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Why should I bother to learn this stuff ?

Most real problems have constraints that you have to deal with.

This course give a snapshot of the tools available to you.

=⇒ useful for
I having an idea of what can be done when you have constraints
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Constrained optimization problem

In the previous courses we have developped algorithms for
unconstrained optimization problem.

We now want to sketch some methods to deal with the constrained
problem

Min
x∈Rn

f (x)

s.t. x ∈ X

We are going to discuss multiple type of constraint set X :
I X is a ball :

{
x | ‖x − x0‖2 ≤ r

}
I X is a box :

{
x | xi ≤ xi ≤ x̄i ∀i ∈ [n]

}
I X is a polyhedron:

{
x | Ax ≤ b

}
I X is given through explicit constraints

{
x | g(x) = 0, h(x) ≤ 0

}
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Admissible descent direction

Recall that a descent direction d at point x (k) ∈ Rn is a vector such
that ∇f (x (k))>d < 0.

An admissible descent direction at point x (k) ∈ X is a descent
direction d such that,

∃ε > 0, ∀t ≤ ε, x (k) + td ∈ X .

In other words, an admissible descent direction, is a direction that
locally decrease the objective while staying in the constraint set.

An admissible descent direction algorithm is naturally defined by:
I A choice of admissible descent direction d (k)

I A choice of (sufficiently small) step t(k)

I x (k+1) = x (k) + t(k)d (k) ∈ X

Warning : this does-not necessarilly converges. We can construct
example where the step size get increasingly small because of the
constraints.
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A counter example ♦

Consider

min
x∈R3

f (x) :=
4

3
(x2

1 − x1x2 + x2
2 )3/4 − x3

s.t. x ≥ 0

We set x (0) = (0, 2−3/2, 0), and d (k) such that d
(k)
i = −g (k)

i 1
x

(k)
i >0

, with

g
(k)
i = ∇f (x (k)), and choose t(k) as the optimal step.

This is an admissible direction descent with optimal step.

f is strictly convex.

x (k) converges toward a non-optimal point.
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Conditional gradient algorithm

We address an optimization problem with
convex objective function f and compact
polyhedral constraint set X , i.e.

min
x∈X⊂Rn

f (x)

where

X =
{
x ∈ Rn | Ax ≤ b, Ãx = b̃

}
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Conditional gradient algorithm

It is a descent algorithm, where we first look
for an admissible descent direction d (k), and
then look for the optimal step.

As f is convex, we know that for any point x (k),

f (y) ≥ f (x (k)) +∇f (x (k)) · (y − x (k))

The conditional gradient method consists in
choosing the descent direction that minimize the
linearization of f over X .
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Conditional gradient algorithm

The conditional gradient method consists in
choosing the descent direction that minimize the
linearization of f over X . More precisely, at step
k we solve

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).
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Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a lower
bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense that for
all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme point of X ,
which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg miny∈X ∇f (x (k)) · y , the lower-bound being
obtained easily.
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Projection on a convex set ♥

Let X ⊂ Rn be a non-empty closed convex set. We call PX : Rn → Rn the
projection on X the fonction such that

PX (x) = arg min
x ′∈X

‖x ′ − x‖2
2

We have

x̄ = PX (x) iff (x − x̄) ∈ NX (x̄) (i.e.
〈
x − x̄ , x ′ − x̄

〉
≤ 0, ∀x ′ ∈ X )〈

PX (y)− PX (x) , y − x
〉
≥ 0 (PX is non-decreasing)

‖PX (y)− PX (x)‖2 ≤ ‖y − x‖ (PX is a contraction)

♠ Exercise: Prove these results
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Projected gradient I ♥

Consider

Min
x∈Rn

f (x)

s.t. x ∈ X

where f is differentiable and X convex.
The projected gradient algorithm generate the following sequence

x (k+1) = PX

[
x (k) − t(k)g (k)

]
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Projected gradient II ♦

Theorem

Assume that X 6= ∅ is a closed convex set. x ] ∈ X is a critical point if and
only if for one (or all) t > 0,

x ] = PX

[
x ] − t∇f (x ])

]
.

Theorem

If f is lower bounded on X , and with L-Lipschitz gradient, and X closed
convex (non empty) set. Then the projected gradient algorithm with step
staying in [a, b] ⊂]0, 2/L[, then ‖x (k+1) − x (k)‖ → 0, and any adherence
point of {x (k)}k∈N is a critical point.

Corollary : if f convex differentiable with L-Lipschitz gradient, X compact
convex non empty, the projected gradient algorithm with step 1/L is
converging toward the optimal solution.
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When to use ? ♥

Projected gradient is usefull only if the projection is simple, as
projecting over a convex set consists in solving a constrained
optimization problem.

Projection is simple for balls and boxes.

Finding an admissible direction is doable if the constraint set is
polyhedral, or more generally conic-representable.
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Idea of penalization ♥

We consider the constrained optimization problem

(P) Min
x∈Rn

f (x)

s.t. x ∈ X

and the following penalized version

(Pr ) Min
x∈Rn

f (x) + rp(x)

Thus, a (constrained) problem is replaced by a sequence of
(unconstrained) problems.
♣ Exercise: What is happening if p = IX ?
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Some monotonicity results ♦

(Pr ) Min
x∈Rn

f (x) + rp(x)

The idea is that, with higher r , the penalization has more impact on the
problem.
More precisely, let 0 < r1 < r2, and xri be an optimal solution of (Pri ).
We have:

p(xr1) ≥ p(xr2)

f (xr1) ≤ f (xr2)

♣ Exercise: prove these results.

