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Why should | bother to learn this stuff?

@ Gradient algorithm is the easiest, most robust optimization algorithm.
It is not numerically efficient, but numerous more advanced algorithm
are built on it.

e Conjugate gradient algorithm(s) are efficient methods for
(quasi)-quadratic function. They are in particular used for
approximately solving large linear systems.

o — useful for comprehension of

» more advanced continuous optimization algorithms
» machine learning training methods
» numerical methods for solving discretized PDE
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A word on solution

@ In this lecture, we are going to address unconstrained, finite
dimensional, non-linear, smooth, optimization problem.

@ In continuous non-linear (and non-quadratic) optimization, we cannot
expect to obtain an exact solution. We are thus looking for

approximate solutions.

@ By solution, we generally mean local minimum.!

@ The speed of convergence of an algorithm is thus determining an
upper bound on the number of iterations required to get an
e-solution, for € > 0.

1Sometimes just stationary points. Equivalent to global minimum in the convex
setting.
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Black-box optimization @
We consider the following unconstrained optimization problem

o

@ The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x.

@ Oracle gives local information on f. Oracles are generally given as
user-defined code.

» A zeroth order oracle only return the value f(x).
» A first order oracle return both f(x) and V£ (x).
» A second order oracle return f(x), Vf(x) and V2f(x).
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Black-box optimization @
We consider the following unconstrained optimization problem

o

@ The black-box model consists in considering that we only know the
function f through an oracle, that is a way of computing information
on f at a given point x.

@ Oracle gives local information on f. Oracles are generally given as
user-defined code.

» A zeroth order oracle only return the value f(x).
» A first order oracle return both f(x) and V£ (x).
» A second order oracle return f(x), Vf(x) and V2f(x).

@ By opposition, structured optimization leverage more knowledge on
the objective function f. Classical models are
N
> f(x) =232 filx);
> f(x) = fo(x) + Ag(x), where fy(x) is smooth and g is "simple”,
typically g(x) = [|x[|1;
>
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Descent methods
Consider the unconstrained optimization problem

f=min  f(x).
=m0

V. Leclere Gradient algorithms



Descent methods

Consider the unconstrained optimization problem

f=min  f(x).
=m0

A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)) ey, that are recursively defined with:

(K1) — () 4 4(R) (k)
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Descent methods
Consider the unconstrained optimization problem
ﬁ _ .
vi = min f(x).
min  f(x)
A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)) ey, that are recursively defined with:

(K1) () (R (k)

where
o <% is the initial point,
e d¥) € R" is the descent direction,
o t(K) is the step length.

For most of the analysis, we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.
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Descent methods
Consider the unconstrained optimization problem
ﬁ _ .
vi = min f(x).
min  f(x)
A descent direction algorithm is an algorithm that constructs a sequence
of points (x¥)) ey, that are recursively defined with:

(K1) () (R (k)

where
o <% is the initial point,
e d¥) € R" is the descent direction,
o t(K) is the step length.

For most of the analysis, we will assume f to be (strongly) convex, but the
algorithms presented are often used in a non-convex setting.

To complete the algorithm, we need a stopping test, generally testing that
V(x5 )|l is small enough.
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Descent direction algorithms @

For a differentiable objective function f, d*) will be a descent direction iff
VF(x¥) . d*¥) < 0, which can be seen from a first order development:

FO 4 e gy = () 4 t(WF(xX))  d By 4 o(2).
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Descent direction algorithms @

For a differentiable objective function f, d*) will be a descent direction iff
VF(x¥) . d*¥) < 0, which can be seen from a first order development:

FO 4 e gy = () 4 t(WF(xX))  d By 4 o(2).

