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Why should | bother to learn this stuff 7

@ Newton algorithm is, in theory, the best black-box algorithm for
smooth strongly convex function. It is used in practice as well as a
stepping step for more advanced algorithm.

@ Quasi-Newton algorithms (in particular L-BFGS) are the actual by
default algorithm for most smooth black-box optimization library.
Used in large scale application (e.g. weather forecast) for decades.

o — useful for

» understanding the optimization software you might use as an engineer

» understanding more advanced methods (e.g. interior points methods)

> getting an idea of why the convergence might behave strangely in
practice
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Oriented sum-up of previous courses

@ There are two large class of unconstrained, exact, black-box,
optimization algorithms:
> descent direction algorithm: x(kH1) = (k) 4 (k) (k).
» model based approach: x**1) = arg min f(k)(x).
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Oriented sum-up of previous courses
@ There are two large class of unconstrained, exact, black-box,
optimization algorithms:
> descent direction algorithm: x(kH1) = (k) 4 (k) (k).
» model based approach: x**1) = arg min f(k)(x).

@ We saw that defining a descent direction algorithm requires:
» a direction d(¥):
» astep t(¥);

> a stopping test (e.g. ||[VF(x¥))|2 < 1)
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Oriented sum-up of previous courses

@ There are two large class of unconstrained, exact, black-box,
optimization algorithms:
» descent direction algorithm: x(*71) = x(¥) 4 (k) g(k).
» model based approach: x**1) = arg min f(k)(x).
X

@ We saw that defining a descent direction algorithm requires:
» a direction d(¥):
» astep t(¥);
> a stopping test (e.g. ||[VF(x"))||l2 < 1)

@ We discussed gradient and conjugate gradient algorithms defined by
dk) — _vf(X(k)) 4 5(k)d(k*1);
» convergence speed is sensitive to conditioning of the problem (i.e. if
level sets are almost spherical);
» you can precondition the problem through a change of coordinates;
» can be interpreted as steepest descent method:
d®) = argmin VF(x(K))Td
lldllp<1
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Newton algorithm @

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).

The Newton algorithm is a descent direction algorithm with :
o d) = —[V2f(xUN]IVF(x(9)

V. Leclere Newton and Quasi-Newton algorithms

April 22th, 2022 4/26



Newton algorithm @

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).

The Newton algorithm is a descent direction algorithm with :
o dK) = —[V2f(xUN) IV F(x9)
o tlk) =1

Note that

VN TdH = - FUNTIV2 ANV F(x9)) < 0

(unless V£(x¥)) = 0)
~ d(¥) is a descent direction.
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Newton algorithm

Let f be C? such that V2f(x) = 0 for all x (so in particular strictly
convex).
The Newton algorithm is a descent direction algorithm with :

o dK) = —[V2f(xUN]IVF(xR)
o tlk) =1
Note that

VN TdH = - FUNTIV2 ANV F(x9)) < 0

(unless V£(x¥)) = 0)
~ d(¥) is a descent direction.

We are now going to give multiple justifications to this direction choice.
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Second-order approximation minimization @

We have
FOU) 4 d) = £y + V() Td + %dTsz(X(”)d + of]|d[I?)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(") + V2 (x9N dR = 0
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Second-order approximation minimization @

We have
FOU) 4 d) = £y + V() Td + %dTsz(X(”)d + of]|d[I?)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(M) + V2 F(x)dk) =0

~» The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second order approximation.

V. Leclere Newton and Quasi-Newton algorithms April 22th, 2022 5/26



Second-order approximation minimization @

We have
FOU) 4 d) = £y + V() Td + %dTsz(X(”)d +o(|dI?)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

V(") + V2 (x9N dR = 0

~» The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second order approximation.

~» A trust region method with confidence radius 400 is simply the
Newton method.
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Steepest descent with adaptative norm %

o The Newton direction d(¥) is the steepest descent direction for the
quadratic norm associated to V2f(x(¥)):

d(k):argmin{Vf(X(k))Td | Hdezf(Xmﬁl}
d

@ Recall that the steepest gradient descent for a quadratic norm || - ||p
converges rapidly if the condition number of the Hessian, after change
of coordinate, is small.

o In particular a good choice near x% is P = V2f(x").

~> fast around x*
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Solution of linearized optimality condition %

The optimality condition is given by
VF(x") =0
We can linearize it as
VI +d) ~ V() + V2F(xNd = 0

And the Newton step d(¥) is the solution of this linearization.
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Affine invariance &

@ Recall that gradient and conjugate gradient method can be
accelarated through smart affine change of variables
(pre-conditionning).

@ It is not the same for the Newton method:

» Let A be an invertible matrix, and denote y = Ax + b, and
f:x— f(Ax + b).

