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Why is there uncertainty?

Parameters might not be known exactly (there might be some error in the
measurement);
We want to take into account event that have yet to come (e.g., weather), such
event could be predicted but not with certainty;
Data might be missing or corrupted, and we have to take a decision based on
available data nonetheless;
...
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Can’t we just look at different values of the parameters?

A natural idea, when confronted with uncertainty, is to just look at various
possible values of the uncertain parameters and optimize for each of them
(sometimes called ”scenario optimization“).
Unfortunately, this is not enough and can even be quite misleading.
Let’s take a first example:

You have 1000e to trade on the stock market;
Consider a stock that has a 50% chance of going up by 10% and a 50% chance of
going down by 10%;
Assume that, for a flat fee of 50e, you can buy or sell the stock;

➥ What happens if you just look at the two values and optimize for each?
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Common solution might not be relevant
Assume that you can produce 3 products A, B and C .

Assume total units produced is limited to 100, with a production cost of 10 per
unit;
Selling price of A is 11 per unit, B is 12 per unit and C is 13 per unit;
The demand for A is unlimited, for B and C the total demand is 100, but the
repartition is unknown – let denote ξ the demand for B.

1 For a given ξ, write the optimization problem;
2 What is, for each ξ, the optimal production plan?
3 Is there a decision common to all ξ?
4 Assume now that ξ take value 0 or 100 with equal probability, what is the optimal

production plan? Comments?
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Flexibility is not valued

Assume that you need to buy a certain amount of a given product. The current
price is 100.
You can buy now, or wait and buy at an unknown price p ∈ [50, 200].
A trader offers you, for 10, to have the option to buy, later, at the current price
100.

1 What is the optimal decision if you know the value of p?
2 Assume that p can only take value 50 and 200 with equal probability, what is the

optimal decision?
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A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0

where
u0 is the control, or decision.
L is the cost or objective function.
g(u0) ≤ 0 represent the constraint(s).
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The (deterministic) newsboy problem
In the 50’s a boy would buy a stock u of newspapers each morning at a cost c, and sell
them all day long for a price p. The number of people interested in buying a paper
during the day is d . We assume that 0 < c < p.

How shall we model this ?

Control u ∈ R+

Cost L(u) = cu − p min(u, d)
Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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An optimization problem with uncertainty
Adding uncertainty ξ in the mix

min
u

L(u, ξ)

s.t. g(u, ξ) ≤ 0

Remarks:
ξ is unknown. Two main ways of modeling it:

ξ ∈ R with a known uncertainty set R, and a pessimistic approach. This is the
Robust Optimization approach (RO).
ξ∼ P is a random variable with known probability law. This is the Stochastic
Programming approach (SP).

Cost is not well defined.
RO : maxξ∈R L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ R.
SP : g(u, ξ) ≤ 0, P − a.s..
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Requirements and limits
Stochastic optimization :

requires a law P of the uncertainty ξ
can be hard to solve (generally require discretizing the support and blowing up the
dimension of the problem)
there exists specific methods (like Bender’s decomposition)

Robust optimization :
requires an uncertainty set R
can be overly conservative, even for reasonable R
complexity strongly depend on the choice of R

Distributionally robust optimization :
is a mix between robust and stochastic optimization
consists in solving a stochastic optimization problem where the law is chosen in a
robust way
is a fast growing fields with multiple recent results
but is still harder to implement than other approaches
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Distributionally Robust Optimization
SO: min

u
EP

[
L(u, ξ)

]
RO: min

u
max
ξ∈R

L(u, ξ)

DRO: min
u

max
Q∈Q

EQ
[
L(u, ξ)

]
DRO bridge stochastic and robust optimization:

If Q = {P}, then DRO reduce to SO;
if {δξ | ξ ∈ R} ⊂ Q, then DRO is equivalent to RO.

DRO is a recent and very active field. One of the main idea is to choose Q as a ball, in
some sense, around an empirical probability measure P̂N , such that the true, unknown,
probability P is contained in Q with high confidence.

➥ We won’t discuss it further in this course.
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The (stochastic) newsboy problem
Demand d is unknown at time of purchasing. We model it as a random variable d
with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to minimize its
expectation.

We consider the following problem

min
u

E
[
cu − p min(u, d)

]
s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper again and again.
Then optimizing the sum over time of its gains is closely related to optimizing the
expected gains.
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Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define J(u) the expected ”loss”
of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]
= (c − p)u − pE

[
min(0, d − u)

]
= (c − p)u − p

∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
( ∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p) − p
(

uf (u) −
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non decreasing, the optimum

control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F −1
(p − c

p

)
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The robust newsboy problem
Demand d is unknown at time of purchasing. We assume that it will be in the set
[d , d ].

