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Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by
its dynamic

xt+1 = ft(xt ,ut , ξt+1)

and initial state
x0 = ξ0

The variables
xt is the state of the system,
ut is the control applied to the system at time t,
ξt is an exogeneous noise.

Usually, xt ∈ Xt and ut belongs to a set depending upon the state:
ut ∈ Ut(xt).
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Examples

Stock of water in a dam:
xt is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
ξt+1 is the inflow of water in [t, t + 1[.

Boat in the ocean:
xt is the position of the boat at time t,
ut is the direction and speed chosen for [t, t + 1[,
ξt+1 is the wind and current for [t, t + 1[.

Subway network:
xt is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
ξt+1 is the delay due to passengers and incident on the
network for [t, t + 1[.
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More considerations about the state

Physical state: the physical value of the controlled system.
e.g. amount of water in your dam, position of your boat...
Information state: physical state and information you have
over noises. e.g.: amount of water and weather forecast...
Knowledge state: your current belief over the actual
information state (in case of noisy observations). Represented
as a distribution law over information states.

The state, in the Dynamic Programming sense, is the information
required to define an optimal solution.
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Optimization Problem

min
u

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(xt), xt ∈ Xt

σ(ut) ⊂ σ
(
ξ0, · · · , ξt

)

1 We want to minimize the expectation of the sum of costs.
2 The system follows a dynamic given by the function ft .
3 There are stagewise constraints on the controls and costs.
4 The controls are functions of the past noises

(= non-anticipativity).

Vincent Leclère Dynamic Programming 08/12/2023 5 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Stochastic optimal control problem
Dynamic Programming principle
Example

Optimization Problem

min
u

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(xt), xt ∈ Xt

σ(ut) ⊂ σ
(
ξ0, · · · , ξt

)

1 We want to minimize the expectation of the sum of costs.
2 The system follows a dynamic given by the function ft .
3 There are stagewise constraints on the controls and costs.
4 The controls are functions of the past noises

(= non-anticipativity).
Vincent Leclère Dynamic Programming 08/12/2023 5 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Stochastic optimal control problem
Dynamic Programming principle
Example

Optimization Problem

min
Φ

E
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Lt

(
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Optimization Problem with independence of noises

Assuming stagewise independence of the noises, we can compress
information in the following way:

min
Φ

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(xt), xt ∈ Xt

ut = Φt(ξ0, · · · , ξt)
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Keeping only the state
For notational ease, we want to formulate Problem (??) only with states.
Let Xt(xt , ξt+1) be the reachable states, i.e.,

Xt(xt , ξt+1) :=
{

xt+1 ∈ Xt+1 | ∃ut ∈ Ut(xt , ξt+1), xt+1 = ft(xt , ut , ξt+1)
}
.

And ct(xt , xt+1, ξt+1) the transition cost from xt to xt+1, i.e.,

ct(xt , xt+1, ξt+1) := min
ut ∈Ut (xt ,ξt+1)

{
Lt(xt , ut , ξt+1) | xt+1 = ft(xt , ut , ξt+1)

}
.

Then, under independance of noises, the optimization problem reads

min
ψ

E
[ T−1∑

t=0
ct(xt , xt+1, ξt+1) + K (xT )

]
s.t. xt+1 ∈ Xt(xt , ξt+1), x0 = ξ0

xt+1 = ψt(xt , ξt+1)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the
property that whatever the
initial state and initial deci-
sion are, the remaining de-
cisions must constitute an
optimal policy with regard
to the state resulting from
the first decision (Richard
Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy,
suppose that the fastest
route from Los Angeles
to Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston. (Dim-
itri P. Bertsekas)
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Idea behind dynamic programming

If noises are time independent, then
1 The cost to go at time t depends only upon the current state.
2 We can compute recursively the cost to go for each position,

starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:
At time t, Vt+1 gives the cost of the future.

