Newton and Quasi-Newton algorithms

V. Leclère (ENPC)

April 22th, 2022

Why should I bother to learn this stuff?

- Newton algorithm is, in theory, the best black-box algorithm for smooth strongly convex function. It is used in practice as well as a stepping step for more advanced algorithm.
- Quasi-Newton algorithms (in particular L-BFGS) are the actual by default algorithm for most smooth black-box optimization library. Used in large scale application (e.g. weather forecast) for decades.
- \Longrightarrow useful for
- understanding the optimization software you might use as an engineer
- understanding more advanced methods (e.g. interior points methods)
- getting an idea of why the convergence might behave strangely in practice

Oriented sum-up of previous courses

- There are two large class of unconstrained, exact, black-box, optimization algorithms:
- descent direction algorithm: $x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$;
- model based approach: $x^{(k+1)}=\arg \min f^{(k)}(x)$.
- We saw that defining a descent direction algorithm requires:

```
- a direction d
* a step
v a stopping test (e.g. |\nablaf(x(k)}\mp@subsup{|}{2}{}<<<1
```

- We discussed gradient and conjugate gradient algorithms defined by
- convergence speed is sensitive to conditioning of the problem (i.e. if level sets are almost spherical);
- you can precondition the problem through a change of coordinates;
- can be interpreted as steepest descent method:
$\|d\|_{p}<1$

Oriented sum-up of previous courses

- There are two large class of unconstrained, exact, black-box, optimization algorithms:
- descent direction algorithm: $x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$;
- model based approach: $x^{(k+1)}=\arg \min f^{(k)}(x)$.
- We saw that defining a descent direction algorithm requires:
- a direction $d^{(k)}$;
- a step $t^{(k)}$;
- a stopping test (e.g. $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \ll 1$)

。

Oriented sum-up of previous courses

- There are two large class of unconstrained, exact, black-box, optimization algorithms:
- descent direction algorithm: $x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$;
- model based approach: $x^{(k+1)}=\arg \min f^{(k)}(x)$.
- We saw that defining a descent direction algorithm requires:
- a direction $d^{(k)}$;
- a step $t^{(k)}$;
- a stopping test (e.g. $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \ll 1$)
- We discussed gradient and conjugate gradient algorithms defined by $d^{(k)}=-\nabla f\left(x^{(k)}\right)+\beta^{(k)} d^{(k-1)}$:
- convergence speed is sensitive to conditioning of the problem (i.e. if level sets are almost spherical);
- you can precondition the problem through a change of coordinates;
- can be interpreted as steepest descent method:

$$
d^{(k)}=\underset{\|d\|_{p} \leq 1}{\arg \min } \nabla f\left(x^{(k)}\right)^{\top} d
$$

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

Newton algorithm

Let f be \mathcal{C}^{2} such that $\nabla^{2} f(x) \succ 0$ for all x (so in particular strictly convex).
The Newton algorithm is a descent direction algorithm with :

- $d^{(k)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- $t^{(k)}=1$

Note that

(unless $\nabla f\left(x^{(k)}\right)=0$)
$\leadsto d^{(k)}$ is a descent direction.

We are now going to give multiple justifications to this direction choice.

Newton algorithm

Let f be \mathcal{C}^{2} such that $\nabla^{2} f(x) \succ 0$ for all x (so in particular strictly convex).
The Newton algorithm is a descent direction algorithm with :

- $d^{(k)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- $t^{(k)}=1$

Note that

$$
\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}=-\nabla f\left(x^{(k)}\right)^{\top}\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)<0
$$

(unless $\nabla f\left(x^{(k)}\right)=0$)
$\leadsto d^{(k)}$ is a descent direction.
We are now going to give multiple justifications to this direction choice.

Newton algorithm

Let f be \mathcal{C}^{2} such that $\nabla^{2} f(x) \succ 0$ for all x (so in particular strictly convex).
The Newton algorithm is a descent direction algorithm with :

- $d^{(k)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- $t^{(k)}=1$

Note that

$$
\nabla f\left(x^{(k)}\right)^{\top} d^{(k)}=-\nabla f\left(x^{(k)}\right)^{\top}\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)<0
$$

(unless $\nabla f\left(x^{(k)}\right)=0$)
$\leadsto d^{(k)}$ is a descent direction.
We are now going to give multiple justifications to this direction choice.

