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Why should I bother to learn this stuff ?

Newton algorithm is, in theory, the best black-box algorithm for
smooth strongly convex function. It is used in practice as well as a
stepping step for more advanced algorithm.

Quasi-Newton algorithms (in particular L-BFGS) are the actual by
default algorithm for most smooth black-box optimization library.
Used in large scale application (e.g. weather forecast) for decades.

=⇒ useful for
I understanding the optimization software you might use as an engineer
I understanding more advanced methods (e.g. interior points methods)
I getting an idea of why the convergence might behave strangely in

practice
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Oriented sum-up of previous courses
There are two large class of unconstrained, exact, black-box,
optimization algorithms:

I descent direction algorithm: x (k+1) = x (k) + t(k)d (k);
I model based approach: x (k+1) = arg min

x
f (k)(x).

We saw that defining a descent direction algorithm requires:
I a direction d (k);
I a step t(k);
I a stopping test (e.g. ‖∇f (x (k))‖2 << 1)

We discussed gradient and conjugate gradient algorithms defined by
d (k) = −∇f (x (k)) + β(k)d (k−1):

I convergence speed is sensitive to conditioning of the problem (i.e. if
level sets are almost spherical);

I you can precondition the problem through a change of coordinates;
I can be interpreted as steepest descent method:

d (k) = arg min
‖d‖P≤1

∇f (x (k))>d
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Contents

1 Newton algorithm [BV 9.5]
Algorithm presentation, intuition and property
(Damped) Newton algorithm convergence

2 Quasi Newton [JCG - 11.2]
Quasi-Newton methods
BFGS algorithm
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Newton algorithm ♥

Let f be C2 such that ∇2f (x) � 0 for all x (so in particular strictly
convex).
The Newton algorithm is a descent direction algorithm with :

d (k) = −[∇2f (x (k))]−1∇f (x (k))

t(k) = 1

Note that

∇f (x (k))>d (k) = −∇f (x (k))>[∇2f (x (k))]−1∇f (x (k)) < 0

(unless ∇f (x (k)) = 0)
; d (k) is a descent direction.

We are now going to give multiple justifications to this direction choice.
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Second-order approximation minimization ♥

We have

f (x (k) + d) = f (x (k)) +∇f (x (k))>d +
1

2
d>∇2f (x (k))d + o(‖d‖2)

The Newton method choose the direction d (with step 1) that minimize
this second order approximation, which is given by

∇f (x (k)) +∇2f (x (k))d (k) = 0

; The Newton method can be seen as a model-based method, where the
model at iteration k is simply the second order approximation.

; A trust region method with confidence radius +∞ is simply the
Newton method.
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Steepest descent with adaptative norm ♦

The Newton direction d (k) is the steepest descent direction for the
quadratic norm associated to ∇2f (x (k)):

d (k) = arg min
d

{
∇f (x (k))>d | ‖d‖∇2f (x(k)) ≤ 1

}
Recall that the steepest gradient descent for a quadratic norm ‖ · ‖P
converges rapidly if the condition number of the Hessian, after change
of coordinate, is small.

In particular a good choice near x ] is P = ∇2f (x ]).

; fast around x ]
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Solution of linearized optimality condition ♦

The optimality condition is given by

∇f (x ]) = 0

We can linearize it as

∇f (x (k) + d) ≈ ∇f (x (k)) +∇2f (x (k))d = 0

And the Newton step d (k) is the solution of this linearization.
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Affine invariance ♦

Recall that gradient and conjugate gradient method can be
accelarated through smart affine change of variables
(pre-conditionning).

It is not the same for the Newton method:
I Let A be an invertible matrix, and denote y = Ax + b, and

f̃ : x 7→ f (Ax + b).
I ∇f̃ (y) = A∇f (x) and ∇2 f̃ (y) = A>∇2f (x)A
I The Newton step for f̃ is thus

dy = −(A>∇2f (x)A)−1A∇f (x) = −A−1(∇2f (x))−1∇f (x) = A−1dx

I Consequently
x (k+1) − x (k) = A(y (k+1) − y (k))
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Damped Newton algorithm ♥

Data: Initial point x (0), Second order oracle, error ε > 0.
while ‖∇f (x (k))‖ ≥ ε do

Solve for d (k)

∇2f (x (k))d (k) = −∇f (x (k))

Compute t(k) by backtracking line-search, starting from t = 1;
x (k+1) = x (k) + t(k)d (k)

Algorithm 1: Damped Newton algorithm

The Newton algorithm with fixed step size t = 1 is too numerically
unstable, and you should always use a backtracking line-search.

