ENPC - Operations Research and Transport - 2017

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player. For example, if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains 1.

	a	b	с	d
a	(1,-1)	(0,0)	(0,1)	(-1,4)
b	(-1,2)	(2,3)	(3,2)	(-2,3)

- 1. Find the Nash equilibrium(s)
- 2. Find the social optimum(s)
- 3. Find the Pareto optimum(s)

Exercice 2 (5pts). Consider the following weighted graph.

- 1. Use Dijkstra's algorithm to find the cost of the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm.
- 2. Find a topological ordering for the graph. Use the topological ordering to compute the cost of the shortest path from a to every nodes by Dynamic Programming.
- 3. Give the shortest path from a to f.

Exercice 3 (6pts). Consider a (finite) directed, strongly connected, graph G = (V, E). We consider K origin-destination vertex pair $\{o^k, d^k\}_{k \in [\![1,K]\!]}$, such that there exists at least one path from o^k to d^k . Let denote by

- 1. r^k the intensity of the flow of users entering in o^k and exiting in d^k ;
- 2. \mathcal{P}_k the set of all simple (i.e. without cycle) paths from o^k to d^k , and by $\mathcal{P} = \bigcup_{k=1}^K \mathcal{P}_k$;
- 3. f_p the number of users taking path $p \in \mathcal{P}$ per hour (intensity);
- 4. $f = \{f_p\}_{p \in \mathcal{P}}$ the vector of path intensity;
- 5. $x_a = \sum_{p \ni e} f_p$ the flux of user taking the arc $e \in E$;
- 6. $x = \{x_e\}_{e \in E}$ the vector of arc intensity;
- 7. $\ell_e : \mathbb{R} \to \mathbb{R}^+$ the cost incurred by a given user to take edge e, if the edge-intensity is x_e ;
- 8. $L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$

We want to find bounds on the price of anarchy, assuming that, for each arc $e, \ell_e : \mathbb{R}^+ \to \mathbb{R}^+$ is non-decreasing, and that we have

$$x\ell_e(x) \le \gamma L_e(x), \qquad \forall x \in \mathbb{R}^+$$

- 1. Recall which optimization problems solves the social optimum x^{SO} and the user equilibrium x^{UE} . We will denote W(x) the objectif function of the user equilibrium problem and C(x) the objective function of the social optimum problem.
- 2. Let x be a feasable vector of arc-intensity. Show that $W(x) \leq C(x) \leq \gamma W(x)$.
- 3. Show that the price of anarchy $C(x^{UE})/C(x^{SO})$ is lower than γ .
- 4. If the cost per arc ℓ_e are polynomial of order at most p with non-negative coefficient, find a bound on the price of anarchy. Is this bound sharp?

Exercice 4 (bonus). Give three ideas that allow to speed-up the shortest path algorithm in Google Maps.