Second-order approximation minimization

We have

$$
f\left(x^{(k)}+d\right)=f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x^{(k)}\right) d+o\left(\|d\|^{2}\right)
$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$
\nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right) d^{(k)}=0
$$

\leadsto The Newton method can be seen as a model-based method, where the model at iteration k is simply the second order approximation.

\sim A trust region method with confidence radius $+\infty$ is simply the

 Newton method.
Second-order approximation minimization

We have

$$
f\left(x^{(k)}+d\right)=f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x^{(k)}\right) d+o\left(\|d\|^{2}\right)
$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$
\nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right) d^{(k)}=0
$$

\leadsto The Newton method can be seen as a model-based method, where the model at iteration k is simply the second order approximation.

[^0]
Second-order approximation minimization

We have

$$
f\left(x^{(k)}+d\right)=f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f\left(x^{(k)}\right) d+o\left(\|d\|^{2}\right)
$$

The Newton method choose the direction d (with step 1) that minimize this second order approximation, which is given by

$$
\nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right) d^{(k)}=0
$$

\sim The Newton method can be seen as a model-based method, where the model at iteration k is simply the second order approximation.
\leadsto A trust region method with confidence radius $+\infty$ is simply the Newton method.

Steepest descent with adaptative norm

- The Newton direction $d^{(k)}$ is the steepest descent direction for the quadratic norm associated to $\nabla^{2} f\left(x^{(k)}\right)$:

$$
d^{(k)}=\underset{d}{\arg \min }\left\{\nabla f\left(x^{(k)}\right)^{\top} d \quad \mid \quad\|d\|_{\nabla^{2} f\left(x^{(k)}\right)} \leq 1\right\}
$$

- Recall that the steepest gradient descent for a quadratic norm $\|\cdot\|_{P}$ converges rapidly if the condition number of the Hessian, after change of coordinate, is small.
- In particular a good choice near x^{\sharp} is $P=\nabla^{2} f\left(x^{\sharp}\right)$.
\leadsto fast around x^{\sharp}

Solution of linearized optimality condition

The optimality condition is given by

$$
\nabla f\left(x^{\sharp}\right)=0
$$

We can linearize it as

$$
\nabla f\left(x^{(k)}+d\right) \approx \nabla f\left(x^{(k)}\right)+\nabla^{2} f\left(x^{(k)}\right) d=0
$$

And the Newton step $d^{(k)}$ is the solution of this linearization.

Affine invariance

- Recall that gradient and conjugate gradient method can be accelarated through smart affine change of variables (pre-conditionning).
- It is not the same for the Newton method:
- Let A be an invertible matrix, and denote $y=A x+b$, and $\tilde{f}: x \mapsto f(A x+b)$.
- $\nabla \tilde{f}(y)=A \nabla f(x)$ and $\nabla^{2} \tilde{f}(y)=A^{\top} \nabla^{2} f(x) A$
- The Newton step for \tilde{f} is thus

$$
d_{y}=-\left(A^{\top} \nabla^{2} f(x) A\right)^{-1} A \nabla f(x)=-A^{-1}\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)=A^{-1} d_{x}
$$

- Consequently

$$
x^{(k+1)}-x^{(k)}=A\left(y^{(k+1)}-y^{(k)}\right)
$$

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

Damped Newton algorithm

Data: Initial point $x^{(0)}$, Second order oracle, error $\varepsilon>0$.
while $\left\|\nabla f\left(x^{(k)}\right)\right\| \geq \varepsilon$ do
Solve for $d^{(k)}$

$$
\nabla^{2} f\left(x^{(k)}\right) d^{(k)}=-\nabla f\left(x^{(k)}\right)
$$

Compute $t^{(k)}$ by backtracking line-search, starting from $t=1$;
$x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$
Algorithm 1: Damped Newton algorithm

- The Newton algorithm with fixed step size $t=1$ is too numerically unstable, and you should always use a backtracking line-search.
- If the function is not strictly convex the Newton direction is not necessarily a descent direction, and you should check for it (and default to a gradient step).

