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Two-stage Problem
The extensive formulation of

min
u0,u1

E
[
L(u0, ξ, u1)

]
s.t. g(u0, ξ, u1) ≤ 0, P − a.s

σ(u1) ⊂ σ(ξ)

is

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξs , us
1)

s.t g(u0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK.

It is a deterministic problem that can be solved with standard tools
or specific methods.
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Splitting variables
The extended Formulation (in a compact formulation)

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(us
0, ξs , us

1)

s.t g(u0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK.

Can be written in a splitted formulation

min

ū0,

{us
0,us

1}s∈J1,SK

S∑
s=1

πsL(us
0, ξs , us

1)

s.t g(us
0, ξs , us

1) ≤ 0, ∀s ∈ J1, SK

us
0 = us′

0 ∀s, s ′
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Dualizing non-anticipativity constraint I

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πsL(us
0, ξs , us

1)

s.t g(us
0, ξs , us

1) ≤ 0, ∀s ∈ J1, SK

us
0 =

∑
s′

πs′
us′

0 ∀s

is equivalent to

min
{us

0,us
1}s∈J1,SK

max
{λs }s∈J1,SK

S∑
s=1

πsL(us
0, ξs , us

1) + πsλs
(

us
0 −

∑
s′

πs′
us′

0

)

s.t g(us
0, ξs , us

1) ≤ 0, ∀s ∈ J1, SK
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Dualizing non-anticipativity constraint II
Thus, the dual problem reads

max
λ

:E[λ]=0

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πs
(
L(us

0, ξs , us
1) +

(
λs − E

[
λ

])
us

0

)
s.t g(us

0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK

The inner minimization problem, for λ given, can decompose
scenario by scenario, by solving S deterministic problem

min
{us

0,us
1}

L(us
0, ξs , us

1) + λsus
0

s.t g(us
0, ξs , us

1) ≤ 0
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Price of information

By weak duality, any λ such that E
[
λ

]
= 0 will give a lower

bound on the 2-stage problem, computed as

S∑
s=1

πs min
us

0,us
1

(
L(us

0, ξs , us
1) + λsus

0

)
s.t g(us

0, ξs , us
1) ≤ 0

λ = 0 lead to the anticipative lower-bound
If problem is convex, and under some qualification
assumptions, there exists an optimal λ∗, called the price of
information, such that the lower bound is tight.
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Progressive Hedging Algorithm
The progressive hedging algorithm build on this decomposition in
the following way.

1 Set a price of information {λs}s∈J1,SK such that E
[
λ

]
= 0

2 For each scenario solve

min
us

0,us
1

L(us
0, ξs , us

1) + λsus
0

+ ρ∥us
0 − ū0∥2

s.t g(us
0, ξs , us

1) ≤ 0

3 Compute the mean first control ū0 :=
∑S

s=1 πsus
0

4 Update the price of information with

λs := λs + ρ(us
0 − ū0)

5 Go back to 2.
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∑S

s=1 πsus
0

4 Update the price of information with

λs := λs + ρ(us
0 − ū0)
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Convergence of Progressive Hedging

Theorem
Assume that L and g are convex lsc in (u0, u1) for all ξ, and that,
for all s ∈ S, there exists (us

0, us
1) such that L(us

0, ξs , us
1) < +∞

and g(us
0, ξs , us

1) < 0.
Then, the progressive hedging algorithm converges toward an
optimal primal solution, and the price of information converges
toward an optimal price of information.

