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Why should | bother to learn this stuff?

Duality allow a second representation of the same convex problem,
giving sometimes some interesting insights (e.g. principle of virtual
forces in mechanics)

Duality is a good way of obtaining lower bounds

Duality is a powerful tool for decomposition methods

e — fundamental both for studying optimization (continuous and
operations research)

= usefull in other fields like mechanics and machine learning
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Min-Max duality @
Consider the following problem

Min  sup d(x,y)
xeX  yey

where, for the moment, X’ and ) are arbitrary sets, and ® an arbitrary
function.

By definition the dual of this problem is

M inf $
yea;)( xng (X’ y)

and we have weak duality, that is

sup inf ®(x,y) < |nf sup ®(x,y)
yeY XEX Xyey

& Exercise: Prove this result.
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Dual representation of some characteristic functions
Recall that, if X C R"

Iy (x) 0 if xe X
X) =
X +o00  otherwise

and if X is an assertion,

{0 if X
Ix = )
+00  otherwise
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Dual representation of some characteristic functions
Recall that, if X C R"

Iy (x) 0 if xe X
X) =
X +o00  otherwise

and if X is an assertion,

{0 if X
Ix = )
+00  otherwise

Note that

Iyy—0 = sup A g(x)
ACR"E

and

Thx)<o = sup " h(x)
MERZ_’
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From constrained to min-sup formulation @

Min  £(x) (P)
st. gi(x)=0 Vi € [ng]

hj(X) <0 Vj S [n,]

Is equivalent to

J(\é]i]@ f(x) + Lg(x)=0 + Ln<o
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From constrained to min-sup formulation @

Min () (P)
st. gi(x)=0 Vi € [ng]
hj(x) <0 Vj € [n/]

Is equivalent to

J(\é]iR”n f(x) + Igpo=o0 + In<o

or

Min  f(x)+ sup \'g(x)+ sup p' h(x)
XERN AER"E ,LLER:I

which is usually written

Min  sup  f(x)+ATg(x)+ n"h(x)
x€eR" A, 1>0

=LOGA, )
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Lagrangian duality @

To a (primal) problem (no convexity or regularity assumptions here)

(P) Min f(x)
st. gi(x)=0 Vi € [ng]
hi(x) <0 Vj € [ni]

we associate the Lagrangian

LA, 1) = F(x) + ATg(x) + " h(x)
such that

(P) Min  sup  L(x; A, 1)
xeRnM A\,1>0
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Lagrangian duality @
To a (primal) problem (no convexity or regularity assumptions here)

(P) Min f(x)

x€ERN
st. gi(x)=0 Vi € [ng]
hj(x) <0 vj € [ni]

we associate the Lagrangian

IN

LA, 1) = F(x) + ATg(x) + " h(x)

such that

(P) Min  sup  L(x; A, 1)
xeRnM A\,1>0

The dual problem is defined as

D M inf )
(D) Max inf, L(x; A, 1)
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Weak duality

By the min-max duality, we easily see that

val(D) < val(P).
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Weak duality

By the min-max duality, we easily see that

val(D) < val(P).

Further any admissible dual multipliers \ € R ;; € RY yields a lower
bound:
g, 1) = inlg L(x; A, ;1) < val(D) < val(P)
xeR"
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Weak duality

By the min-max duality, we easily see that
val(D) < val(P).
Further any admissible dual multipliers \ € R ;; € RY yields a lower

bound:
gl )= inlg L(x; A, ;1) < val(D) < val(P)
xeRnM

Obviously, any admissible solution x € R” (i.e. such that g(x) =0 and
h(x) < 0), yields an upper bound

val(P) < f(x) = sup L(x; A, 1)
A,u>0
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Min-Max duality

Recall the generic primal problem of the form

*:=Min su o(x,
p" = Min yeg (x,¥)

with associated dual

d* =M inf ® .
Maxinf, (x,y)

Recall that the duality gap p* — d* > 0.
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Min-Max duality

Recall the generic primal problem of the form

*:=Min su o(x,
p" = Min y€5 (x,¥)

with associated dual

d* =M inf ® .
Maxinf, (x,y)

Recall that the duality gap p* — d* > 0.
We say that we have strong duality if d* = p*.