The most classical descent direction are?
Q dK) = —vr(x(h) (gradient)
Q@ dW = —vf(x) + gRgk-1) (conjugate gradient)
0 Jk = —a(k)Vf(X(k)) + ﬁ(k)(x(k) _ X(kfl)) (heavy ball )
Q Jdk) = _[V2f(x(’<))]_1Vf(x(k)) (Newton)
Q 4 = _W(k)vf(x(k)) (Quasi-Newton)

where W) ~ [sz(x(k))]_l.

2they will be discussed at length during the course
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Step-size choice @

The step-size t(K) can be:
o fixed t(K) = ¢(0),
» too small and it will take forever
> too large and it won't converge
o optimal t(K) € argmin_oq f(xX) + 7d(¥)),
» computing it requires solving an unidimensional problem
» might not be worth the computation

@ a backtracking or receeding step choice?, for given
70 > 0, e]o, 0.5[, 8 €]0, 1],
Q=
Q if f( )4 7d®)) < F(xU)) + arVE(NTdR) k) = 7 STOP
© 7+ B, go back to 2.

v

start with an "optimist” step 7
automatically adapts to ensure convergence
more complex procedure exists

v

v

3There exists a lot of other alternatives
V. Leclere Gradient algorithms April 28th, 2023 7/29



Contents

© Strong convexity consequences [BV 9.2]

V. Leclere Gradient algorithms



Strong convexity definition(s) Q

Recall that f : R” — R is m-convex® iff

f(tx+(1-t)y) < tf(x)—}-(l—t)f(y)—%t(l—t)||y—x\|2, Vx,y, Vte€]o,1]

*A strongly convex function is a m-convex function for some m > 0
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Strong convexity definition(s) Q

Recall that f : R” — R is m-convex* iff
FbeH(1=t)y) < )+ () -5t A=) ly—x?, Vx.y, Veeo,1]
If f is differentiable, it is m-convex iff

F(y) 2 F0) +(VFC)y =) + glly =<2 ¥yx

*A strongly convex function is a m-convex function for some m > 0
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Strong convexity definition(s) Q
Recall that f : R" — R is m-convex* iff

f(tx+(1-t)y) < tf(x)+(1—t)f(y)—%t(l—t)||y—x\|2, Vx,y, Vte€]o, 1]
If f is differentiable, it is m-convex iff

F(y) 2 F0) +(VFC)y =) + glly =<2 ¥yx

If fis twice differentiable, it is m-convex iff
ml = V2£(x) Vx

iff
m< A VX € sp(V3f(x)), Vx

~> this last characterization is the most usefull for our analysis.

*A strongly convex function is a m-convex function for some m > 0
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Bounding the Hessian

Consider a m-convex C? function (on its domain), and x(®) € dom f.
Denote S := leve(,o)(f) = {x € R" | f(x) < f(x0)}.

As f is a strongly convex function S is bounded.

As V?2f is continuous, there exists / > 0 such that, ||V2f(x)| < M, for
all x € §.
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Bounding the Hessian

Consider a m-convex C? function (on its domain), and x(®) € dom f.
Denote S := leve(,o)(f) = {x € R" | f(x) < f(x0)}.

As f is a strongly convex function S is bounded.

As V?2f is continuous, there exists / > 0 such that, ||V2f(x)| < M, for
all x € §.

Thus we have, for all x € S,
ml < V2f(x) < Ml
Or equivalently

M < Amin(V2F(x)) < Amax(V2F(x)) <M ¥Yxe S
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Strongly convex suboptimality certificate %

Let f be a m-convex C2 function. We have
m
f(y)Zf(x)+<Vf(x),y—x>+§||y—x||2, Yy, x

The under approximation is minimized, for a given x, for

1
yf = x — ZVf(x), yielding
m

F(1) 2 F() — 5 IVFCIP oy
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Strongly convex suboptimality certificate %

Let f be a m-convex C2 function. We have
m
f(y)Zf(x)+<Vf(x),y—x>+§||y—x||2, Yy, x