» VF(y) = AVf(x) and V3f(y) = AT V?f(x)A

» The Newton step for f is thus

d, = —(ATV?f(x)A)TAVS(x) = —AY(V?f(x)) " IVF(x) = A" d,

» Consequently
xKHD) — x (k) = Ay (k1) — (k)
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Damped Newton algorithm @

Data: Initial point x(0) Second order oracle, error € > 0.
while ||[V£(x¥))|| > ¢ do
Solve for d(k)
V2F(x)dW) = —v (<)
Compute t(¥) by backtracking line-search, starting from t = 1;
x(k+1) = (k) 4 (k) (k)

Algorithm 1: Damped Newton algorithm

@ The Newton algorithm with fixed step size t = 1 is too numerically
unstable, and you should always use a backtracking line-search.

@ If the function is not strictly convex the Newton direction is not
necessarily a descent direction, and you should check for it (and
default to a gradient step).
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Convergence idea %

Assume that f is strongly convex, such that m/ < V2f(x) =< MI, and that
the Hessian V2f is [-Lipschitz.

We can show that there exists 0 < 7 < m?/L and v > 0 such that
o If |[VF(x ))|l2 > n, then

F) = () <

o If |VF(xX)[]2 <, then t(K) =1 and

L L 2
L ke, < (5 (k)
IV D)l < (55 19F)))
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Newton is fast around the solution &
We have, if [|[VF(x))||l2 < n, then t(k) =1 and

L L 2
_ (k+1) _ (k)
IV )2 < (5519 2)
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Newton is fast around the solution &
We have, if [|[VF(x))||l2 < n, then t(k) =1 and

L L 2
b k3|1, < (—E ()
S IVAC D)2 < (55 IVA)2)

Let k = ko + £, £ > 1, with kg such that |[Vf(x“))|2 < 7. Then
IVF(xU)l2 <, and,

L L _ 2
S IVA < (5 IV )2)
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Newton is fast around the solution &
We have, if [|[VF(x))||l2 < n, then t(k) =1 and

L L 2
b (k)Y < (5 (k)
S IVAC D)2 < (55 IVA)2)

Let k = ko + £, £ > 1, with kg such that |[Vf(x“))|2 < 7. Then
IVF(xU)l2 <, and,
L L - 2
S IVA < (5 IV )2)
Recursively,

14

L L 2 1
52V < (52 IVFC)) " <
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Newton is fast around the solution &
We have, if [|[VF(x))||l2 < n, then t(k) =1 and

L L 2
b (k)Y < (5 (k)
S IVAC D)2 < (55 IVA)2)

Let k = ko + £, £ > 1, with ko such that ||[V£(x"))|l2 < 5. Then
[VF(x" N2 < n, and,

T2 < (19D’

Recursively,

14

L L 2 1
52Vl < (52IVFC ) <

And thus
2m3 1

1
k
f(X( )) — v < %HV“ )||2 = L2 22/ 1

~» in the quadratic convergence phase, Newton's algorithm get the result
in a few iterations (5 or 6).
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

o The damped phase, where t(¥) can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

@ The quadratic phase, where each step t(¥) = 1.
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

e The damped phase, where t(¥) can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

@ The quadratic phase, where each step t(¥) = 1.

Thus, the total number of iteration to get an € solution is bounded above
by

F(x©) = v*
————— + log,(logy(c0/¢))
—_—
<6
where g = 2m3/L2,
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

e The damped phase, where t(¥) can be less than 1. Each iteration
yield an absolute improvement of —y < 0.

@ The quadratic phase, where each step t(¥) = 1.

Thus, the total number of iteration to get an € solution is bounded above
by

F(x©) = v*

PO = 4 ogy(loga(eo/2))

—_———

<6

where g9 = 2m3/L2.

Note that, in 6 iterations in the quadratic convergent phase we get an
error € ~ 5.107 20,
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Newton's properties in a nutshell @

o Full Newton step : x(**1) = —[V2f(xU)] 71V F(x(9)
@ Can be seen through various lenses:
Q@ [V2F(xUN]71VF(x9) is a descent direction (f is strongly convex);
@ model-based algorithm where the model is the second order
approximation;
© preconditioned gradient algorithm, with adaptive precontioning.

@ Is incredibly fast around the optimal solution.
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Newton's properties in a nutshell @

Full Newton step : x(<"1) = —[V2f(xUN)] 71V F(x(9)
Can be seen through various lenses:
Q@ [V2F(xUN]71VF(x9) is a descent direction (f is strongly convex);
@ model-based algorithm where the model is the second order
approximation;
© preconditioned gradient algorithm, with adaptive precontioning.

Is incredibly fast around the optimal solution.

Far from the optimum a full Newton step is a bad idea:

> If f is not strongly convex the Newton direction might not be a descent
direction?

» ~> check if it is a descent direction, otherwise make a gradient step.