V. Leclére Duality April 12th, 2024 8/22



Saddle point

Definition
Let & : X x Y — R be any function. (x*,y") is a (local) saddle point of ¢
on X x ) if

o " is a (local) minimum of x — ®(x, v").

o v is a (local) maximum of y s &(x", y).
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Saddle point

Definition

Let ® : X x Y — R be any function. (x%,y") is a (local) saddle point of ¢
on X x ) if

o " is a (local) minimum of x ~ ®(x, ).

e y'is a (local) maximum of y — ®(x", y).

If there exists a Saddle Point (x*, y*) of ®, then there is strong duality, x*
is an optimal primal solution and y* an optimal dual solution, i.e.

pr=d* = (<", ).
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Sufficient conditions for saddle point %

Theorem

If
e X and ) are convex, one of them is compact
e & s continuous
e ®(., ) is convex for all y € Y

e &(x,-) is concave for all x € X

then there exists a saddle point (i.e. we can exchange "Min" and "Max").
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Slater’s conditions for convex optimization @

Consider the following convex optimization problem

(P) Min f(x

st. Ax=5>b
hi(x) <0 vj € [n]

We say that a point x° such that Ax® = b, x° € ri(dom(f)), and
hj(x*) < 0 for all j € [ny], is a Slater’s point.
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Slater’s conditions for convex optimization @

Consider the following convex optimization problem

(P) Min f(x

st. Ax=0b
hj(x) <0 vj € [n/]

We say that a point x° such that Ax® = b, x° € ri(dom(f)), and
hj(x*) < 0 for all j € [ny], is a Slater’s point.

Theorem

If (P) is convex (i.e. f and h; are convex), and there exists a Slater’s point
then there is strong (Lagrangian) duality.

Further if (P) admits an optimal solution x* then L admits a saddle point
(", %), and \" is an optimal solution to (D).

v
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Pertubed problem %

We consider the following perturbed problem

v(p,g)= Min f(x)
st. g(x)=p
h(x) <q

In particular we have v(0,0) = val(P).
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Pertubed problem %

We consider the following perturbed problem

v(p,g)= Min f(x)
st. g(x)=p
h(x) <q

In particular we have v(0,0) = val(P).
By duality,

v(p,) 2 d(p,q) = sup inf £(x) + AT(g(x) = p) + " (h(x) = q).
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Pertubed problem %

We consider the following perturbed problem

v(p,g)= Min f(x)
st. g(x)=p
h(x) <q

In particular we have v(0,0) = val(P).
By duality,

v(p,) 2 d(p,q) = sup inf £(x) + AT(g(x) = p) + 1" (h(x) = q).

In particular, d is convex as a supremum of convex functions.
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfies the Slater’s qualification
condition. In particular v(0,0) = d(0, 0).
Let (A, 1) be optimal multiplier of (P).
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfies the Slater’s qualification
condition. In particular v(0,0) = d(0, 0).

Let (A, 1) be optimal multiplier of (P).

We have, for any x, ; admissible for the perturbed problem, that is such

that g(xp,q) = P, h(xp,q) < 7,
val(P) = v(0,0) = inf f(x) + AT g(x) + 1" h(x)
< F(Xpq) T A 80%pq) + 11 B(Xp.q)
< Fxpq) T AT+ 1T g

)
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Marginal interpretation of the dual multiplier @

Assume that (P) is convex, and satisfies the Slater’s qualification
condition. In particular v(0,0) = d(0, 0).

Let (A, 1) be optimal multiplier of (P).

