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An optimization problem

A generic optimization problem can be written

min
x

L(x)

s.t. g(x) ≤ 0

where

x is the decision variable

L is the objective function

g is the constraint function
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An optimization problem with uncertainty

Adding uncertainty ξ in the mix

min
x

L(x , ξ̃)

s.t. g(x , ξ̃) ≤ 0

Remarks:
ξ̃ is unknown. Two main way of modelling it:

ξ̃ ∈ R with a known uncertainty set R, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ̃ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈R L(x , ξ).
SP : E

[
L(x , ξ)

]
.

Constraints are not well defined.
RO : g(x , ξ) ≤ 0, ∀ξ ∈ R.
SP : g(x , ξ) ≤ 0, P− a.s..
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Requirements and limits

Stochastic optimization :

requires a law of the uncertainty ξ
can be hard to solve (generally require discretizing the support
and blowing up the dimension of the problem)
there exists specific methods (like Bender’s decomposition)

Robust optimization :

requires an uncertainty set R
can be overly conservative, even for reasonable R
complexity strongly depend on the choice of R

Distributionally robust optimization :

is a mix between robust and stochastic optimization
consists in solving a stochastic optimization problem where the
law is chosen in a robust way
is a fast growing fields with multiple recent results
but is still hard to implement than other approaches
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Definition

A risk measure ρ is a function associating a determinist equivalent
to an uncertain cost X , in the sense that it is the maximum
amount of cash you are willing to pay to be rid of the uncertain
cost.

Mathematically, consider a probability space (Ω,F ,P). Then the
risk measure ρ is a function mapping the random variables
L0(Ω,F ,P;R ∪ {+∞}) into R ∪ {+∞}.

Warning : the definition and convention in risk measure litterature are not

perfectly unified. For example, what I call ρ(X ) is sometimes called −ρ(X ) or

−ρ(−X )... Or some assitional assumption (discussed later) are required of a

risk measure by some author.
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Interpretation

Assume that you consider an uncertain cost X .

ρ(X ) can be seen as the maximum price you are ready to pay
for an insurance covering this cost.

The choice of ρ is difficult as it is highly subjective.

We will discuss some “natural” properties one can ask of ρ
and suggest some possible choice of ρ.
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Risk neutral case: expectation

We started our discussion by assuming that we have a probability
space (Ω,F ,P). In particular we assume knowledge of a reference
probability P.

We say that we are in the risk-neutral setting when the chosen risk
measure is simply the expectation with respect to P :

ρ[·] = EP[·]

This choice is justified if you do not have any aversion to risk
(e.g : you are willing to pay 100 e for having 1/10 chance of
getting 1000 e)

It can also be justified if you are repeating the same operation a
large number of times by law of large number.
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Some interesting properties

We are now giving some properties that have intuitive interest.

Monotonicity: X ≤ Y =⇒ ρ(X ) ≤ ρ(Y )

Subadditivity: ρ[X + Y ] ≤ ρ[X ] + ρ[Y ]

Translation equivariance: ρ[X + c] = ρ[X ] + c

Normalization: ρ[0] = 0

Positive homogeneity: ρ[λX ] = λρ[X ] for all λ > 0

Convexity: ρ[λX + (1− λ)Y ] ≤ λρ[X ] + (1− λ)ρ[Y ]

Law invariance: if X and Y have the same law, then
ρ[X ] = ρ[Y ].

Remark : With positive homogenity, subbaditivity and convexity
are equivalent.
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Coherent risk measures

A risk measure ρ is said to be convex if it is monotone, convex
and translation equivariant.

A risk measure ρ is said to be coherent if it is monotone,
subbaditive, translation equivariant and positive homogeneous.

A convex risk measure is coherent if it is positive
homogeneous.

Mathematicians mostly agree that the right modeling tool are law
invariant coherent risk measures, in particular because if ρ is a
coherent law invariant risk measure, then there exists a set of
probability Q such that

∀X , ρ[X ] = sup
Q∈Q

EQ[X ]

And reciprocally, every risk measure defined in such a way is
coherent and law invariant.
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Extreme cases

We start with two example of coherent risk measures that are limit
cases of some families of risk measures.