» Even with convexity the step might be too aggressive, ~» receeding
step choice.

LIt can, for example, get you to the maximum of the second order approximation...
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Newton's properties in a nutshell @

Full Newton step : x(<"1) = —[V2f(xUN)] 71V F(x(9)
Can be seen through various lenses:
Q@ [V2F(xUN]71VF(x9) is a descent direction (f is strongly convex);
@ model-based algorithm where the model is the second order
approximation;
© preconditioned gradient algorithm, with adaptive precontioning.

Is incredibly fast around the optimal solution.
Far from the optimum a full Newton step is a bad idea:
> If f is not strongly convex the Newton direction might not be a descent
direction?
» ~> check if it is a descent direction, otherwise make a gradient step.
» Even with convexity the step might be too aggressive, ~» receeding
step choice.

Convergence of the (damped) Newton's algorithm is in two phases:

» slow constant update far from the optimum,
» fast updates with full step close to the optimum.

LIt can, for example, get you to the maximum of the second order approximation...
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© Quasi Newton [JCG - 11.2]
@ Quasi-Newton methods
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The main idea Q

Newton's step is the very efficient (near optimality) but have three
drawbacks:

© having a second order oracle to compute the Hessian
@ storing the Hessian (n? values)
@ solving a (dense) linear system : V77 (x9))d = —V(x9)
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The main idea Q

Newton's step is the very efficient (near optimality) but have three
drawbacks:

@ having a second order oracle to compute the Hessian
@ storing the Hessian (n? values)
@ solving a (dense) linear system : V7 f (xX))d = —VF(x)

The main idea of Quasi Newton method is to define M(¥) ~ V2£(x(¥)) (or
W) = [W2F (]~ 1):

© from first order informations ~» no need to compute Hessian;

@ sparse ~» smaller storage requirements;

Q@ d = —WHRVF(xX) ~s no linear system solving.
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Conditions on the approximate Hessian RS

We want to construct M%) an approximation of V2f(x(¥)), leading to a
quadratic model of f at iteration k

FO(x) == £+ (VF(x9)  x = <) %(x — xUNT M) (x — XKy
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Conditions on the approximate Hessian RS

We want to construct M%) an approximation of V2f(x(¥)), leading to a
quadratic model of f at iteration k

F(x) = £ + <Vf(x(k)) X — X(k)> + %(X — xUNT M) (x — x(K))

We ask that the gradient of the model £(¥) and the true function matches
in current and last iterates:

Vf(k)(x(k)) — vf(X(k))
Vf(k)(x(k—l)) = VF(x 1)
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Conditions on the approximate Hessian RS

We want to construct M%) an approximation of V2f(x(¥)), leading to a
quadratic model of f at iteration k

F(x) = £ + <Vf(x(k)) X — X(k)> + %(X — xUNT M) (x — x(K))

We ask that the gradient of the model £(¥) and the true function matches
in current and last iterates:

Vf(k)(x(k)) — Vf(x(k))
Vf(k)(x(k—l)) = VF(x 1)

This simply write as the Quasi-Newton equation

M (k) (X(k) _ X(kfl)) - vf(x(k)) _ vf(x(kfl))

v

s (5?71)
& Exercise: prove it
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if 5gTéx >0 & Exercise: prove it)
o MT =M

@ M is constructed from first order informations only

If possible, M is sparse
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if 5g5x >0 & Exercise: prove it)
o MT =M

@ M is constructed from first order informations only

If possible, M is sparse

~> an infinite number of solutions as we have n(n+ 1)/2 variables and n
constraints.
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Conditions on the approximate Hessian <&

We are looking for a matrix M such that

e M>=0

e Mo, =0, (only possible if (géx >0 & Exercise: prove it)
o MT =M

@ M is constructed from first order informations only

If possible, M is sparse

~> an infinite number of solutions as we have n(n+ 1)/2 variables and n
constraints.

~» Numerous quasi-Newton algorithms developed and tested between
1960-1980.
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Choosing the approximate Hessian M%) &

At the end of iteration k we have determined
o x(k+1) and 5£k) — y((kF1) _ (k)
o gkt = VF(x(K) and 6 = glk+1) — g(k)

and we are looking for M(**1) ~ V2£(x(“+1)) satisfying the previous
requirement.
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Choosing the approximate Hessian M%) &

At the end of iteration k we have determined
o x(k+1) and 5£k) — y((kF1) _ (k)
o gD = VF(x(M) and ) = glk+D) _ g(h)
and we are looking for M(**1) ~ V2£(x(“+1)) satisfying the previous

requirement.