Convergence idea

Assume that f is strongly convex, such that $m I \preceq \nabla^{2} f(x) \preceq M I$, and that the Hessian $\nabla^{2} f$ is L-Lipschitz.
We can show that there exists $0<\eta \leq m^{2} / L$ and $\gamma>0$ such that

- If $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \geq \eta$, then

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- If $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then $t^{(k)}=1$ and

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Newton is fast around the solution
We have, if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then $t^{(k)}=1$ and

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Let $k=k_{0}+\ell, \ell \geq 1$, with k_{0} such that $\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}<\eta$. Then $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, and,

Recursively,

And thus

\leadsto in the quadratic convergence phase, Newton's algorithm get the result

 in a few iterations (5 or 6).Newton is fast around the solution
We have, if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then $t^{(k)}=1$ and

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Let $k=k_{0}+\ell, \ell \geq 1$, with k_{0} such that $\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}<\eta$. Then $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, and,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}\right)^{2}
$$

Recursively,

And thus

\leadsto in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

Newton is fast around the solution
We have, if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then $t^{(k)}=1$ and

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Let $k=k_{0}+\ell, \ell \geq 1$, with k_{0} such that $\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}<\eta$. Then $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, and,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}\right)^{2}
$$

Recursively,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}\right)^{2^{\ell}} \leq \frac{1}{2^{2^{\ell}}}
$$

Newton is fast around the solution

We have, if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then $t^{(k)}=1$ and

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Let $k=k_{0}+\ell, \ell \geq 1$, with k_{0} such that $\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}<\eta$. Then $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, and,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}\right)^{2}
$$

Recursively,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{\left(k_{0}\right)}\right)\right\|_{2}\right)^{2^{\ell}} \leq \frac{1}{2^{2^{\ell}}}
$$

And thus

$$
f\left(x^{(k)}\right)-v^{\sharp} \leq \frac{1}{2 m}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2} \leq \frac{2 m^{3}}{L^{2}} \frac{1}{2^{2^{\ell-1}}}
$$

\sim in the quadratic convergence phase, Newton's algorithm get the result in a few iterations (5 or 6).

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

- The damped phase, where $t^{(k)}$ can be less than 1 . Each iteration yield an absolute improvement of $-\gamma<0$.
- The quadratic phase, where each step $t^{(k)}=1$.

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

- The damped phase, where $t^{(k)}$ can be less than 1 . Each iteration yield an absolute improvement of $-\gamma<0$.
- The quadratic phase, where each step $t^{(k)}=1$.

Thus, the total number of iteration to get an ε solution is bounded above by

$$
\frac{f\left(x^{(0)}\right)-v^{\sharp}}{\gamma}+\underbrace{\log _{2}\left(\log _{2}\left(\varepsilon_{0} / \varepsilon\right)\right)}_{\lesssim 6}
$$

where $\varepsilon_{0}=2 m^{3} / L^{2}$.
Note that, in 6 iterations in the quadratic convergent phase we get an error $\varepsilon \approx 5.10^{-20} \varepsilon_{0}$.

Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases:

- The damped phase, where $t^{(k)}$ can be less than 1. Each iteration yield an absolute improvement of $-\gamma<0$.
- The quadratic phase, where each step $t^{(k)}=1$.

Thus, the total number of iteration to get an ε solution is bounded above by

$$
\frac{f\left(x^{(0)}\right)-v^{\sharp}}{\gamma}+\underbrace{\log _{2}\left(\log _{2}\left(\varepsilon_{0} / \varepsilon\right)\right)}_{\lesssim 6}
$$

where $\varepsilon_{0}=2 m^{3} / L^{2}$.
Note that, in 6 iterations in the quadratic convergent phase we get an error $\varepsilon \approx 5.10^{-20} \varepsilon_{0}$.

Newton's properties in a nutshell

- Full Newton step : $x^{(k+1)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- Can be seen through various lenses:
(1) $\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$ is a descent direction (f is strongly convex);
(2) model-based algorithm where the model is the second order approximation;
(3) preconditioned gradient algorithm, with adaptive precontioning.
- Is incredibly fast around the optimal solution.
- Far from the optimum a full Newton step is a bad idea:
- If f is not strongly convex the Newton direction might not be a descent $>\sim$ check if it is a descent direction, otherwise make a gradient step - Even with convexity the step might be too aggressive, \leadsto receeding step choice.
- Convergence of the (damped) Newton's algorithm is in two phases:
- slow constant update far from the optimum,
- fast updates with full step close to the optimum