Moreover we can show that

εk =
√

∥(uk
0 , uk

1 ) − (u♯
0, u♯

1)∥2
2 + 1

ρ2 ∥λ − λ♯∥2
2,

is a decreasing sequence.
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Bounds in Progressive Hedging
At any iteration of the PH algorithm, we have a collection of
primal solution {(us

0, us
1)}s∈S , and a price of information

{λs}s∈S .
We have a lower bound on the value of the stochastic
programm given by

LBPH =
∑
s∈S

πs[
L(us

0, ξs , us
1) + λsus

0
]
,

and an upper bound given by

UBPH =
∑
s∈S

πsL(ū0, ξs , us
1(ū0)).

where us
1(ū0) is the optimal recourse for the first-stage control ū0
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Linear 2-stage stochastic program
Consider the following problem

min E
[
c⊤u0 + q⊤u1

]
s.t. Au0 = b, u0 ≥ 0

Tu0 + W u1 = h, u1 ≥ 0, P − a.s.

u0 ∈ Rn, σ(u1) ⊂ σ(q, T , W , h︸ ︷︷ ︸
ξ

)

Which we rewrite
min
u0≥0

c⊤u0 + E
[
Q(u0, ξ)

]
s.t. Au0 = b

with
Q(u0, ξ) := min

u1≥0
q⊤

ξ u1

s.t. Wξu1 = hξ − Tξu0
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Lagrangian decomposition
L-Shaped decomposition method

Multistage program

Linear 2-stage stochastic program
Consider the following problem

min E
[
c⊤u0 + q⊤u1

]
s.t. Au0 = b, u0 ≥ 0

Tu0 + W u1 = h, u1 ≥ 0, P − a.s.

u0 ∈ Rn, σ(u1) ⊂ σ(q, T , W , h︸ ︷︷ ︸
ξ

)

Which we rewrite
min
u0≥0

c⊤u0 + E
[
Q(u0, ξ)

]
s.t. Au0 = b

with
Q(u0, ξ) := min

u1≥0
q⊤

ξ u1

s.t. Wξu1 = hξ − Tξu0
Vincent Leclère Decomposition Methods 01/12/2023 10 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

Linear 2-stage stochastic program
Consider the following problem

min E
[
c⊤u0 + q⊤u1

]
s.t. Au0 = b, u0 ≥ 0

Tu0 + W u1 = h, u1 ≥ 0, P − a.s.

u0 ∈ Rn, σ(u1) ⊂ σ(q, T , W , h︸ ︷︷ ︸
ξ

)

Which we rewrite
min
u0≥0

c⊤u0 + E
[
Q(u0, ξ)

]
s.t. Au0 = b

with
Q(u0, ξ) := min

u1≥0
q⊤

ξ u1

s.t. Wξu1 = hξ − Tξu0
Vincent Leclère Decomposition Methods 01/12/2023 10 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

Linear 2-stage stochastic program : Extensive Formulation
The associated extensive formulation read

min c⊤u0 +
S∑

s=1
πs qs · us

1

s.t. Au0 = b, u0 ≥ 0
T su0 + W sus

1 = hs , us
1 ≥ 0, ∀s

Which we rewrite

min
u0

c⊤u0 +
S∑

s=1
πsQs(u0)

s.t. Au0 = b, u0 ≥ 0
with

Qs(u0) := min
u1≥0

qs · u1

s.t. W su1 = hs − T su0
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Relatively complete recourse

We assume here relatively complete recourse. Without this
assumption we would need feasability cuts.
Here, relatively complete recourse means that, for u0 ≥ 0 :

Au0 = b =⇒ Qs(u0) < +∞, ∀s ∈ J1, SK
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Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

min
u0,(θs)s∈S

c⊤u0 +
∑

s
πsθs

s.t. Au0 = b, u0 ≥ 0
θs ≥ Qs(u0)

∀k,

∀s

Note that Qs(u0) is a polyhedral function of u0, hence
θs ≥ Qs(u0) can be rewritten θs ≥ αs

k · u0 + βs
k , ∀k.