The idea is to choose M(“*1) close to M), that is to solve (analytically)

Min d(M, M)y
MeSt

st Mol =5

for some distance d.
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@ BFGS algorithm
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BFGS &

Broyden-Fletcher-Goldfarb-Shanno chose
d(A, B) ;== tr(AB) — Indet(AB)

A few remarks
o V: M tr M —Indet(M) is convex on ST
o For M e ST, tr M —Indet(M) =37 1 Ai — In(\;)
o W is minimized in the identity matrix

e d(A, B) — nis the Kullback-Lieber divergence between N(0, A) and
N(0,B)

V. Leclere Newton and Quasi-Newton algorithms April 22th, 2022 18 /26



BFGS update %

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have? (to alleviate notation we drop the index k on 5&” and 52“)

s 5. T K s 5 Tpapk
Mkt — ) 4 Og0e M55, T MK
3g T o 5. T M),

2with some effort
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BFGS update %

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have? (to alleviate notation we drop the index k on 5&“ and (5@(;())

s 5. T K s 5 Tpapk
Mkt — ) 4 Og0e M55, T MK
3g T o 5. T M),

Even better, denoting W = M~1 we can show3 that:

(k+1) — (1 _ @ (k) 5g(5x—r SxOx T
% (/ )W (/ ) +

(FgTSX (5gT(3X (5gT(5X
2with some effort
3fastidiously
Pl T I



BFGS algorithm

Data: Initial point x(©), First order oracle, error € > 0.
wO =,

while |V (x))|| > ¢ do
g = V()
dk) .= —W( ) g (k)
Compute t(¥) by backtracking line-search, starting from t = 1;
x(k+1) — (k) g (k) (k).
g = g(k+1) — g(k), 8, = x(k+1) — x(k).
5)(57 T T
WO = (1= S YW (1 - 320 ) 4 B
k=k+1,

Algorithm 2: BFGS algorithm
v/ First order oracle only

¢/ No need to solve a linear system
® Still large memory requirement

v/ Convergence comparable to Newton's algorithm
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Limited-memory BFGS (L-BFGS) &

e For n > 103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix /(%) we store (dy, d¢)
pairs.

o We can then compute d(¥) = — WK g(%) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W ().
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Limited-memory BFGS (L-BFGS) &

@ For n > 103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix /(%) we store (dy, d¢)
pairs.

o We can then compute d(¥) = — W) g(%) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W ().

~» An algorithm with:
v/ First order oracle only
¢/ No need to solve a linear system
v/ Same storage requirement as gradient algorithm

v/ Convergence comparable to Newton's algorithm
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Limited-memory BFGS (L-BFGS) &

@ For n > 103 storing the matrices is a difficulty.

o Instead of storing and updating the matrix W) we store (0x, 0g)
pairs.

o We can then compute d(¥) = — W) g(%) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W ().

~» An algorithm with:
v/ First order oracle only
¢/ No need to solve a linear system
v/ Same storage requirement as gradient algorithm

v/ Convergence comparable to Newton's algorithm

~~ this is the "go to" algorithm when you want high level precision for
strongly convex smooth problem. It is the default choice in a lot of
optimization libraries.
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What you have to know

@ At least one idea behind Newton's algorithm.
@ The Newton step.

@ That quasi-Newton methods are almost as good as Newton, without
requiring a second order oracle.
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What you really should know

@ Newton's algorithm default step is 1, but you should use backtracking
step anyway.

@ Newton's algorithm converges in two phases : a slow damped phase,
and a very fast quadratically convergent phase close to the optimum
(at most 6 iterations).

@ BFGS is the by default quasi-Newton method. It work by updating an
approximation of the inverse of the Hessian close to the precedent
approximation and satisfying some natural requirement.

o L-BFGS limit the memory requirement by never storing the matrix
but only the step and gradient updates.
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What you have to be able to do

@ Implement a damped Newton method.
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What you should be able to do

@ Implement a BFGS method (with the update formula in front of your
eyes)
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Incoming dead lines

1 1 1 1
Final mark = Max (DS, §D5 + ZProject + §TP + §DM>'
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Incoming dead lines

. 1 1 . 1 1
Final mark = Max (DS, §DS + ZPI‘O_]eCt + §TP + gDI\/I).
e 03/06/2022 : Exam (3 hours)
@ 27/05/2022 : Project (sent by email, ~ 15-20 hours)
e 13/05/2022 : TP (=2 hours) & DM (= 4-6 hours)
@ 09/05/2022 : office hours
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Incoming dead lines

. 1 1 . 1 1
Final mark = Max (DS, EDS + ZPI‘O_]eCt + §TP + gDI\/I).
e 03/06/2022 : Exam (3 hours)
@ 27/05/2022 : Project (sent by email, ~ 15-20 hours)
e 13/05/2022 : TP (=2 hours) & DM (= 4-6 hours)
09/05/2022 : office hours

24/04/2022 : Elections (decision under uncertainty related*)

“sort of
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