The under approximation is minimized, for a given x, for

1
yf = x — ZVf(x), yielding
m

F(1) 2 F() — 5 IVFCIIP vy

1
g, = 2>
vi 4 2mHVf(X)H > f(x) Vx
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Strongly convex suboptimality certificate %

Let f be a m-convex C? function. We have
m
F(y) 2 )+ (TFC) oy =)+ lly =P Wy
The under approximation is minimized, for a given x, for
1
yi=x— ;Vf(x), yielding

F(1) 2 F() — 5 IVFCIIP vy

1
g, = 2>
vi 4 2mHVf(X)H > f(x) Vx

Thus we obtain the following sub-optimality certificate

| VEC) € V2me = f(x) < vF4e
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Condition numbers &

For any A € S/t positive definite matrix, we define its condition number
K(A) = Npax/Amin > 1 the ratio between its largest and smallest
eigenvalue.
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Condition numbers &

For any A € S/t positive definite matrix, we define its condition number
K(A) = Npax/Amin > 1 the ratio between its largest and smallest
eigenvalue.

Consider a bounded convex set C. Let D,,; be the diameter of the
smallest ball B,y containing C, and D;, be the diameter of the largest ball
Bi, contained in C.
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Condition numbers &

For any A € S/t positive definite matrix, we define its condition number
K(A) = Npax/Amin > 1 the ratio between its largest and smallest

eigenvalue.

Consider a bounded convex set C. Let D,,; be the diameter of the
smallest ball B,y containing C, and D;, be the diameter of the largest ball
Bi, contained in C.

T~
Then the condition number of
Cis
Dour\2
4(C) = ( °”)
cond(C) Dr,
S ———
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Condition number of sublevel set &
We have, for all x € S,
ml =< V2f(x) < Ml

thus
/{(sz(x)) <M/m
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Condition number of sublevel set &

We have, for all x € S,

ml =< V2f(x) < Ml

thus
(V2F(x)) < M/m
Further,
m M
Vot Dl SR ) < v = P
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Condition number of sublevel set &
We have, for all x € S,

ml =< V2f(x) < Ml

thus
H(sz(X)) <M/m
Further,

m M
o Dlx =P < () < v = X

For any vl < o < f(x0), we have

B(xﬁ, \/2(c — vﬁ)/M> Clevfc B(xﬁ, \/2(o — vﬂ)/m>

and thus
cond(C,) < M/m
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Gradient descent Q

@ The gradient descent algorithm is a first-order descent direction
algorithm with d(¥) = — Vf(x(¥)).
@ That is, with an initial point xp, we have

(kD) = (1) _ Ry (R,

@ The three step-size choices (fixed, optimal and decreasing) lead to
variations of the algorithm.
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Gradient descent @
@ The gradient descent algorithm is a first-order descent direction
algorithm with d(¥) = — Vf(x(¥)).

@ That is, with an initial point xp, we have
slk+1) — (k) t(k)Vf(x(k)).

@ The three step-size choices (fixed, optimal and decreasing) lead to
variations of the algorithm.

@ This algorithm is slow, but robust in the sense that it often ends up
converging.

@ Most implementations of advanced algorithms have fail-safe
procedures that default to a gradient step when something goes
wrong for numerical reasons.

@ It is the basis of the stochastic-gradient algorithm, which is used (in
advanced form) to train ML models.
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Steepest descent algorithm %
@ Using the linear approximation

F(<) 4 h) = F(<X) + VAT h + o(|| Allx), it is quite natural to
look for the steepest descent direction, that is

d%) € argmin {Vf(x(k))Th | lhlhe < 1}
h

@ Here || - || could be any norm on R".
» If||-|lm =1 -]l2, the steepest descent is a gradient step, i.e.
proportional to —Vf(x(k)).
> If - lw =1 -llp. [Ixlix = [P?x|2 for some P € S7,, then the

steepest descent is —P~tVf(x(K)). In other words, a steepest descent
step is a gradient step done on a problem after a change of variable
x = PY2x.