The decomposition approach consists in constructing iteratively
cut coefficients αs

k and βs
k .
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Obtaining (optimality) cuts I

Recall that

Qs(u0) := min
us

1∈Rn
qs · us

1

s.t. W sus
1 = hs − T su0, us

1 ≥ 0

can also be written (through strong duality by relatively complete
recourse assumption)

(Du0) Qs(u0) = max
λs∈Rm

λs ·
(
hs − T su0

)
s.t. (W s)⊤λs ≤ qs

Vincent Leclère Decomposition Methods 01/12/2023 14 / 38
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Obtaining (optimality) cuts II

(Du0) Qs(u0) = max
λs∈Rm

λs ·
(
hs − T su0

)
s.t. (W s)⊤λs ≤ qs

admits for optimal solution λs
u0 .

Consider another control u′
0, we have

(Du′
0
) Qs(u′

0) = max
λs∈Rm

λs ·
(
hs − T su′

0
)

s.t. (W s)⊤λs ≤ qs

As λs
u0 is admissible for (Du0) it is also admissible for (Du′

0
), hence

Qs(u′
0) ≥ λs

u0 ·
(
hs − T su′

0
)
.
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Obtaining (optimality) cuts III

To sum up we have seen that, for any admissible first stage
solution, we can construct an exact cut for Qs by solving the dual
of the second stage problem.

More precisely, let uk
0 ≥ 0 be such that Auk

0 = b. Let λs
k be an

optimal dual solution. Then, setting

αs
k := −(T s)⊤λs

k and βs
k := (λs

k)⊤hs

we have {
Qs(u′

0) ≥ αs
k · u′

0 + βs
k ∀u′

0 ≥ 0, Au′
0 = b

Qs(uk
0 ) = αs

k · uk
0 + βs

k
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L-shaped method (multi-cut version)
1 We have a collection of K × S cuts, such that Qs(u0) ≥ αs

k · u0 + βs
k .

2 Solve the master problem, with optimal primal solution uK+1
0 .

min
u0≥0

c⊤u0 +
S∑

s=1
πsθs

s.t. Au0 = b
θs ≥ αs

ku0 + βs
k ∀k ∈ J1, KK, ∀s ∈ J1, SK

3 Solve S slave problems, with optimal dual solution λs
K+1

Qs(uK+1
0 ) = min

us
1∈Rn

qs · us
1

s.t. W sus
1 = hs − T suK+1

0 , us
1 ≥ 0

4 construct S new cuts with
αs

K+1 := −(T s)⊤λs
K+1, βs

K+1 := hs · λs
K+1

Vincent Leclère Decomposition Methods 01/12/2023 17 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

L-shaped method (multi-cut version)
1 We have a collection of K × S cuts, such that Qs(u0) ≥ αs

k · u0 + βs
k .

2 Solve the master problem, with optimal primal solution uK+1
0 .

min
u0≥0

c⊤u0 +
S∑

s=1
πsθs

s.t. Au0 = b
θs ≥ αs

ku0 + βs
k ∀k ∈ J1, KK, ∀s ∈ J1, SK

3 Solve S slave problems, with optimal dual solution λs
K+1

Qs(uK+1
0 ) = max

λs ∈Rm
λs ·

(
hs − T suK+1

0
)

s.t. W s · λs ≤ qs

4 construct S new cuts with
αs

K+1 := −(T s)⊤λs
K+1, βs

K+1 := hs · λs
K+1

Vincent Leclère Decomposition Methods 01/12/2023 17 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

L-shaped method (multi-cut version) : bounds
At any iteration of the L-shaped method we can easily determine
upper and lower bound over our problem.
Indeed, uK

0 is an admissible firt stage solution, and Qs(uK
0 ) is the

value of a slave problem. Thus the value of admissible solution uk
0 is

simply given by

UB = c⊤uK
0 +

S∑
s=1

πsQs(uK
0 ).