If the function is not strictly convex the Newton direction is not
necessarily a descent direction, and you should check for it (and
default to a gradient step).
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Convergence idea ♦

Assume that f is strongly convex, such that mI � ∇2f (x) � MI , and that
the Hessian ∇2f is L-Lipschitz.
We can show that there exists 0 < η ≤ m2/L and γ > 0 such that

If ‖∇f (x (k))‖2 ≥ η, then

f (x (k+1))− f (x (k)) ≤ −γ

If ‖∇f (x (k))‖2 < η, then t(k) = 1 and

L

2m2
‖∇f (x (k+1))‖2 ≤

( L

2m2
‖∇f (x (k))‖2

)2
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Newton is fast around the solution ♦
We have, if ‖∇f (x (k))‖2 < η, then t(k) = 1 and

L

2m2
‖∇f (x (k+1))‖2 ≤

( L

2m2
‖∇f (x (k))‖2

)2

Let k = k0 + `, ` ≥ 1, with k0 such that ‖∇f (x (k0))‖2 < η. Then
‖∇f (x (k))‖2 < η, and,

L

2m2
‖∇f (x (k))‖2 ≤

( L

2m2
‖∇f (x (k−1))‖2

)2

Recursively,

L

2m2
‖∇f (x (k))‖2 ≤

( L

2m2
‖∇f (x (k0))‖2

)2`

≤ 1

22`

And thus

f (x (k))− v ] ≤ 1

2m
‖∇f (x (k))‖2

2 ≤
2m3

L2

1

22`−1

; in the quadratic convergence phase, Newton’s algorithm get the result
in a few iterations (5 or 6).
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Convergence speed - Wrap-up

The Newton algorithm, for strongly convex function, have two phases :

The damped phase, where t(k) can be less than 1. Each iteration
yield an absolute improvement of −γ < 0.

The quadratic phase, where each step t(k) = 1.

Thus, the total number of iteration to get an ε solution is bounded above
by

f (x (0))− v ]

γ
+ log2(log2(ε0/ε))︸ ︷︷ ︸

.6

where ε0 = 2m3/L2.

Note that, in 6 iterations in the quadratic convergent phase we get an
error ε ≈ 5.10−20ε0.
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Newton’s properties in a nutshell ♥
Full Newton step : x (k+1) = −[∇2f (x (k))]−1∇f (x (k))

Can be seen through various lenses:
1 [∇2f (x (k))]−1∇f (x (k)) is a descent direction (f is strongly convex);
2 model-based algorithm where the model is the second order

approximation;
3 preconditioned gradient algorithm, with adaptive precontioning.

Is incredibly fast around the optimal solution.

Far from the optimum a full Newton step is a bad idea:
I If f is not strongly convex the Newton direction might not be a descent

direction1 !
I ; check if it is a descent direction, otherwise make a gradient step.
I Even with convexity the step might be too aggressive, ; receeding

step choice.

Convergence of the (damped) Newton’s algorithm is in two phases:
I slow constant update far from the optimum,
I fast updates with full step close to the optimum.

1It can, for example, get you to the maximum of the second order approximation...
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The main idea ♥

Newton’s step is the very efficient (near optimality) but have three
drawbacks:

1 having a second order oracle to compute the Hessian

2 storing the Hessian (n2 values)

3 solving a (dense) linear system : ∇2f (x (k))d = −∇f (x (k))

The main idea of Quasi Newton method is to define M(k) ≈ ∇2f (x (k)) (or
W (k) ≈ [∇2f (x (k))]−1):

1 from first order informations ; no need to compute Hessian;

2 sparse ; smaller storage requirements;

3 d (k) = −W (k)∇f (x (k)) ; no linear system solving.
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Conditions on the approximate Hessian I ♦
We want to construct M(k) an approximation of ∇2f (x (k)), leading to a
quadratic model of f at iteration k

f (k)(x) := f (x (k)) +
〈
∇f (x (k)) , x − x (k)

〉
+

1

2
(x − x (k))>M(k)(x − x (k))

We ask that the gradient of the model f (k) and the true function matches
in current and last iterates:{

∇f (k)(x (k)) = ∇f (x (k))

∇f (k)(x (k−1)) = ∇f (x (k−1))

This simply write as the Quasi-Newton equation

M(k) (x (k) − x (k−1))︸ ︷︷ ︸
δ

(k−1)
x

= ∇f (x (k))−∇f (x (k−1))︸ ︷︷ ︸
δ

(k−1)
g

♣ Exercise: prove it
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Conditions on the approximate Hessian II ♦

We are looking for a matrix M such that

M � 0

Mδx = δg (only possible if δ>g δx > 0 ♣ Exercise: prove it)

M> = M

M is constructed from first order informations only

If possible, M is sparse

; an infinite number of solutions as we have n(n + 1)/2 variables and n
constraints.