» If |- |l = |l , then the steepest descent can be chosen along a
single coordinate, leading to the coordinate descent algorithm.

& Exercise: Prove these results.
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Convergence results - convex case

Assume that f is such that 0 < V2f < M.

Theorem

The gradient algorithm with fixed step size t(K) =t < % satisfies

0 _ i
ey — vt < ZIPCZ =X o

~»+ this is a sublinear rate of convergence.
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Convergence results - strongly convex case %

Assume that f is such that m/ < V2f < M/, with m > 0. Define the
conditioning factor x = M /m.

Theorem

If x'%) js obtained from the optimal step, we have
F(x9))y — vt < CR(Fxo) —vH), C=1-1/x
If x'X) is obtained by receeding step size we have

f(x(k)) _ A < Ck(f(xo) _ Vﬁ), C=1—min {2ma,2ﬂa}/h‘

~~ linear rate of convergence.
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@ Conjugate gradient [JCG - 8.2]
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Solving a linear system

The gradient conjugate algorithm stems from looking for numerical
solutions to the linear equation

Ax = b

o Never, ever, compute A~! to solve a linear system.

@ Classical algebraic method do a methodological factorization of A to
obtain the (exact) value of x.

@ These methods are in O(n®) operations. They only yield a solution at
the end of the algorithm.

@ The solution would be exact if there were no rounding errors...
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Solving a linear system [l

Alternatively, we can look to solve

1
DéIiRr)’ f(x):= EXTAX —bTx

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.
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Solving a linear system [l

Alternatively, we can look to solve

1
)I(\éIiRr}, f(x):= EXTAX —bTx

which is a smooth, unconstrained, convex optimization problem, whose
optimal solution is given by Ax = b.

We will assume that A € ST, . If Ais non symmetric, but invertible, we
could consider AT Ax = AT b.
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Conjugate directions %

We say that u, v € R" are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.

<u,v>A =u'Av=0
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Conjugate directions %

We say that u, v € R" are A-conjugate if they are orthogonal for the scalar
product associated to A, i.e.

<u,v>A =u'Av=0

Let (d;)ic[x) be a linearly independent family of vector. We can construct
a family of conjugate directions (d});e[4q through the Gram-Schmidt
procedure (without normalization), i.e., d; = dy, and

k—1
df@ = dNn - Z/Bi,ﬁdi
i=1

where R _
g — (ds,di),  dlAd;
Y did),  dAd;

V. Leclere Gradient algorithms April 28th, 2023 19 /29



Conjugate direction method for quadratic function | &
Consider, for A€ ST

1
f(x):= EXTAX —bx
A conjugate direction algorithm is a descent direction algorithm such that,
x+) = argmin - £(x)
xEx1+EK)
where
ER) = vect(dM, ..., d))
# Exercise: Denote g(¥) = V£(x(K). Show that
@ g 'd=0fori<k
Q glkt1) = glk) 4 (k) Ag(K)
0 g d) 1 tgk) T Agl) = 0 for i < k
Q Either
» g gt = 0 and t®) =0

()T 4(k) (k) _ __g""d®
> org d\*) <0 and t\*) = g Ag®
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Conjugate direction method for quadratic function <o

Data: Linearly independent direction d¥, ..., d(™ initial point x(!)
Matrix A and vector b
for k € [n] do

(k) — Gk _ k-1 (d d), i . _ —
d¥ =d >oic1 <d(.) d(,)> d\ // A-orthogonalisation
? A
MNP .
t) = % ; // optimal step
’ A

(k1) = (K) 4 k) g(k)

Algorithm 1: Conjugate direction algorithm

This algorithm is such that (for a quadratic function f)

x) = argmin - f(x)
X€X1+E(k)

where
E®) = vect(dM), ..., d"))
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Conjugate gradient algorithm - quadratic function | &
The conjuate gradient algorithm set d(k) = — V£ (x(k)).
~—