We have, for any x, ; admissible for the perturbed problem, that is such
that g(xp,q) = P, h(xpq) < 4,

val(P) = v(0,0) = inf f(x) + A g(x) + 1" h(x)

< F(xpq) + A &8(Xpq) + 11T h(Xp.q)
< Flxpg) + A TP+ 1T g

)

In particular we have,
_ T T
v(p,a) = inf f(xpq) 2 v(0,0) = A'p— ' g
p,q

which reads
—(A, 1) € 9v(0,0)
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Exercise

& Exercise: Consider the following problem, for b € R,

Min X2
xER
s.t. x<b

@ Does there exist an optimal multiplier?

@ Without solving the dual, give the optimal multiplier 1.
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KKT conditions Q

Recall the first order KKT conditions for our problem (P)

ny
V) +ATA+ D 1 Vhi(x) =0
j=1
Ax=b, h(x)<0
ANeR™, peRY
\igi(x) =0 vj € [n]
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KKT conditions Q

Recall the first order KKT conditions for our problem (P)

ny
V) +ATA+ D 1 Vhi(x) =0
j=1
Ax=b, h(x)<0
ANeR™, peRY
\igi(x) =0 vj € [n]

Further, recall that

@ the existence of a Slater’s point in a convex problem ensures
constraints qualifications,

@ first order conditions are sufficient for convex problems.
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KKT and duality %

If (P) is convex and there exists a Slater’s point. Then the following
assertions are equivalent:

@ x* is an optimal solution of (P),
@ (3 such that) (x*, \) is a saddle point of £,
@ (3)\" such that) (xF, \f) satisfies the KKT conditions.
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Recovering KKT conditions from Lagrangian duality %

(P) Min £(x
st. A(x)=b
hj(x) <0 vj € [n/]

with associated Lagrangian
L(x; A, 1) = F(x) + AT (A(x) = b) + 1 h(x)

The KKT conditions can be seen as:

QO V.L(x;\,u)=0 (Lagrangian minimized in x)
@ g(x) =0, h(x) <0 (x primal admissible, also obtained as V£ = 0)
Q@ 1>0 ((\, pt) dual admissible)

Q 1 =00r hj(x) =0, for all j € [n]
(complementarity constraint ~» 2" possibilities).
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Recovering KKT conditions from Lagrangian duality %

(P) Min £(x
st. A(x)=b
hj(x) <0 vj € [n/]

with associated Lagrangian
L(x; A, 1) = F(x) + AT (A(x) = b) + 1 h(x)

The KKT conditions can be seen as:

QO V.L(x;\,u)=0 (Lagrangian minimized in x)
@ g(x) =0, h(x) <0 (x primal admissible, also obtained as V£ = 0)
Q@ 1>0 ((\, pt) dual admissible)

Q 1 =00r hj(x) =0, for all j € [n]
(complementarity constraint ~ 2" possibilities).
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Complementarity condition and marginal value
interpretation %

Consider a convex problem satisfying Slater's condition.

Recall that —pu# € dv(0) where v(p) is the value of the perturbed problem.
From this interpretation, we can recover the complementarity condition

pj =0 or gi(x)=0
Indeed, let x be an optimal solution.

o If constraint j is not saturated at x (i.e gi(x) < 0), we can marginally
move the constraint without affecting the optimal solution, and thus
the optimal value. In particular, it means that ;; = 0.

@ If y1; # 0, it means that marginally moving the constraint changes the
optimal value and thus the optimal solution. In particular, constraint
J must be saturated, i.e gij(x) = 0.
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What you have to know

o Weak duality: supinf ® < infsup ®
@ Definition of the Lagrangian £
@ Definition of primal and dual problem

Max inf  L(x; A\, 1) <Min sup L(x; A\, p)
A pL X X A p

J/

J/

TV
Dual Primal

@ Marginal interpretation of the optimal multipliers
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What you really should know

@ A saddle point of £ is a primal-dual optimal pair

e Sufficient condition of strong duality under convexity (Slater’s)
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What you have to be able to do

@ Turn a constrained optimization problem into an unconstrained
Min sup problem through the Lagrangian

@ Write the dual of a given problem

@ Heuristically recover the KKT conditions from the Lagrangian of a
problem
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What you should be able to do

o Get lower bounds through duality
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