ENPC - Operations Research and Transport - 2017

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player. For example, if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains 1.

	a	b	c	d
a	$(1,-1)$	$(0,0)$	$(0,1)$	$(-1,4)$
b	$(-1,2)$	$(2,3)$	$(3,2)$	$(-2,3)$

1. Find the Nash equilibrium(s)
2. Find the social optimum(s)
3. Find the Pareto optimum(s)

Exercice 2 (5pts). Consider the following weighted graph.

1. Use Dijkstra's algorithm to find the cost of the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm.
2. Find a topological ordering for the graph. Use the topological ordering to compute the cost of the shortest path from a to every nodes by Dynamic Programming.
3. Give the shortest path from a to f.

Exercice 3 (6pts). Consider a (finite) directed, strongly connected, graph $G=(V, E)$. We consider K origin-destination vertex pair $\left\{o^{k}, d^{k}\right\}_{k \in \llbracket 1, K \rrbracket}$, such that there exists at least one path from o^{k} to d^{k}. Let denote by

1. r^{k} the intensity of the flow of users entering in o^{k} and exiting in d^{k};
2. \mathcal{P}_{k} the set of all simple (i.e. without cycle) paths from o^{k} to d^{k}, and by $\mathcal{P}=\bigcup_{k=1}^{K} \mathcal{P}_{k}$;
3. f_{p} the number of users taking path $p \in \mathcal{P}$ per hour (intensity);
4. $f=\left\{f_{p}\right\}_{p \in \mathcal{P}}$ the vector of path intensity;
5. $x_{a}=\sum_{p \ni e} f_{p}$ the flux of user taking the arc $e \in E$;
6. $x=\left\{x_{e}\right\}_{e \in E}$ the vector of arc intensity;
7. $\ell_{e}: \mathbb{R} \rightarrow \mathbb{R}^{+}$the cost incurred by a given user to take edge e, if the edge-intensity is x_{e};
8. $L_{e}\left(x_{e}\right):=\int_{0}^{x_{e}} \ell_{e}(u) d u$.

We want to find bounds on the price of anarchy, assuming that, for each arc e, $\ell_{e}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ is non-decreasing, and that we have

$$
x \ell_{e}(x) \leq \gamma L_{e}(x), \quad \forall x \in \mathbb{R}^{+}
$$

1. Recall which optimization problems solves the social optimum $x^{S O}$ and the user equilibrium $x^{U E}$. We will denote $W(x)$ the objectif function of the user equilibrium problem and $C(x)$ the objective function of the social optimum problem.
2. Let x be a feasable vector of arc-intensity. Show that $W(x) \leq C(x) \leq \gamma W(x)$.
3. Show that the price of anarchy $C\left(x^{U E}\right) / C\left(x^{S O}\right)$ is lower than γ.
4. If the cost per arc ℓ_{e} are polynomial of order at most p with non-negative coefficient, find a bound on the price of anarchy. Is this bound sharp?

Exercice 4 (bonus). Give three ideas that allow to speed-up the shortest path algorithm in Google Maps.