—g(k)
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Conjugate gradient algorithm - quadratic function | &
The conjuate gradient algorithm set d(k) = — V£ (x(k)).
~—

—g(k)
In particular, we obtain that E() = vect(g™), ... g(¥), and thus
g g =0 ik
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Conjugate gradient algorithm - quadratic function | &
The conjuate gradient algorithm set d(k) = — V£ (x(k)).
~—

—g(k)

In particular, we obtain that E() = vect(g™), ... g(¥), and thus
g g =0 ik

Note that

J(k) () YT ( o (i+1 i
g g = D AgD),  thus (d . ,d. )a _ (d(.)% (gli+D) — gli))
(d,d)) d) ' (gli+1) — g()
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Conjugate gradient algorithm - quadratic function | &
The conjuate gradient algorithm set d(k) = — V£ (x(k)).
~——
=g
In particular, we obtain that E() = vect(g(l), . ,g(k)), and thus
g(k)Tg(i) =0 Vi # k
Note that

(k i 3 i i
(1) _ ) — (D ag) (d) 4 _ (dUNT (gli+D) — g(0)
(d@,dD) )T (gli+1) — g0y
Thus, through orthogonality we have

k-1 k)T (o (i+1 i
g = Gk 3 —gt¥) (gltV) _g())d(i)

ST . .
o d0) (gl — gl)

T _
O gW (g - g+ V)

d=D) T (gk) — gk-1)) lgk—D]2

April 28th, 2023 22/29



Conjugate gradient algorithm - quadratic function

1<

Data: Initial point x(!), matrix A and vector b
g(l) = Ax(l) — b :

d® = _g(l) for k =2..ndo

If |g®)|2 is small : STOP;

k) — _ k) o W3 k-1 .
a0 =—g" + =z

+(K) IIg(k’Hi )
T A

x(k+1) — X(k + t(k d(k)
gkt = gk) 4 (k) Ag(k

// optimal step

Algorithm 2: Conjugate gradient algorithm - quadratic function
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Conjugate gradient properties %

We can show the following properties, for a quadratic function,
@ The algorithm finds an optimal solution in at most n iterations

o If © = Amax/Amin, we have

k
I = e < 2( V7)) =

@ By comparison, gradient descent with optimal step yields

— 1\ k
(k1) _ ), < (1) _ b
Ix la<2(7) I = <lla
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Non-linear conjugate gradient %

Data: Initial point x(1, first order oracle
for k € [n] do

g = vf(x®);

If |g¥)(|3 is small : STOP;

dB) = —glk) 4 glk) g(k=1) .

t(k) obtained by receeding linear search ;
x(k1) = (k) 4 (k) (k)

Algorithm 3: Conjugate gradient algorithm - non-linear function
Two natural choices for the choice of 3, equivalent for quadratic functions

(k) — ||g(k)”%
o N = 2 (Fletcher-Reeves)
g3

(K) T (k) _ H(k—1)
0 g =§ (g g ") (Polak-Ribigre)
|gk=1)|I2
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What you have to know

What is a descent direction method.
That there is a step-size choice to make.

That there exists multiple descent direction.

Gradient method is the slowest method, and in most case you should
used more advanced method through adapted library.

@ Conditionning of the problem is important for convergence speed.
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What you really should know

@ A problem can be pre-conditionned through change of variable to get
faster results.

@ Solving linear system can be done exactly through algebraic method,
or approximately (or exactly) through minimization method.

e Conjugate gradient method are efficient tools for (approximately)
solving a linear equation.

o Conjugate gradient works by exactly minimizing the quadratic
function on an affine subspace.
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What you have to be able to do

@ Implement a gradient method with receeding step-size.
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What you should be able to do

@ Implement a conjugate gradient method.

@ Use the strongly convex and/or Lipschitz gradient assumptions to
derive bounds.
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