; Numerous quasi-Newton algorithms developed and tested between
1960-1980.
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Choosing the approximate Hessian M (k) ♦

At the end of iteration k we have determined

x (k+1) and δ
(k)
x = x (k+1) − x (k)

g (k+1) = ∇f (x (k)) and δ
(k)
g = g (k+1) − g (k)

and we are looking for M(k+1) ≈ ∇2f (x (k+1)) satisfying the previous
requirement.

The idea is to choose M(k+1) close to M(k), that is to solve (analytically)

Min
M∈Sn

++

d(M,M(k))

s.t. Mδ
(k)
x = δ

(k)
g

for some distance d .
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BFGS ♦

Broyden-Fletcher-Goldfarb-Shanno chose

d(A,B) := tr(AB)− ln det(AB)

A few remarks

Ψ : M 7→ trM − ln det(M) is convex on Sn
++

For M ∈ Sn
++, trM − ln det(M) =

∑n
i=1 λi − ln(λi )

Ψ is minimized in the identity matrix

d(A,B)− n is the Kullback-Lieber divergence between N (0,A) and
N (0,B)
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BFGS update ♦

One of the pragmatic reason for this choice of distance is that the optimal
solution can be found analytically.

We have2 (to alleviate notation we drop the index k on δ
(k)
x and δ

(k)
g )

M(k+1) = M(k) +
δgδg

>

δg>δx
− M(k)δxδx

>M(k)

δx>M(k)δx

Even better, denoting W = M−1, we can show3 that:

W (k+1) =
(
I − δxδg

>

δg>δx

)
W (k)

(
I − δgδx

>

δg>δx

)
+
δxδx

>

δg>δx

2with some effort
3fastidiously
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BFGS algorithm ♦

Data: Initial point x (0), First order oracle, error ε > 0.
W (0) = I ;
while ‖∇f (x (k))‖ ≥ ε do

g (k) := ∇f (x (k));
d (k) := −W (k)g (k);
Compute t(k) by backtracking line-search, starting from t = 1;
x (k+1) = x (k) + t(k)d (k);
δg = g (k+1) − g (k), δx = x (k+1) − x (k);

W (k+1) =
(
I − δxδ

>
g

δ>g δx

)
W (k)

(
I − δgδ

>
x

δ>g δx

)
+

δxδ
>
x

δ>g δx
;

k = k + 1;

Algorithm 2: BFGS algorithm

4 First order oracle only

4 No need to solve a linear system

6 Still large memory requirement

4 Convergence comparable to Newton’s algorithm
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Limited-memory BFGS (L-BFGS) ♦
For n ≥ 103 storing the matrices is a difficulty.

Instead of storing and updating the matrix W (k) we store (δx , δg )
pairs.

We can then compute d (k) = −W (k)g (k) directly from the last 5 to
20 pairs, using recursively the update rule and never computing W (k).

; An algorithm with:

4 First order oracle only

4 No need to solve a linear system

4 Same storage requirement as gradient algorithm

4 Convergence comparable to Newton’s algorithm

; this is the ”go to” algorithm when you want high level precision for
strongly convex smooth problem. It is the default choice in a lot of
optimization libraries.
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What you have to know

At least one idea behind Newton’s algorithm.

The Newton step.

That quasi-Newton methods are almost as good as Newton, without
requiring a second order oracle.
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What you really should know

Newton’s algorithm default step is 1, but you should use backtracking
step anyway.

Newton’s algorithm converges in two phases : a slow damped phase,
and a very fast quadratically convergent phase close to the optimum
(at most 6 iterations).

BFGS is the by default quasi-Newton method. It work by updating an
approximation of the inverse of the Hessian close to the precedent
approximation and satisfying some natural requirement.

L-BFGS limit the memory requirement by never storing the matrix
but only the step and gradient updates.
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What you have to be able to do

Implement a damped Newton method.
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What you should be able to do

Implement a BFGS method (with the update formula in front of your
eyes)
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Incoming dead lines

Final mark = Max
(
DS ,

1

2
DS +

1

4
Project +

1

8
TP +

1

8
DM

)
.

03/06/2022 : Exam (3 hours)

27/05/2022 : Project (sent by email, ≈ 15-20 hours)

13/05/2022 : TP (≈2 hours) & DM (≈ 4-6 hours)

09/05/2022 : office hours

24/04/2022 : Elections (decision under uncertainty related4)

4sort of
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