Newton's properties in a nutshell

- Full Newton step : $x^{(k+1)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- Can be seen through various lenses:
(1) $\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$ is a descent direction (f is strongly convex);
(2) model-based algorithm where the model is the second order approximation;
(3) preconditioned gradient algorithm, with adaptive precontioning.
- Is incredibly fast around the optimal solution.
- Far from the optimum a full Newton step is a bad idea:
- If f is not strongly convex the Newton direction might not be a descent direction ${ }^{1}$!
- \leadsto check if it is a descent direction, otherwise make a gradient step.
- Even with convexity the step might be too aggressive, \leadsto receeding step choice.
- Convergence of the (damped) Newton's algorithm is in two phases:
- slow constant update far from the optimum,
- fast updates with full step close to the optimum
${ }^{1}$ It can, for example, get you to the maximum of the second order approximation...

Newton's properties in a nutshell

- Full Newton step : $x^{(k+1)}=-\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$
- Can be seen through various lenses:
(1) $\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$ is a descent direction (f is strongly convex);
(2) model-based algorithm where the model is the second order approximation;
(3) preconditioned gradient algorithm, with adaptive precontioning.
- Is incredibly fast around the optimal solution.
- Far from the optimum a full Newton step is a bad idea:
- If f is not strongly convex the Newton direction might not be a descent direction ${ }^{1}$!
- \leadsto check if it is a descent direction, otherwise make a gradient step.
- Even with convexity the step might be too aggressive, \leadsto receeding step choice.
- Convergence of the (damped) Newton's algorithm is in two phases:
- slow constant update far from the optimum,
- fast updates with full step close to the optimum.
${ }^{1}$ It can, for example, get you to the maximum of the second order approximation...

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

Newton's step is the very efficient (near optimality) but have three drawbacks:
(1) having a second order oracle to compute the Hessian
(2) storing the Hessian (n^{2} values)
(3) solving a (dense) linear system : $\nabla^{2} f\left(x^{(k)}\right) d=-\nabla f\left(x^{(k)}\right)$

The main idea

Newton's step is the very efficient (near optimality) but have three drawbacks:
(1) having a second order oracle to compute the Hessian
(2) storing the Hessian (n^{2} values)
(3) solving a (dense) linear system : $\nabla^{2} f\left(x^{(k)}\right) d=-\nabla f\left(x^{(k)}\right)$

The main idea of Quasi Newton method is to define $M^{(k)} \approx \nabla^{2} f\left(x^{(k)}\right)$ (or $\left.W^{(k)} \approx\left[\nabla^{2} f\left(x^{(k)}\right)\right]^{-1}\right)$:
(1) from first order informations \leadsto no need to compute Hessian;
(2) sparse \leadsto smaller storage requirements;
(3) $d^{(k)}=-W^{(k)} \nabla f\left(x^{(k)}\right) \leadsto$ no linear system solving.

Conditions on the approximate Hessian

We want to construct $M^{(k)}$ an approximation of $\nabla^{2} f\left(x^{(k)}\right)$, leading to a quadratic model of f at iteration k

$$
f^{(k)}(x):=f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle+\frac{1}{2}\left(x-x^{(k)}\right)^{\top} M^{(k)}\left(x-x^{(k)}\right)
$$

We ask that the gradient of the model $f^{(k)}$ and the true function matches

 in current and last iterates:

This simply write as the Quasi-Newton equation

Conditions on the approximate Hessian

We want to construct $M^{(k)}$ an approximation of $\nabla^{2} f\left(x^{(k)}\right)$, leading to a quadratic model of f at iteration k

$$
f^{(k)}(x):=f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle+\frac{1}{2}\left(x-x^{(k)}\right)^{\top} M^{(k)}\left(x-x^{(k)}\right)
$$

We ask that the gradient of the model $f^{(k)}$ and the true function matches in current and last iterates:

$$
\left\{\begin{array}{l}
\nabla f^{(k)}\left(x^{(k)}\right)=\nabla f\left(x^{(k)}\right) \\
\nabla f^{(k)}\left(x^{(k-1)}\right)=\nabla f\left(x^{(k-1)}\right)
\end{array}\right.
$$