V. Leclère Constrained optimization May 13th, 2022 13 / 27



Outer penalization

A first idea for choosing a penalization function p consists in choosing a
function p such that:

p(x) = 0 for x ∈ X

p(x) > 0 for x 6∈ X

intuitively the idea is that p is the fine to pay for not respecting the
constraint. Heuristically, it should be increasing with the distance to X .
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Outer penalization - theoretical results ♦

Assume that

p is l.s.c on Rn

p ≥ 0

p(x) = 0 iff x ∈ X

Further assume that f is l.s.c and there exists r0 > 0 such that
x 7→ f (x) + r0p(x) is coercive (i.e. →∞ if ‖x‖ → ∞).
Then,

1 for r > r0, (Pr ) admit at least one optimal solution

2 (xr )r→+∞ is bounded

3 any adherence point of (xr )r→+∞ is an optimal solution of P.
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Outer penalization - quadratic case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}
then the quadratic penalization consists in choosing

p : x 7→ ‖g(x)‖2 + ‖(h(x))+‖2

This choice is interesting as (for affinely lower-bounded f ):

x 7→ f (x) + rp(x) is differentiable if f is differentiable

xr → x ] if r →∞
However, generally speaking, if the constraints are impactful (e.g. have
non-zero optimal multipliers), then

xr 6∈ X
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Outer penalization - L1 case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}
another natural penalization consists in choosing

p : x 7→ ‖g(x)‖1 + ‖(h(x))+‖1

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for r large enough, an optimal
solution to the penalized problem (Pr ) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.

Unfortunately this come to the price of non-differentiability.

V. Leclère Constrained optimization May 13th, 2022 17 / 27



Outer penalization - L1 case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}
another natural penalization consists in choosing

p : x 7→ ‖g(x)‖1 + ‖(h(x))+‖1

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for r large enough, an optimal
solution to the penalized problem (Pr ) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.

Unfortunately this come to the price of non-differentiability.

V. Leclère Constrained optimization May 13th, 2022 17 / 27



Outer penalization - L1 case

Assume that

X =
{
x ∈ Rn | g(x) = 0, h(x) ≤ 0

}
another natural penalization consists in choosing

p : x 7→ ‖g(x)‖1 + ‖(h(x))+‖1

The interest of this approach is that, if the problem is convex and the
constraints are qualified at optimality, then, for r large enough, an optimal
solution to the penalized problem (Pr ) is an optimal solution to the
original problem (P). Thus we speak of exact penalization.

Unfortunately this come to the price of non-differentiability.

V. Leclère Constrained optimization May 13th, 2022 17 / 27



Inner penalization

Another approach consists in choosing a penalization function p that takes
value +∞ outside of X .

The idea here is to add a potential that repulse the optimal solution from
the boundary.

This is typically done in a way to keep f + 1
s p smooth, and if possible

convex.

Note that, for the inner penalization, we need the coefficient
1

s
→ 0,

(hence s → +∞) for the penalized problem to converges toward the
original one.

More on that in the next course.
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Duality, here we go again ♥

Recall that to a primal problem

(P) Min
x∈Rn

f (x) (1)

s.t. g(x) = 0 (2)

h(x) ≤ 0 (3)

we associate the dual problem

(D) Max
λ,µ≥0

Min
x

f (x) + λ>g(x) + µ>h(x)︸ ︷︷ ︸
Φ(λ,µ)

♣ Exercise: Under which sufficient conditions are these problem equivalent
?
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Duality seen as exact penalization ♥

If (P) is convex differentiable and the constraints are qualified, then for
any optimal multiplier λ, µ the unconstrained problem

Min
x

f (x) + λ>g(x) + µ>h(x)

have the same optimal solution as the original problem (P).
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Projected gradient in the dual
Consider the dual problem

(D) Max
λ,µ≥0

Φ(λ, µ)

Recall that, under technical conditions,

∇Φ(λ, µ) =

(
g(x ](λ, µ))
h(x ](λ, µ))

)
where x ](λ, µ) is an optimal solution of the inner minimization problem for
given λ, µ.
We suggest to solve this problem through projected gradient with fixed
step t:

λ(k+1) = λ(k) + tg(x ](λ(k), µ(k)))

µ(k+1) = [µ(k) + th(x ](λ(k), µ(k)))]+
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Uzawa algorithm

Data: Initial primal point x (0), Initial dual points λ(0), µ(0), unconstrained
optimization method, dual step t > 0.

while ‖g(x (k))‖2 + ‖(h(x (k)))+‖2 ≥ ε do
Solve for x (k+1)

Min
x

f (x) + λ(k)>g(x) + µ(k)>h(x)

Update the multipliers

λ(k+1) = λ(k) + tg(x (k+1))

µ(k+1) = [µ(k) + th(x (k+1))]+

Algorithm 1: Uzawa algorithm
Convergence requires strong convexity and constraints qualifications.
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Exercise : decomposition by prices

We consider the following energy problem:

you are an energy producer with N production unit

you have to satisfy a given demand planning for the next 24h (i.e. the
total output at time t should be equal to dt)

the time step is the hour, and each unit have a production cost for
each planning given as a convex quadratic function of the planning

1 Model this problem as an optimization problem. In which class does it
belongs ? How many variables ?

2 Apply Uzawa’s algorithm to this problem. Why could this be an
interesting idea ?

3 Give an economic interpretation to this method.

4 What would happen if each unit had production constraints ?
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What you have to know

There is three main ways of dealing with constraints:
I choosing an admissible direction
I projection of the next iterate
I penalizing the constraints
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What you really should know

admissible direction methods are mainly usefull for polyhedral
constraint set

projection is usefull only if the admissible set is simple (ball or bound
constraints)

penalization can be inner or outer, differentiable or not.

V. Leclère Constrained optimization May 13th, 2022 25 / 27



What you have to be able to do

Implement a penalization approach.
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What you should be able to do

Implement Uzawa’s algorithm.
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