Dynamic Programming is a time decomposition method.
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Idea Behind Dynamic Programming

min
u0∈U0(x0)

E
[
L0

(
x0, u0, ξ1

)
+ min

u1,...uT−1
E

[ T−1∑
t=1

Lt
(
xt ,ut ,w t+1

)
+ K

(
xT

)]]
s.t. x1 = f0(x0, u0, ξ1)

xt+1 = ft(xt ,ut , ξt+1) ∈ Xt+1,

ut ∈ Ut(xt)
σ(ut) ⊂ σ

(
ξ0, · · · , ξt

)

︸ ︷︷ ︸
=:V1(x1)

Independence of noises
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Definition of Bellman Value Function

The Bellman’s value function Vt0(x) is defined as the value of the
problem starting at time t0 from the state x .
More precisely we have

Vt0(x) = min E
[ T−1∑

t=t0

Lt
(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), xt0 = x

ut ∈ Ut(xt), xt ∈ Xt

σ(ut) ⊂ σ
(
ξ0, · · · , ξt

)
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Bellman’s recursion

The core idea of Bellman’s recursion is to see the total (expected)
cost as the sum of the current cost and the future cost:

Vt(xt) = min
ut

E
[
Lt(x , u, ξt+1) + Vt+1(xt+1)

]
xt+1 = ft(xt , ut , ξt+1)
ut ∈ Ut(xt)
xt+1 ∈ Xt+1

And we know the final cost function:

VT (xT ) = K (xT ).
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal strategy and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1 → 0 do

for x ∈ Xt do
Vt(x) = min

u∈Ut (x)
E

[
Lt(x , u, ξt+1) + Vt+1

(
ft(x , u, ξt+1)︸ ︷︷ ︸

xt+1

)]
Algorithm 1: Classical stochastic DP algorithm
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal strategy and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1 → 0 do

for x ∈ Xt do
Vt(x) = +∞;
for u ∈ U(x) do

Qt(x , u) = E
[
Lt(x , u, ξt+1) + Vt+1

(
ft(x , u, ξt+1)︸ ︷︷ ︸

xt+1

)]
if Qt(x , u) < Vt(x) then

Vt(x) = Qt(x , u);
πt(x) = u;

Algorithm 1: Classical stochastic DP algorithm

Vincent Leclère Dynamic Programming 08/12/2023 14 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Stochastic optimal control problem
Dynamic Programming principle
Example
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Result: optimal strategy and value;
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xξt+1 = ft(x , u, ξ);
if xξt+1 ∈ Xt then

Q̇t(x , u, ξ) = Lt(x , u, ξt+1) + Vt+1(xξt+1)
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P(ξt+1 = ξ)Q̇t(x , u, ξ);

if Qt(x , u) < Vt(x) then
Vt(x) = Qt(x , u); πt(x) = u;

Algorithm 1: Classical stochastic DP algorithm
Vincent Leclère Dynamic Programming 08/12/2023 14 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Stochastic optimal control problem
Dynamic Programming principle
Example

3 curses of dimensionality
Complexity = O(T × |Xt | × |Ut | × |Ξt |)
Linear in the number of time steps, but we have 3 curses of
dimensionality :

1 State. Complexity is exponential in the dimension of Xt
e.g. 3 independent states each taking 10 values leads to a
loop over 1000 points.

2 Decision. Complexity is exponential in the dimension of Ut .
⇝ due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of
Ξt .
⇝ due to expectation computation. Can be accelerated
through Monte-Carlo approximation (still at least 1000 points)

In practice, DP is not used for a state of dimension more than 5.
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Illustrating dynamic programming with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart
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Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with
52 timesteps (common in energy management) plus 5 controls and
5 independent noises.

1 We discretize each state’s dimension in 100 values:
|Xt | = 1005 = 1010

2 We discretize each control’s dimension in 100 values:
|Ut | = 1005 = 1010

3 We use optimal quantization to discretize the noises’ space in
10 values: |Ξt | = 10

Number of flops: O(52 × 1010 × 1010 × 10) ≈ O(1023).
In the TOP500, the best computer computes 1017 flops/s.
Even with the most powerful computer, it takes at least 12 days to
solve this problem.
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A storage management example
A producer that needs to satisfy a weekly demand over 12 weeks.

Storage capacity of 100 units, starting with 50 units.
The producer can produce 0 (cost 0), 10 (cost 20) or 20 (cost 30)
or 25 (cost 45) units per week.
Demand is random and follows a stagewise independent uniform
distribution on {0, 10, 20, 30, 40}.
Storage cost 0.1 per unit per week.
Unmet demand is lost and costs 5 per unit.
Products remaining at the end are sold at 1 per unit.
During a given week:

producer decide how much to produce during the week
demand is revealed and should be met with current stock and
production
remaining stock is stored (at a cost), stock above capacity is
lost
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Exercise

1 Formulate the problem as a stochastic dynamic program,
underlying state, decision and noise.

2 Write the dynamic programming (Bellman’s) equation.
3 Solve the problem with your favorite programming language.
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Requirements of stochastic DP

min
π

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = x0

ut ∈ Ut(xt), xt ∈ Xt

ut = πt(xt)

Assumptions:
The noise are stagewise-independent.
The only constraint linking stages is the dynamic equation: no
coupling between stages.
The cost function is additive over stages.
We consider the expectation of costs.
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal strategy and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1 → 0 do

for x ∈ Xt do
Vt(x) = min

u∈Ut (x)
E

[
Lt(x , u, ξt+1) + Vt+1

(
ft(x , u, ξt+1)︸ ︷︷ ︸

xt+1

)]
Algorithm 2: Classical stochastic DP algorithm
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Markovian noise
Assume that (ξt)t is a Markovian noise, i.e. ξt only depends on xt .