Furthermore, Qs
K (u0) ≥ maxk≤K αs

k · u0 + βs
k , thus the value of the

master problem is always a lower bound over the value of the SP
problem :

LB = c⊤uK
0 +

S∑
s=1

πsθs
K .
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L-shaped method (single-cut version)
1 We have a collection of K cuts, such that

Q(u0) :=
∑

s∈S πsQs(u0) ≥ αk · u0 + βk .
2 Solve the master problem, with optimal primal solution uK+1

0 .
min
u0≥0

c⊤u0 + θ

s.t. Au0 = b
θ ≥ αku0 + βk ∀k ∈ J1, KK

3 Solve S slave dual problems, with optimal dual solution λs
K+1

max
λs ∈Rm

λs ·
(
hs − T suK+1

0
)

s.t. W s · λs ≤ qs

4 construct new cut with

αK+1 := −
S∑

i=1
πs (T s)⊤λs , βK+1 :=

S∑
i=1

πs hs · λs .
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Feasibility cuts
Without the relatively complete recourse assumption we cannot
guarantee that Q(u0) < +∞, however we still have that Q is
polyhedral, thus so is dom(Q).
Without RCR we need to add feasibility cuts in the following way:

If, Qs(uk
0 ) = +∞, then we can find an unbounded ray of the

dual problem

max
λs ∈Rm

λs ·
(
hs − T suk

0
)

s.t. W s · λs ≤ qs

more precisely a vector λ̄k such that, for all t ≥ 0
W s · tλ̄k ≤ qs .
Then, for u0 to be admissible, we need that

λ̄k ·
(
hs − T su0

)
≤ 0

which is a feasibility cut.
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Convergence

Theorem
In the linear case, the L-Shaped algorithm terminates in finitely
many steps, yielding the optimal solution.

The proof is done by noting that only finitely many cuts can be
added, and not being able to add a cut prove that the algorithm
has converged.
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Comparison of Progressive Hedging and L-shaped

Progressive Hedging L-Shaped
problems convex continuous linear, 1st stage integer
sol. at it. k non-admissible splitted solutions admissible primal solution
Bounds LB free, UB easy LB and UB free
Convergence asymptotic finite
Complexity fixed : S deterministic problem increasing for master problem,

fixed for slave problem
Implem. easy from deterministic solver built from scratch
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Where do we come from: two-stage programming

u0

(ξ1
1 , π1)

u1,1

(ξ2
1 , π2)

u1,2

(ξ3
1 , π3)

u1,3

(ξ4
1 , π4)

u1,4

(ξ5
1 , π5) u1,5

(ξ6
1 , π6)

u1,6

(ξ7
1 , π7)

u1,7
(ξ8

1 , π8)

u1,8

We take decisions in two stages

u0 ; ξ1 ; u1 ,

with u1: recourse decision .

On a tree, it means
solving the extensive formulation:

min
u0,u1,s

c0u0 +
∑
s∈S

πs[〈cs , u1,s
〉]

.
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Extending two-stage to multistage programming

u0

(ξ1
1 , π1)

u1
1

u1,1
2

u1,2
2

u1,3
2

u1,4
2

(ξ2
1 , π2)u2

1

u2,1
2

u2,2
2

u2,3
2

u2,4
2

(ξ3
1 , π3)

u3
1

u3,1
2

u3,2
2

u3,3
2

u3,4
2

(ξ4
1 , π4)

u4
1

u4,1
2

u4,2
2

u4,3
2

u4,4
2

We want to minimize minu E
[
c(u, ξ)

]
Where we take decisions in T stages

u0 ; ξ1 ; u1 ; · · · ; ξT ; uT .

It can be represented on a tree T , where a
node n of depth t represent a realization
of (ξ1, . . . , ξt), and to which is attached a
probability pn.