The robust problem consist in solving

min
u

max
d∈[d ,d]

cu − p min(u, d)

s.t. u ≥ 0

By monotonicity it is equivalent to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want to minimize its
expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large number of time (Law of
Large Number).
In some cases the expectation is not really representative of your risk attitude.
Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to win $10000 ?
You need to be at the airport in 1 hour or you miss your flight, you have the choice
between two mean of transport, one of them take surely 50’, the other take 40’ four
times out of five, and 70’ one time out of five.
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Alternative cost functions II

Here are some cost functions you might consider
Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)
Value-at-Risk of costs V @Rα(L(u, ξ)), where for any real valued random variable
X ,

V @Rα(X) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a cost worse than
V @Rα(X).
Average Value-at-Risk of costs AV @Rα(L(u, ξ)), which is the expected cost over
the α worst outcomes.
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Alternative constraints I

The natural extension of the deterministic constraint g(u, ξ) ≤ 0 to
g(u, ξ) ≤ 0 P − as can be extremely conservative, and even often without any
admissible solutions.
For example, if u is a level of production that need to be greater than the
demand. In a deterministic setting the realized demand is equal to the forecast. In
a stochastic setting we add an error to the forecast. If the error is unbounded
(e.g. Gaussian) no control u is admissible.
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Alternative constraints II

Here are a few possible constraints
E

[
g(u, ξ)

]
≤ 0, for quality of service like constraint.

P(g(u, ξ) ≤ 0) ≥ 1 − α for chance constraint. Chance constraint is easy to
present, but might lead to misconception as nothing is said on the event where
the constraint is not satisfied.
AV @Rα(g(u, ξ)) ≤ 0
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Computing expectation
Computing an expectation E

[
L(u, ξ)

]
for a given u is costly.

If ξ is a r.v. with known law admitting a density, E
[
L(u, ξ)

]
is a

(multidimensional) integral.
If ξ is a r.v. with known discrete law, E

[
L(u, ξ)

]
is a sum over all possible

realizations of ξ, which can be huge.
If ξ is a r.v. that can be simulated but with unknown law, E

[
L(u, ξ)

]
cannot be

computed exactly.

Solution : use Law of Large Number (LLN) and Central Limit Theorem (CLT).
Draw N ≃ 1000 realization of ξ.

Compute the sample average 1
N

∑N
s=1 L(u, ξs).

Use CLT to give an asymptotic confidence interval of the expectation.
This is known as the Monte-Carlo method.
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[
L(u, ξ)

]
is a sum over all possible

realizations of ξ, which can be huge.
If ξ is a r.v. that can be simulated but with unknown law, E

[
L(u, ξ)

]
cannot be

computed exactly.
Solution : use Law of Large Number (LLN) and Central Limit Theorem (CLT).

Draw N ≃ 1000 realization of ξ.

Compute the sample average 1
N

∑N
s=1 L(u, ξs).

Use CLT to give an asymptotic confidence interval of the expectation.

This is known as the Monte-Carlo method.
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Consequence : evaluating a solution is difficult

In stochastic optimization even evaluating the value of a solution can be difficult
an require approximate methods.
The same holds true for checking admissibility of a candidate solution.
It is even more difficult to obtain first order informations (gradient).

Standard solution : sampling and solving the sampled problem (Sample Average
Approximation).
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Recall on CLT
Let {Ci}i∈N be a sequence of identically distributed random variables with finite
variance.
Then the Central Limit Theorem ensures that

√
N

(∑N
i=1 C i
N − E[C1]

)
=⇒ G ∼ N (0, Var [C1]) ,

where the convergence is in law.
In practice, it is often used in the following way. Asymptotically,

P
(
E

[
C1

]
∈

[
C̄N − 1.96σN√

N
, C̄N + 1.96σN√

N

])
≃ 95% ,

where C̄N =
∑N

i=1 C i
N is the empirical mean and σN =

√∑N
i=1(C i −C̄N)2

N−1 the
empirical standard deviation.
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Optimization problem and simulator

Generally speaking stochastic optimization problem are not well posed and often
need to be approximated before solving them.
Good practice consists in defining a simulator, i.e. a representation of the “real
problem” on which solution can be tested.
Then find a candidate solution by solving an (or multiple) approximated problem.
Finally evaluate the candidate solutions on the simulator. The comparison can be
done on more than one dimension (e.g. constraints, risk...)
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Conclusion

When addressing an optimization problem under uncertain one has to consider
carefully