The risk neutral case is represented by

ρ[X ] = E[X ].

The robust case is represented by

ρ[X ] = sup
ω

X (ω).

V. Leclère Optimization under uncertainty and risk aversion June 15, 2022 10 / 33



Introduction Risk Measures Multistage Stochastic Optimization under uncertainty Practical application: two-stage case

Polyhedral risk measure

A very practical and simple way of constructing a coherent risk
measure, known as polyhedral risk measures, consists in
considering a finite set of probability Q = {Qk}k∈[K ], for example
each given by an expert, and define

ρ[X ] = max
k∈[K ]

EQk [X ].

Let’s take an example with a coin flip : Ω = {H,T}. We have two
expert, one thinking that it is equilibrated (i.e Q1 = (0.5, 0.5)),
and the other thinking that T will happen with probability 0.7 (i.e
Q2 = (0.3, 0.7))). Therefore we would have

ρ[X ] = max

{
0.5X (H) + 0.5X (T ), 0.3X (H) + 0.7X (T )

}

V. Leclère Optimization under uncertainty and risk aversion June 15, 2022 11 / 33
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Mean-variance

A very natural (but misleading) way of modeling risk aversion
consists in considering the Markovitz expectation/variance
trade-off, i.e.

ρ(X ) = E[X ] + αvar(X ), α ≥ 0

Not satisfying as E[X ] is in e, and var(X ) is in e2.

We can adjust by considering the standard deviation

ρ(X ) = E[X ] + ασ(X ), α ≥ 0

This is a wrong approach as this is non-monotonous.
Compare X and Y given as follows: P(X = 11) = 1,
P(Y = 10) = 0.9 and P(Y = 0) = 0.1.

We have
ρ[X ] = 10, ρ[Y ] ≈ 9 + 0.42α

V. Leclère Optimization under uncertainty and risk aversion June 15, 2022 12 / 33
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Semi deviation model

We can adapt Markovitz’s approach to make it coherent by
considering semi-deviation instead of standard deviation.

The semi-deviation of X is defined as

σ+(X ) =
√

E[(X − E[X ])2
+

We can consider

ρ[X ] = E[X ] + ασ+(X ),

which is coherent for α ≥ 0.
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Value at Risk I

A very common risk
measure is the
Value at Risk of
level β.

It is the highest
value that can take
the cost if you forgo
the 1− β worst
case.

V@Rβ(X ) :=
inft P(X ≥ t) ≤
1− β.
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Value at Risk II

The Value at Risk is a pretty intuitive risk measure, with some
heavy drawbacks:

it can be hard to compute, and even more to use as a
constraint (chance-constraints).

it is positively homogene and translation equivariant

but not coherent because it is not subadditive:

Consider X and Y two independznt random variable taking
value 1 with probability 0.1, and 0 otherwise.

Then X + Y take value 0 with probability 0.81, 1 with
probability 0.18 and 2 with probability 0.01.
Thus V@R0.85(X + Y ) = 1 while
V@R0.85(X ) = V@R0.85(Y ) = 0.

V. Leclère Optimization under uncertainty and risk aversion June 15, 2022 15 / 33
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Tail Value at Risk

The Tail Value at Risk (TV@R) (a.k.a conditional value at risk,
average value at risk, expected shortfall or superquantile) is a
convexification of the V@R measure. It has various equivalent
definitions (assuming X admits a density):

1 TV@Rβ[X ] = E[X |X ≥ V@Rβ(X )]

; intuitive interpretation

2 TV@Rβ[X ] = 1
1−β

∫ 1
β V@Rb(X )db

; upperbound of V@R

3 TV@Rβ[X ] = min
t∈R

{
t + 1

1−βE[X − t]+
}

; linear formulation

4 TV@Rβ[X ] = sup
{
EQ[X ] | dQ

dP ≤
1

1−β
}

; coherent risk measure

Remark : with β going from 0 to 1 we smoothly get from the
expectation to the worst case.
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definitions (assuming X admits a density):