This simply write as the Quasi-Newton equation

Conditions on the approximate Hessian

We want to construct $M^{(k)}$ an approximation of $\nabla^{2} f\left(x^{(k)}\right)$, leading to a quadratic model of f at iteration k

$$
f^{(k)}(x):=f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle+\frac{1}{2}\left(x-x^{(k)}\right)^{\top} M^{(k)}\left(x-x^{(k)}\right)
$$

We ask that the gradient of the model $f^{(k)}$ and the true function matches in current and last iterates:

$$
\left\{\begin{array}{l}
\nabla f^{(k)}\left(x^{(k)}\right)=\nabla f\left(x^{(k)}\right) \\
\nabla f^{(k)}\left(x^{(k-1)}\right)=\nabla f\left(x^{(k-1)}\right)
\end{array}\right.
$$

This simply write as the Quasi-Newton equation

$$
M^{(k)} \underbrace{\left(x^{(k)}-x^{(k-1)}\right)}_{\delta_{x}^{(k-1)}}=\underbrace{\nabla f\left(x^{(k)}\right)-\nabla f\left(x^{(k-1)}\right)}_{\delta_{g}^{(k-1)}}
$$

\& Exercise: prove it

Conditions on the approximate Hessian

We are looking for a matrix M such that

- $M \succ 0$
- $M \delta_{x}=\delta_{g}$ (only possible if $\delta_{g}^{\top} \delta_{x}>0 \quad$ \& Exercise: prove it)
- $M^{\top}=M$
- M is constructed from first order informations only
- If possible, M is sparse

\leadsto an infinite number of solutions as we have $n(n+1) / 2$ variables and n

 constraints.\leadsto Numerous quasi-Newton algorithms developed and tested between 1960-1980.

Conditions on the approximate Hessian

We are looking for a matrix M such that

- $M \succ 0$
- $M \delta_{x}=\delta_{g}$ (only possible if $\delta_{g}^{\top} \delta_{x}>0$ \& Exercise: prove it)
- $M^{\top}=M$
- M is constructed from first order informations only
- If possible, M is sparse
\leadsto an infinite number of solutions as we have $n(n+1) / 2$ variables and n constraints.
\leadsto Numerous quasi-Newton algorithms developed and tested between 1960-1980.

Conditions on the approximate Hessian

We are looking for a matrix M such that

- $M \succ 0$
- $M \delta_{x}=\delta_{g}$ (only possible if $\delta_{g}^{\top} \delta_{x}>0 \quad$ \& Exercise: prove it)
- $M^{\top}=M$
- M is constructed from first order informations only
- If possible, M is sparse
\leadsto an infinite number of solutions as we have $n(n+1) / 2$ variables and n constraints.
\leadsto Numerous quasi-Newton algorithms developed and tested between 1960-1980.

Choosing the approximate Hessian $M^{(k)}$

At the end of iteration k we have determined

- $x^{(k+1)}$ and $\delta_{x}^{(k)}=x^{(k+1)}-x^{(k)}$
- $g^{(k+1)}=\nabla f\left(x^{(k)}\right)$ and $\delta_{g}^{(k)}=g^{(k+1)}-g^{(k)}$
and we are looking for $M^{(k+1)} \approx \nabla^{2} f\left(x^{(k+1)}\right)$ satisfying the previous requirement.

The idea is to choose $M^{(k+1)}$ close to $M^{(k)}$, that is to solve (analytically)

for some distance d.

Choosing the approximate Hessian $M^{(k)}$

At the end of iteration k we have determined

- $x^{(k+1)}$ and $\delta_{x}^{(k)}=x^{(k+1)}-x^{(k)}$
- $g^{(k+1)}=\nabla f\left(x^{(k)}\right)$ and $\delta_{g}^{(k)}=g^{(k+1)}-g^{(k)}$
and we are looking for $M^{(k+1)} \approx \nabla^{2} f\left(x^{(k+1)}\right)$ satisfying the previous requirement.

The idea is to choose $M^{(k+1)}$ close to $M^{(k)}$, that is to solve (analytically)

$$
\begin{array}{rl}
\operatorname{Min}_{M \in S_{++}^{n}} & d\left(M, M^{(k)}\right) \\
\text { s.t. } & M \delta_{x}^{(k)}=\delta_{g}^{(k)}
\end{array}
$$

for some distance d.