How to model uncertainty? (random variable or uncertainty set)
How to represent your attitude toward risk? (expectation, probability level,...)
How to include constraints?
What is your information stucture? (More on that later)
Set up a simulator and evaluate your solutions.
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Course plan

1 Stochastic programming formulation
2 Robust optimization: introduction, approaches and examples
3 Decomposition methods for two-stage stochastic programming
4 Methods for multistage stochastic programming
5 Advanced methods for robust optimization
6 Exam
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One-Stage Problems
Assume that ξ has a discrete distribution 1 , with P

(
ξ = ξs)

= πs > 0 for s ∈ J1, SK.
Then, the one-stage problem

min
u0

E
[
L(u0, ξ)

]
s.t. g(u0, ξ) ≤ 0, P − a.s

can be written

min
u0

S∑
s=1

πsL(u0, ξs)

s.t g(u0, ξs) ≤ 0, ∀s ∈ J1, SK.

1If the distribution is continuous we can sample and work on the sampled distribution, this is called
the Sample Average Approximation approach with lots of guarantee and results
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Newsvendor problem (continued)

We assume that the demand can take value {d s}s∈J1,SK with probabilities {πs}s∈J1,SK.

In this case the stochastic newsvendor problem reads

min
u

S∑
s=1

πs
(
cu − p min(u, d s)

)
s.t. u ≥ 0
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Recourse Variable
In most problem we can make a correction u1 once the uncertainty is known:

u0 ⇝ ξ1 ⇝ u1.

As recourse control u1 is a function of ξ it is a random variable, the two-stage
optimization problem then reads

min
u0,u1

E
[
L(u0, ξ, u1)

]
s.t. g(u0, ξ, u1) ≤ 0, P − a.s

u1 ⪯ ξ

u0 is called a first stage control
u1 is called a second stage (or recourse) control
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Two-stage Problem
The extensive formulation of

min
u0,u1

E
[
L(u0, ξ, u1)

]
s.t. g(u0, ξ, u1) ≤ 0, P − a.s

u1 ⪯ ξ

is

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξs , us
1)

s.t g(u0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK.

It is a deterministic problem that can be solved with standard tools or specific methods.
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Two-stage newsvendor problem I
We can represent the newsvendor problem in a 2-stage framework.

Let u0 be the number of newspaper bought in the morning.

⇝ first stage control

let u1 be the number of newspaper sold during the day.

⇝ second stage control
The problem reads

min
u0,u1

E
[
cu0 − pu1

]
s.t. u0 ≥ 0

u1 ≤ u0 P − as
u1 ≤ d P − as
σ(u1) ⊂ σ(d)
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Two-stage newsvendor problem II

In extensive formulation the problem reads

min
u0,{us

1}s∈J1,SK

S∑
s=1

πs(
cu0 − pus

1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ d s ∀s ∈ J1, SK

Note that there are as many second-stage control us
1 as there are possible realization of

the demand d , but only one first-stage control u0.
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Time decomposition of the problem
We presented the generic two-stage problem as

min
u0,u1

E
[
L(u0, ξ, u1)

]
s.t. g(u0, ξ, u1) ≤ 0, P − a.s

u1 ⪯ ξ

With L(u0, ξ, u1) = L0(u0) + L1(u0, ξ, u1), it can also be written as

min
u0

L0(u0) + E
[
Q̃(u0, ξ)

]

first stage problem

s.t. g0(u0) ≤ 0
where

Q̃(u0, ξ) := min
u1

L1(u0, ξ, u1)

second stage problem

s.t. g1(u0, ξ, u1) ≤ 0

The reformulation always exists, but is not unique
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Admissible set

For a given decomposition, we set

U0 :=
{
u0 ∈ Rn0 | g0(u0) ≤ 0

}
Ũ1(u0, ξ) :=

{
u1 ∈ Rn1 | g1(u0, ξ, u1) ≤ 0

}

Note that
Ũ1(u0, ξ) is the set of admissible solutions of the second stage problem
U0 contains the set of admissible solutions of the first stage problem
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Ũ1(u0, ξ) :=

{
u1 ∈ Rn1 | g1(u0, ξ, u1) ≤ 0

}

Note that
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We say that we are in a complete recourse framework, if for all u0 ∈ Rn, and
almost-all possible outcome ξ, there exists a control u1 that is admissible, i.e.,

P
(
Ũ1(u0, ξ)̸= ∅

)
= 1, ∀u0 ∈ Rn0 .