1 TV@Rβ[X ] = E[X |X ≥ V@Rβ(X )]
; intuitive interpretation

2 TV@Rβ[X ] = 1
1−β

∫ 1
β V@Rb(X )db

; upperbound of V@R

3 TV@Rβ[X ] = min
t∈R

{
t + 1

1−βE[X − t]+
}

; linear formulation

4 TV@Rβ[X ] = sup
{
EQ[X ] | dQ

dP ≤
1

1−β
}

; coherent risk measure

Remark : with β going from 0 to 1 we smoothly get from the
expectation to the worst case.
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Convex combination of expectation and TV@R

TV@R has very good properties:

law invariant coherent risk measure
linear programming formulation
upper bound of V@R
decent interpretation

It is, however, quite risk averse and is sensitive only to the
1− β worst cases.

A very common practice consists in considering

ρ[X ] = λE[X ] + (1− λ)TV@Rβ[X ]

(with λ ∈ [0, 1], β ∈ [0, 1]) which is coherent with more
flexibility in representing risk aversion.

Actually most coherent risk measures can be represented as
convex combinations of TV@R.
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General idea

In stochastic optimization we assume that the true underlying
probability P is known.

In practice we generally do not have the probability P, but
only some data and a-priori.

Classicaly we approximate the true probability P by the
empirical probability P̂N .

In, Distributionally Robust Optimization, we

choose a distance d on the probability distribution
consider all the probability Q that are close to the empirical
probability, i.e. d(Q, P̂N ≤ ε)
and take a robust approach on the probability distribution :

ρ[X ] = sup
Q:d(Q,P̂N )≤ε

EQ[X ]
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Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by
its dynamic

x t+1 = ft(x t ,ut , ξt+1)

and initial state
x0 = ξ0

The variables

x t is the state of the system,

ut is the control applied to the system at time t,

ξt is an exogeneous noise.

Usually, x t ∈ Xt and ut beglongs to a set depending upon the
state: ut ∈ Ut(x t).
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Examples

Stock of water in a dam:

x t is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
ξt+1 is the inflow of water in [t, t + 1[.

Boat in the ocean:

x t is the position of the boat at time t,
ut is the direction and speed chosen for [t, t + 1[,
ξt+1 is the wind and current for [t, t + 1[.

Subway network:

x t is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
ξt+1 is the delay due to passengers and incident on the
network for [t, t + 1[.
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More considerations about the state

Physical state: the physical value of the controlled system.
e.g. amount of water in your dam, position of your boat...

Information state: physical state and information you have
over noises. e.g.: amount of water and weather forecast...

Knowledge state: your current belief over the actual
information state (in case of noisy observations). Represented
as a distribution law over information states.

The state in the Dynamic Programming sense is the information
required to define an optimal solution.
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Optimization Problem

We want to solve the following optimization problem

min
u

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)

1 We want to minimize the expectation of the sum of costs.

2 The system follows a dynamic given by the function ft .

3 There are constraints on the controls.

4 The controls are functions of the past noises
(= non-anticipativity).
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Optimization Problem

We want to solve the following optimization problem

min
Φ

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

ut = Φ(ξ0, · · · , ξt+1)

1 We want to minimize the expectation of the sum of costs.

2 The system follows a dynamic given by the function ft .

3 There are constraints on the controls.

4 The controls are functions of the past noises
(= non-anticipativity).
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Optimization Problem with independence of noises

If noises at time independent, the optimization problem is
equivalent to

min
π

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

ut = πt(x t , ξt+1)
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Keeping only the state

For notational ease, we want to formulate Problem (??) only with states.
Let Xt(xt , ξt+1) be the reachable states, i.e.,

Xt(xt , ξt+1) :=
{
xt+1 ∈ Xt+1 | ∃ut ∈ Ut(xt , ξt+1), xt+1 = ft(xt , ut , ξt+1)

}
.