Contents

(1) Newton algorithm [BV 9.5]

- Algorithm presentation, intuition and property
- (Damped) Newton algorithm convergence
(2) Quasi Newton [JCG - 11.2]
- Quasi-Newton methods
- BFGS algorithm

BFGS

Broyden-Fletcher-Goldfarb-Shanno chose

$$
d(A, B):=\operatorname{tr}(A B)-\ln \operatorname{det}(A B)
$$

A few remarks

- $\Psi: M \mapsto \operatorname{tr} M-\ln \operatorname{det}(M)$ is convex on S_{++}^{n}
- For $M \in S_{++}^{n}, \operatorname{tr} M-\ln \operatorname{det}(M)=\sum_{i=1}^{n} \lambda_{i}-\ln \left(\lambda_{i}\right)$
- Ψ is minimized in the identity matrix
- $d(A, B)-n$ is the Kullback-Lieber divergence between $\mathcal{N}(0, A)$ and $\mathcal{N}(0, B)$

BFGS update

One of the pragmatic reason for this choice of distance is that the optimal solution can be found analytically.
We have ${ }^{2}$ (to alleviate notation we drop the index k on $\delta_{x}^{(k)}$ and $\delta_{g}^{(k)}$)

$$
M^{(k+1)}=M^{(k)}+\frac{\delta_{g} \delta_{g}^{\top}}{\delta_{g}^{\top} \delta_{x}}-\frac{M^{(k)} \delta_{x} \delta_{x}^{\top} M^{(k)}}{\delta_{x}^{\top} M^{(k)} \delta_{x}}
$$

Even better, denoting $W=M^{-1}$, we can show ${ }^{3}$ that:

[^1]
BFGS update

One of the pragmatic reason for this choice of distance is that the optimal solution can be found analytically.
We have ${ }^{2}$ (to alleviate notation we drop the index k on $\delta_{x}^{(k)}$ and $\delta_{g}^{(k)}$)

$$
M^{(k+1)}=M^{(k)}+\frac{\delta_{g} \delta_{g}^{\top}}{\delta_{g}^{\top} \delta_{x}}-\frac{M^{(k)} \delta_{x} \delta_{x}^{\top} M^{(k)}}{\delta_{x}^{\top} M^{(k)} \delta_{x}}
$$

Even better, denoting $W=M^{-1}$, we can show ${ }^{3}$ that:

$$
W^{(k+1)}=\left(I-\frac{\delta_{x} \delta_{g}^{\top}}{\delta_{g}^{\top} \delta_{x}}\right) W^{(k)}\left(I-\frac{\delta_{g} \delta_{x}^{\top}}{\delta_{g}^{\top} \delta_{x}}\right)+\frac{\delta_{x} \delta_{x}^{\top}}{\delta_{g}^{\top} \delta_{x}}
$$

[^2]
BFGS algorithm

Data: Initial point $x^{(0)}$, First order oracle, error $\varepsilon>0$. $W^{(0)}=I$;
while $\left\|\nabla f\left(x^{(k)}\right)\right\| \geq \varepsilon$ do

$$
\begin{aligned}
& g^{(k)}:=\nabla f\left(x^{(k)}\right) ; \\
& d^{(k)}:=-W^{(k)} g^{(k)} ;
\end{aligned}
$$

Compute $t^{(k)}$ by backtracking line-search, starting from $t=1$;
$x^{(k+1)}=x^{(k)}+t^{(k)} d^{(k)}$;
$\delta_{g}=g^{(k+1)}-g^{(k)}, \delta_{x}=x^{(k+1)}-x^{(k)}$;
$W^{(k+1)}=\left(I-\frac{\delta_{x} \delta_{g}^{\top}}{\delta_{g}^{\top} \delta_{x}}\right) W^{(k)}\left(I-\frac{\delta_{g} \delta_{x}^{\top}}{\delta_{g}^{\top} \delta_{x}}\right)+\frac{\delta_{x} \delta_{x}^{\top}}{\delta_{g}^{\top} \delta_{x}} ;$
$k=k+1 ;$

Algorithm 2: BFGS algorithm

First order oracle only
\checkmark No need to solve a linear system

* Still large memory requirement
\checkmark Convergence comparable to Newton's algorithm

Limited-memory BFGS (L-BFGS)

- For $n \geq 10^{3}$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store $\left(\delta_{x}, \delta_{g}\right)$ pairs.
- We can then compute $d^{(k)}=-W^{(k)} g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.
\leadsto An algorithm with:
First order oracle only No need to solve a linear system Same storage requirement as gradient algorithm Convergence comparable to Newton's algorithm \sim this is the "go to" algorithm when you want high level precision for strongly convex smooth problem. It is the default choice in a lot of optimization libraries.