We can recover the previous setting by defining an extended
state

x̃t = (xt , ξt)

Bellman equation then becomes:

Vt(xt , ξt) := min
ut∈Ut(xt)

E
[
Lt(xt , ut , ξt+1)+Vt+1(xt+1) | ξt = ξt

]

More precisely, it means that:
1 The value function Vt (and the optimal policy πt) depends on

both the current physical state xt and the current noise ξt .
2 The probability used to average the cost to go in the

algorithm is the conditional probability given ξt .
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Coupling control

Consider the following problem, with stagewise independent noise:

min
π

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = x0

ut ∈ Ut(xt), xt ∈ Xt

ut = πt(xt)
∥ut − ut−1∥ ≤ δ

How can we solve this problem using Dynamic Programming?
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Bankruptcy

Consider the following problem, with stagewise independent noise:

min
π

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = x0

ut ∈ Ut(xt), xt ∈ Xt

ut = πt(xt)

In addition, we assume that we start with a capital C0, and that
we must never, under any circonstance, have a negative capital.
How can we solve this problem using Dynamic Programming?
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Maximizing probability

Consider the following problem, with stagewise independent noise:

min
π

E
[ T−1∑

t=0
Lt

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
s.t. xt+1 = ft(xt ,ut , ξt+1), x0 = x0

ut ∈ Ut(xt), xt ∈ Xt

ut = πt(xt)

We are now reconsidering our objective function, and want to
replace the expectation by the probability of the accumulated, at
the end of the period, to be negative.
How can we solve this problem by Dynamic Programming?
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Dynamic Programming Algorithm - Discrete Case - HD

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1 → 0 do

for x ∈ Xt do
Vt(x) = E

[
min

y∈Xt (x ,ξt+1)

(
ct(x , y , ξt+1) + Vt+1(y)

)]
Algorithm 3: Classical stochastic dynamic programming algo-
rithm
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Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state
set, and then doing a single backward pass over the grid.

Ṽt ≡ 0
for t : T − 1 → 1 do

for xin ∈ X D
t−1 do

for ξ ∈ Ξt do
v̇ξ =

min
xout ∈Xt (xin,ξ)

ℓt(xin, xout , ξ) + Ṽt+1(xout)︸ ︷︷ ︸
:=Ḃt (Ṽt+1)(xin,ξ)

Ṽt(xin) += πξ︸︷︷︸
:=P(ξt =ξ)

v̇ξ

Extend definition of Ṽt to Xt by
interpolation
Algorithm 1: Discretized SDP time

x1

x2

Number of single stage problems to solve: (T − 1) × |XD
t−1| × |Ξt |.
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Ṽt(xin) += πξ︸︷︷︸
:=P(ξt =ξ)

v̇ξ

Extend definition of Ṽt to Xt by
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Ṽt(xin) += πξ︸︷︷︸
:=P(ξt =ξ)

v̇ξ

Extend definition of Ṽt to Xt by
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interpolation
Algorithm 1: Discretized SDP time

x1

x2

Number of single stage problems to solve: (T − 1) × |XD
t−1| × |Ξt |.

Vincent Leclère Dynamic Programming 08/12/2023 28 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

More flexibility in the framework
Continuous state space

Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state
set, and then doing a single backward pass over the grid.
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interpolation
Algorithm 1: Discretized SDP time

x1

x2

Number of single stage problems to solve: (T − 1) × |XD
t−1| × |Ξt |.

