C}\left(x^{S O, 2 r}\right) \leq C\left(x^{U E, r}\right)+C\left(x^{S O, 2 r}\right)
$$

which give the result, that can be interpreted as "optimizing flux cannot allow more than twice the inflows rates without increasing global cost".

Exercice 3 (1pt). Present two operation research problems encountered by Air France.