Limited-memory BFGS (L-BFGS)

- For $n \geq 10^{3}$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store $\left(\delta_{x}, \delta_{g}\right)$ pairs.
- We can then compute $d^{(k)}=-W^{(k)} g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.
\leadsto An algorithm with:
\checkmark First order oracle only
\checkmark No need to solve a linear system
Same storage requirement as gradient algorithm
Convergence comparable to Newton's algorithm

Limited-memory BFGS (L-BFGS)

- For $n \geq 10^{3}$ storing the matrices is a difficulty.
- Instead of storing and updating the matrix $W^{(k)}$ we store $\left(\delta_{x}, \delta_{g}\right)$ pairs.
- We can then compute $d^{(k)}=-W^{(k)} g^{(k)}$ directly from the last 5 to 20 pairs, using recursively the update rule and never computing $W^{(k)}$.
\leadsto An algorithm with:
\checkmark First order oracle only
\checkmark No need to solve a linear system
\checkmark Same storage requirement as gradient algorithm
\checkmark Convergence comparable to Newton's algorithm
\leadsto this is the "go to" algorithm when you want high level precision for strongly convex smooth problem. It is the default choice in a lot of optimization libraries.

What you have to know

- At least one idea behind Newton's algorithm.
- The Newton step.
- That quasi-Newton methods are almost as good as Newton, without requiring a second order oracle.

What you really should know

- Newton's algorithm default step is 1, but you should use backtracking step anyway.
- Newton's algorithm converges in two phases : a slow damped phase, and a very fast quadratically convergent phase close to the optimum (at most 6 iterations).
- BFGS is the by default quasi-Newton method. It work by updating an approximation of the inverse of the Hessian close to the precedent approximation and satisfying some natural requirement.
- L-BFGS limit the memory requirement by never storing the matrix but only the step and gradient updates.

What you have to be able to do

- Implement a damped Newton method.

What you should be able to do

- Implement a BFGS method (with the update formula in front of your eyes)

Incoming dead lines

Final mark $=\operatorname{Max}\left(D S, \frac{1}{2} D S+\frac{1}{4}\right.$ Project $\left.+\frac{1}{8} T P+\frac{1}{8} D M\right)$.

- 03/06/2022 : Exam (3 hours)
- 27/05/2022 : Project (sent by enail, $\approx 15-20$ hours)
- 13/05/2022 : TP (≈ 2 hours) \& DM ($\approx 4-6$ hours)
- 09/05/2022 : office hours
- 24/04/2022: Elections (decision under uncertainty related ${ }^{4}$)

Incoming dead lines

Final mark $=\operatorname{Max}\left(D S, \frac{1}{2} D S+\frac{1}{4}\right.$ Project $\left.+\frac{1}{8} T P+\frac{1}{8} D M\right)$.

- 03/06/2022 : Exam (3 hours)
- 27/05/2022 : Project (sent by email, $\approx 15-20$ hours)
- 13/05/2022 : TP (≈ 2 hours) \& DM ($\approx 4-6$ hours)
- 09/05/2022 : office hours
- 24/04/2022 : Elections (decision under uncertainty related ${ }^{4}$)

Incoming dead lines

Final mark $=\operatorname{Max}\left(D S, \frac{1}{2} D S+\frac{1}{4}\right.$ Project $\left.+\frac{1}{8} T P+\frac{1}{8} D M\right)$.

- 03/06/2022 : Exam (3 hours)
- 27/05/2022 : Project (sent by email, $\approx 15-20$ hours)
- 13/05/2022 : TP $(\approx 2$ hours) \& DM ($\approx 4-6$ hours)
- 09/05/2022 : office hours
- 24/04/2022 : Elections (decision under uncertainty related ${ }^{4}$)

[^0]: $\leadsto A$ trust region method with confidence radius $+\infty$ is simply the Newton method.

[^1]: ${ }^{2}$ with some effort

[^2]: ${ }^{2}$ with some effort
 ${ }^{3}$ fastidiously