Then, the extensive formulation reads

min
{un}n∈T

∑
n∈T

πncn(un)
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Compact and splitted extended formulation
Consider a tree of depth T . A scenario s = (n1, . . . , nT ) is a
sequence of node, where each element is a descendent of the
previous one. A scenario s ∈ S is uniquely defined by its last
element, which is a leaf of the tree.
Let πs be the probability of the leaf defining scenario s.
The compact formulation of the multistage problem reads

min
{un}n∈T

∑
n∈T

πncn(un) =
∑
s∈S

πs
∑
n∈S

cn(un)

The splitted extended formulation reads

min
{us,t }s∈S,t∈J0,TK

∑
s∈S

πs
T∑

t=0
cs,t(us,t)

s.t. us,t = us′,t ∀t, ∀n ∈ Nt , ∀s, s ′ ∋ n
where Nt is the set of nodes of depth t
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Illustrating extensive formulation with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart

5 interconnected dams
5 controls per timesteps
52 timesteps (one per week, over one
year)
nξ = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.
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Optimization Problem
We want to solve the following optimization problem

min E
[ T−1∑

t=0
Lt

(
xt , ut , ξt+1

)
+ K

(
xT

)]
(1a)

s.t. xt+1 = ft(xt , ut , ξt+1), x0 = ξ0 (1b)
ut ∈ Ut(xt) (1c)
σ(ut) ⊂ Ft := σ

(
ξ0, · · · , ξt

)
(1d)

Where
constraint (1b) is the dynamic of the system ;
constraint (1c) refer to the constraint on the controls;
constraint (1d) is the information constraint : ut is chosen
knowing the realization of the noises ξ0, . . . , ξt but without
knowing the realization of the noises ξt+1, . . . , ξT−1.
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Information structure I
In Problem (1), constraint (1d) is the information constraint.
There are different possible information structure.

If constraint (1d) reads σ(ut) ⊂ F0, the problem is open-loop,
as the controls are chosen without knowledge of the
realization of any noise.
If constraint (1d) reads σ(ut) ⊂ Ft , the problem is said to be
in decision-hazard structure as decision ut is chosen without
knowing ξt+1.
If constraint (1d) reads σ(ut) ⊂ Ft+1, the problem is said to
be in hazard-decision structure as decision ut is chosen with
knowledge of ξt+1 (in which case we have ut ∈ Ut(xt , ξt+1))
If constraint (1d) reads σ(ut) ⊂ FT−1, the problem is said to
be anticipative as decision ut is chosen with knowledge of all
the noises.
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Information structure II
Be careful when modeling your information structure:

Open-loop information structure might happen in practice
(you have to decide on a planning and stick to it). If the
problem does not require an open-loop solution then it might
be largely suboptimal (imagine driving a car eyes closed...). In
any case it yields an upper-bound of the problem.
In some cases decision-hazard and hazard-decision are both
approximation of the reality. Hazard-decision yield a lower
value then decision-hazard.
Anticipative structure is never an accurate modelization of the
reality. However it can yield a lower-bound of your
optimization problem relying on deterministic optimization
and Monte-Carlo.

We are going to assume Hazard-Decision structure
Vincent Leclère Decomposition Methods 01/12/2023 29 / 38
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Bounds and heuristics

Due to the size of the extensive formulation of multistage
programm we cannot hope to numerically solve them without
further assumptions on the problem.
However, there are a few ideas we can use to get

heuristics policies (that is non-optimal but ”reasonable”
solution), and thus upper bounds (estimated by Monte Carlo)
lower bounds to guarantee quality of heuristics

We can get these through:
deterministic approximation
two-stage approximations
linear decision rules
...
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Anticipative lower bound

If we relax the measurability constraint by assuming that ut is
measurable w.r.t σ(ξ0, . . . , ξT ), that is knows the whole
scenario we get the anticipative solution :

E
[

min
u

T∑
t=0

Lt(xt , ut , ξt+1) + K (xT )
]

This can be computed by solving |Ω| deterministic
optimization problems.
As |Ω| is often too large, this lower bound is estimated by
Monte-Carlo :

draw N scenarios (e.g. N = 1000)
solve each deterministic problem
average their value to estimate the lower bound
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Deterministic heuristic