We say that we are in a relatively complete recourse framework, if for all u0 ∈ U0,
and almost-all possible outcome ξ, there exists a control u1 that is admissible, i.e.,

P
(
Ũ1(u0, ξ)̸= ∅

)
= 1, ∀u0 ∈ U0.
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Obtaining relatively complete recourse
Assume that the two-stage program is given by

min
u0∈U0

{
L0(u0) + E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

with finite value, but not necessarily relatively complete recourse.
Then the program is equivalent to

min
u0∈U0∩U ind

0

{
L0(u0) + E

[
Q̃(u0, ξ)

]}
and Q̃(u0, ξ) := min

u1∈Ũ1(u0,ξ)
L1(u0, ξ, u1)

where U ind
0 is the set of induced constraints given by

U ind
0 =

{
u0 ∈ Rn0 | P

(
Ũ1(u0, ξ) ̸= ∅

)
= 1

}
,

and with this formulation, we are in a relatively complete recourse framework.
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Ũ1(u0, ξ) ̸= ∅

)
= 1

}
,

and with this formulation, we are in a relatively complete recourse framework.

Vincent Leclère Optimization under uncertainty: stochastic programming 17/11/2023 33 / 47



Optimization under uncertainty
Stochastic Programming Approach

Information and discretization

Information Frameworks
Sample Average Approximation

Presentation Outline

1 Optimization under uncertainty
The need of considering uncertainty while making a decision
Some considerations on dealing with uncertainty
Evaluating a solution

2 Stochastic Programming Approach
One-stage Problems
Two-stage Problems
Recourse assumptions

3 Information and discretization
Information Frameworks
Sample Average Approximation

Vincent Leclère Optimization under uncertainty: stochastic programming 17/11/2023 33 / 47



Optimization under uncertainty
Stochastic Programming Approach

Information and discretization

Information Frameworks
Sample Average Approximation

Two-stage framework : three information models

Consider the problem
min
u0,u1

E
[
L(u0, ξ, u1)

]
Open-Loop case : u0 and u1 are deterministic. In this case both controls are
choosen without any knowledge of the alea ξ. The set of control is small, and an
optimal control can be found through specific method (e.g. Stochastic Gradient).
Two-Stage case : u0 is deterministic and u1 is measurable with respect to ξ. This
is the problem tackled by the Stochastic Programming case.
Anticipative case : u0 and u1 are measurable with respect to ξ. This case consists
in solving one deterministic problem per possible outcome of the alea, and taking
the expectation of the value of this problems.
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Splitted formulation
The extended formulation (in a compact way)

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξs , us
1)

s.t g(u0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK.

Can be written in a splitted formulation

min

ū0,

us
0,{us

1}s∈J1,SK

S∑
s=1

πsL(us
0, ξs , us

1)

s.t g(us
0, ξs , us

1) ≤ 0, ∀s ∈ J1, SK

us
0 = us′

0 ∀s, s ′
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us

0 = ū0 ∀s
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1}s∈J1,SK

S∑
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πsL(u0, ξs , us
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min

ū0,

us
0,{us

1}s∈J1,SK

S∑
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πsL(us
0, ξs , us

1)

s.t g(us
0, ξs , us

1) ≤ 0, ∀s ∈ J1, SK

us
0 =

∑
s′

πs′us′
0 ∀s
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Information models for the Newsvendor I

Open-loop :

min
u0,u1

S∑
s=1

πs(
cu0 − pu1

)
s.t. u0 ≥ 0

u1 ≤ u0

u1 ≤ d s ∀s ∈ J1, SK
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Information models for the Newsvendor II

Two-stage :

min
u0,{us

1}s∈J1,SK

S∑
s=1

πs(
cu0 − pus

1
)

s.t. u0 ≥ 0
us

1 ≤ u0 ∀s ∈ J1, SK
us

1 ≤ ds ∀s ∈ J1, SK
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Information models for the Newsvendor III

Anticipative :

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πs(
cus

0 − pus
1
)

s.t. us
0 ≥ 0 ∀s ∈ J1, SK

us
1 ≤ u0 ∀s ∈ J1, SK

us
1 ≤ d s ∀s ∈ J1, SK
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Comparing the information models
The three information models can be written this way :

min
{us

0,us
1}s∈J1,SK

S∑
s=1

πs(
cus

0 − pus
1
)

s.t. us
0 ≥ 0 ∀s ∈ J1, SK

us
1 ≤ u0 ∀i ∈ J1, SK

us
1 ≤ d s ∀i ∈ J1, SK

us
0 = us′

0 ∀s, s ′

us
1 = us′

1 ∀s, s ′

Hence, by simple comparison of constraints we have
V anticipative

≤ V 2−stage ≤ V OL.
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Value of information
The Expected Value of Perfect Information (EVPI) is defined as

EVPI = v2−stage − vanticipative ≥ 0.