And ct(xt , xt+1, ξt+1) the transition cost from xt to xt+1, i.e.,

ct(xt , xt+1, ξt+1) := min
ut∈Ut(xt ,ξt+1)

{
Lt(xt , ut , ξt+1) | xt+1 = ft(xt , ut , ξt+1)

}
.

Then, under independance of noises, the optimization problem reads

min
ψ

E
[ T−1∑

t=0

ct(x t , x t+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), x0 = ξ0

x t+1 = ψt(x t , ξt+1)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the
property that whatever the
initial state and initial deci-
sion are, the remaining de-
cisions must constitute an
optimal policy with regard
to the state resulting from
the first decision (Richard
Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy,
suppose that the fastest
route from Los Angeles
to Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston. (Dim-
itri P. Bertsekas)
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Idea behind dynamic programming

If noises are time independent, then

1 The cost to go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position,
starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:
At time t, Vt+1 gives the cost of the future. Dynamic

Programming is a time decomposition method.
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Dynamic Programming Principle

Assume that the noises ξt are time-independent and exogeneous.
The Bellman’s equation writes


VT (x) = K (x)

V̂t(x , ξ) = min
y∈Xt(x ,ξ)

ct(x , y , ξt+1) + Vt+1(y)

Vt(x) = E
[
V̂t(x , ξt+1)

]
An optimal state trajectory is obtained by x t+1 = ψV

t

(
x t

)
, with

ψV
t (x , ξ) ∈ arg min

y∈Xt(x ,ξ)
ct(x , y , ξ)︸ ︷︷ ︸
current cost

+ Vt+1(y)︸ ︷︷ ︸
future costs

,
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Interpretation of Bellman Value Function

The Bellman’s value function Vt0 (x) can be interpreted as the value of
the problem starting at time t0 from the state x .
More precisely we have

Vt0 (x) = min E
[ T−1∑
t=t0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x t0 = x

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)
or

min
ψ

E
[ T−1∑
t=t0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), xt0 = x

x t+1 = ψt(x t)
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The problem of time consistency

The most natural way of writing a risk-averse multistage problem
is to consider the following

min ρ
[ T∑
t=1

Lt(X t ,U t , ξt)
]

s.t. X t+1 = ft(X t ,U t , ξt)

Unfortunately there is no reason for the solution of the above
problem to be also a solution of the same problem starting at time
t0

min ρ
[ T∑
t=t0

Lt(X t ,U t , ξt)
]

s.t. X t+1 = ft(X t ,U t , ξt)

This is the problem of time consistency, that prevent the usage of
Dynamic Programming
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Composed risk measures

The solution to the above conundrum is to consider an alternative
problem with nested risk measures

min
u0

ρ

[
L0(x0, u0, ξ0) + min

u1

ρ
[
L1(X 1,u1, ξ1) + min

u2

ρ
[
. . .
]]]

In which case Dynamic Programming principle easily apply by
replacing expectation by ρ with{

VT = K

Vt(x) = minu ρ
[
Lt(x , u, ξt) + Vt+1(ft(x , u, ξt))

]

Main downside : interpretation of what we are doing is not easy.
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A newsvendor problem

We consider the following one-stage problem

min
x∈R

ρ
[
c>x + q+(x − d )+ + q−(x − d )−

]
s.t. x ≥ 0

where

x is a quantity of product bought

d is a random demand

c is the cost of buying a product

q+ is the destruction cost

q− is the shortage cost
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Exercise

We assume that d is uniformly distributed on {d1, . . . , dn}
Write the following problem as an LP

min
x∈R

ρ
[
c>x + q+(x − d )+ + q−(x − d )−

]
s.t. x ≥ 0

when

1 ρ = E
2 ρ = TV@Rβ (β ∈ (0, 1))

3 ρ = αTV@Rβ + (1− α)TV@Rβ (β ∈ (0, 1), α ∈ [0, 1])
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