A natural heuristic consists in looking for a deterministic
solution (we stick to the plan).
The first heuristic consists in simply replacing ξt+1 by an
estimation (often its expectation E[ξt+1]), and solve a
deterministic problem.
A more advanced heuristic consists in looking for optimal
open-loop solution (e.g. by using Stochastic Gradient
algorithms).
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Model Predictive Control

A very classical heuristic, often very efficient if the
stochasticity is not too important is the so-called Model
Predictive Control (MPC).
MPC works in the following way :

at time t0, being in x0, solve the deterministic problem

min
T−1∑
t=t0

Lt
(
xt , ut , ξ̂t+1

)
+ K

(
xT

)
s.t. xt+1 = ft(xt , ut , ξ̂t+1), xt0 = x0

ut ∈ Ut(xt)

where ξ̂t is your best estimate of ξt (its expectation by default)
apply ut0 and get xt0+1
update your estimation of ξ, set x0 = xt0+1 and t0 = t0 + 1
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Two-stage lower-bound

We can refine the anticipative lower bound by relaxing all
measurability constraint except the one on u0.
We thus obtain a two-stage programm u0 being the first stage
control, and all the other ut knowing the whole scenario are
second-stage variable.
We thus have a 2-stage program with |Ω| second stage
(vector) variables whose value is a lower-bound to the original
problem.
This value can be approximated by SAA :

draw N scenarios
write a 2-stage programm with these scenarios, with u0 as first
stage control and (u1, . . . , uT−1) as recourse
its value is an estimation of the 2-stage lower-bound
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2-stage approach
The 2-stage approach consists in approximating the multistage program
by a two-stage programm :

relax all non-anticipativity constraints except the ones on u0, this
turn the tree into a scenario fan (same number of scenario),
it means that all decision (u1, . . . , uT−1) are anticipative (not u0).
reduce the number of scenarios by sampling, and solve the SAA
approximation of the 2-stage relaxation.

Denote v ♯ the value of the multistage problem, v2SA the value of the
2-stage relaxation, and v2SA

m the (random) value of the SAA of the
2-stage relaxation. Then we have

v2SA ≤ v ♯

v2SA
m → v2SA

E
[
v2SA

m
]

≤ v2SA
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2-stage repeated heuristic

We can adapt the MPC approach by solving two-stage
programm instead of deterministic one.
The procedure goes as follows:

at time t0 in stage x0, draw N scenarios
approximate the problem on [t0, T ] by a two-stage programm
with ut0 as first stage variable, and (ut0+1, . . . , uT−1) as
recourse
apply ut0 and get xt0+1
set x0 = xt0+1 and t0 = t0 + 1
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Linear Decision Rules

Another way of getting heuristics consists in looking for
solution ut = Φt(ξ0, . . . , ξt+1) where Φ is in a specific class
of function.
Classically we can look for Φt in the class of affine functions.
In which case, a multistage linear stochastic programm turns
into a large one-stage stochastic linear programm, which can
be approximated by SAA to get a reasonable LP.
Don’t forget to evaluate the obtained heuristic by Monte
Carlo on new scenarios.

Vincent Leclère Decomposition Methods 01/12/2023 37 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

From two-stage to multistage programming
Information structure
Bounds and heuristics
Nested Bender’s decomposition

Presentation Outline

1 Lagrangian decomposition

2 L-Shaped decomposition method

3 Multistage program
From two-stage to multistage programming
Information structure
Bounds and heuristics
Nested Bender’s decomposition

Vincent Leclère Decomposition Methods 01/12/2023 37 / 38



Lagrangian decomposition
L-Shaped decomposition method

Multistage program

From two-stage to multistage programming
Information structure
Bounds and heuristics
Nested Bender’s decomposition

Nested Bender’s decomposition

Vincent Leclère Decomposition Methods 01/12/2023 38 / 38


	Lagrangian decomposition
	L-Shaped decomposition method
	Multistage program
	From two-stage to multistage programming
	Information structure
	Bounds and heuristics
	Nested Bender's decomposition