Vincent Leclère Dynamic Programming 08/12/2023 28 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

More flexibility in the framework
Continuous state space

Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state
set, and then doing a single backward pass over the grid.
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:=Ḃt (Ṽt+1)(xin,ξ)
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:=Ḃt (Ṽt+1)(xin,ξ)
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Ṽt(xin) += πξ︸︷︷︸
:=P(ξt =ξ)

v̇ξ

Extend definition of Ṽt to Xt by
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:=Ḃt (Ṽt+1)(xin,ξ)
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:=Ḃt (Ṽt+1)(xin,ξ)
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Ṽt(xin) += πξ︸︷︷︸
:=P(ξt =ξ)

v̇ξ

Extend definition of Ṽt to Xt by
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interpolation
Algorithm 1: Discretized SDP time

x1

x2

Number of single stage problems to solve: (T − 1) × |XD
t−1| × |Ξt |.

Vincent Leclère Dynamic Programming 08/12/2023 28 / 36



Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

More flexibility in the framework
Continuous state space

Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state
set, and then doing a single backward pass over the grid.
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

More flexibility in the framework
Continuous state space

Cost-to-go induced policy and Forward Bellman operator

The point of most DP methods is to produce approximations
Ṽt of the true value function1 Vt .
From any approximation Ṽt of Vt , we can define a cost-to-go
induced policy ψt by solving the stage problem:

min
xout ,ut∈Xt(xin,ξt)

ℓt+1(xin, xt , ut , ξt)︸ ︷︷ ︸
transition costs

+ Ṽ (xout)︸ ︷︷ ︸
cost-to-go

Thus a (sequence of) value functions approximations yields a
policy, which can be simulated to obtain trajectories and costs.

➥ Often used to pass information from long-term to short-term
problems.

1Sometimes it can be of V̇t instead
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Linear Quadratic case
Linear convex case

Linear Quadratic case

min
π

E
[ T−1∑

t=0
x⊤

t Qtxt + u⊤
t Rtut + x⊤

T QT xT

]
s.t. xt+1 = Atxt + Btut + ξt , x0 = x0

ut = πt(xt)

Under stagewise independence of the (centered) noise we can show that:
1 The value function is quadratic: Vt(xt) = x⊤

t Ktxt + kt .
2 The optimal policy is linear: πt(xt) = Ltxt .
3 With explicit (Riccati) formulas for Kt and Lt .

KT = QT , kT = 0
Kt = Qt + A⊤

t Kt+1At − A⊤
t Kt+1Bt(Rt + B⊤

t Kt+1Bt)−1B⊤
t Kt+1At

Lt = −(Rt + B⊤
t Kt+1Bt)−1B⊤

t Kt+1At

➥ Can be solved for large dimension (say n ∼ 104).
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Linear Quadratic case
Linear convex case

From Dynamic Programming to SDDP

DP is a flexible tool, hampered
by the curses of dimensionality
Numerical illustration (7 dams):

T = 52 weeks
|S| = 1007 possible states
|U| = 107 possible controls
|ξt | = 10 (1052 scenarios)

➥ ≈ 2 days on today’s fastest
super-computer
(3.106 years for 10 dams)

➥ Can be solved2 in ≈ 10 minutes

2Approximately, depending on the problem and precision required...
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Linear Quadratic case
Linear convex case

How can we be so much faster ?

Structural assumptions:
convexity
continuous state

➥ duality tools
Sampling instead of exhaustive computation
Iteratively refining value function estimation at ”the right
places” only
LP solvers

DP SDDP
Independence Yes  Yes

Finitely supported noise Yes  Yes
Convexity No  Yes

Discrete control Yes  No
State discretization Yes  No

Progressive No  Yes
Maximum dim. ≈ 5  ≈ 50

➥ Stochastic Dual Dynamic Programming (SDDP) which
has been around for 30 years
is widely used in the energy community
has lots of extensions and variants
some convergence results, mainly asymptotic
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Linear Quadratic case
Linear convex case

The setting

1 We are in a finite-time, stagewise independent framework.
2 The state and control variables are continuous and bounded.
3 The costs are convex (jointly in state and control).
4 The dynamic is linear.
5 The constraint on control is convex.
6 We are in a relatively complete recourse framework.

Then, we can show that, the value function are convex, and we
can approximate them by polyhedral functions.
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Stochastic Dynamic Programming
Extending the usage of dynamic programming

Structured problems

Linear Quadratic case
Linear convex case

Stochastic Dual Dynamic Programming: principle

The main idea is to update approximations of the value functions
by adding cuts, in order to refine the approximations. We iterate
the following steps:
Forward pass Given approximations of the value functions, we

simulate the policy induced by these approximations,
and obtain a trajectory.

Backward pass We refine the approximations by adding cuts, in
order to make the approximations more precise
around the trajectory.
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Linear convex case

Stochastic Dual Dynamic Programming

time

x1

x2

First forward pass : computing trajectory
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