Its the maximum amount of money you can gain by getting more information (e.g.
incorporating better statistical model in your problem)
The Value of Stochastic Solution is defined as

VSS = vOL − v2−stage ≥ 0.

The expected value problem is the value of the deterministic problem where the
randomness is replaced by its expectation

vEV = min
u0,u1

L(u0,E[ξ], u1).

If (uEV
0 , uEV

1 ) is the solution of the EV problem, then E
[
L(uEV

0 , ξ, uEV
1 )

]
, is known as

Expected Value of Expected Value problem vEEV .
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Comparison and convexity
Without assumption we have

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative

If additionally L is jointly convex we have

vanticipative = E
[
L(uξ

0 , ξ, uξ
1 )

]
≥ L(E

[
uξ

0
]
,E

[
ξ
]
,E

[
uξ

1 )
]

≥ L(uEV
0 ,E

[
ξ
]
, uEV

1 ) = vEV

Hence, under convexity we have,

vEEV ≥ vOL ≥ v2−stage ≥ vanticipative≥ vEV
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Solving the problems

The solution of vEEV is easy to find (one deterministic problem), and its value is obtained
by Monte-Carlo.

vOL can be approximated through specific methods (e.g. SG).

v2−stage is obtained through Stochastic Programming specific methods. There are two
main approaches:

Lagrangian decomposition methods (like Progressive-Hedging algorithm).
Benders decomposition methods (like L-shaped or nested-decomposition methods).

vanticipative is difficult to compute exactly but can be estimated through Monte-Carlo
approach by drawing a reasonable number of realizations of ξ, solving the deterministic
problem for each realization ξi and taking the means of the value of the deterministic
problem.

vEV is easy to compute, but is usefull only in the convex case.
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How to deal with continuous distributions ?
Recall that if ξ as finite support we rewrite the 2-stage problem

min
u0,u1

E
[
L(u0, ξ, u1)

]
s.t. g(u0, ξ, u1) ≤ 0, P − a.s

as

min
u0,{us

1}s∈J1,SK

S∑
s=1

πsL(u0, ξs , us
1)

s.t g(u0, ξs , us
1) ≤ 0, ∀s ∈ J1, SK.

If we consider a continuous distribution (e.g. a Gaussian), we would need aedinfinite
number of recourse variables to obtain an extensive formulation.
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Simplest idea: sample ξ

First consider the one-stage problem

min
u∈U

E
[
L(u, ξ)

]
(P)

Draw a sample (ξ1, . . . , ξN) (in a i.i.d setting with law ξ).

Consider the empirical probability P̂N = 1
N

∑N
i=1 δξi .

Replace P by P̂N to obtain a finite-dimensional problem that can be solved.
This means solving

min
u∈U

1
N

N∑
i=1

L(u, ξi) (PN)

We denote by v̂N (resp. v∗) the value of (PN) (resp. (P)), and Sn the set of
optimal solutions (resp. S∗).
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Biased estimator
Generically speaking the estimators of the minimum are biased

E
[
v̂N

]
≤ E

[
v̂N+1

]
≤ v∗

proof :
Let (ξi)i∈N be a sequence of iid copies of ξ

Set J(u) := E
[
L(u, ξ)

]
, JN(u) := 1

N
∑N

i=1 L(u, ξi)
We have, for every u′ ∈ U, JN(u′) ≥ infu∈U JN(u).
Taking the expectation yields,

J(u′) = E
[
JN(u′)

]
≥ E

[
inf
u∈U

JN(u)
]

= E
[
v̂N

]
.

We now take the infimum over u′ ∈ U, to obtain v∗ = infu′∈U J(u′) ≥ E
[
v̂N

]
.
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Decreasing bias
We now show that the bias is monotonically decreasing. Notice that

JN+1(u) = 1
N + 1

N+1∑
i=1

[ 1
N

∑
k ̸=i

L(u, ξk)
]
.

Hence,

E
[
v̂N+1

]
= E

[
inf
u∈U

JN+1(u)
]

= E
[

inf
u∈U

1
N + 1

N+1∑
i=1

[ 1
N

∑
k ̸=i

L(u, ξk)
]]

≥ E
[

1
N + 1

N+1∑
i=1

inf
ui ∈U

[ 1
N

∑
k ̸=i

L(ui , ξk)
]]

= 1
N + 1

N+1∑
i=1

E
[

inf
ui ∈U

[ 1
N

∑
k ̸=i

L(ui , ξk)
]]

= 1
N + 1

N+1∑
i=1

E
[
v̂N

]
= E

[
v̂N

]
which ends the proof.
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Questions?

You can contact me at: vincent.leclere@enpc.fr
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