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Why should I bother to learn this stuff?

Optimality conditions enable to solve exactly some easy optimization
problems (e.g. in microeconomics, some mechanical problems...)

Optimality conditions are used to derive algorithms for complex
problem

=⇒ fundamental both for studying optimization as well as other
science
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Optimization problem: vocabulary ♡

Generically speaking, an optimization problem is

Min
x∈X

f (x) (P)

where

f : Rn → R is the objective function (a.k.a. cost function),

X is the feasible set,

x ∈ X is an admissible decision variables or a solution,

x ♯ ∈ X such that val(P) = f (x ♯) = infx∈X f (x) is an optimal solution,

if X = Rn the problem is unconstrained,

if X and f are convex, then the problem is convex,

if X is a polyhedron and f linear then the problem is linear,

if X is a convex cone and f linear then the problem is conic.
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Optimization problem: explicit formulation ♡
The previous optimization problem is often defined explicitly in the
following standard form

Min
x∈Rn

f (x) (P)

s.t. gi (x) = 0 ∀i ∈ [nE ]

hj(x) ≤ 0 ∀j ∈ [nI ]

with

X :=
{
x ∈ Rn | ∀i ∈ [nE ], gi (x) = 0, ∀j ∈ [nI ], hj(x) ≤ 0

}
.

(P) is a differentiable optimization problem if f and {gi}i∈[nE ] and
{hj}j∈[nI ] are differentiable.

(P) is a convex differentiable optimization problem if f , and hj (for
j ∈ [nI ]) are convex differentiable and gi (for i ∈ [nE ]) are affine.
♣ Exercise: Show that in this case X is convex.
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A few remarks and tricks ♢

We can always write an abstract optimization problem in standard
form (exercise!)

For a given optimization problem there is an infinite number of
possible standard forms (exercise!)

We can always find an equivalent problem in dimension Rn+1 with
linear cost (exercise!)

A minimization problem with X = ∅ has value +∞ (by convention)

A minimization problem has value −∞ iff there exists a sequence
xn ∈ X such that f (xn) → −∞
Maximizing f is just minimizing −f
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Differentiable case ♡

Theorem

Assume that f : Rn → R̄ is differentiable at x ♯.

1 If x ♯ is an unconstrained local minimizer of f then ∇f (x ♯) = 0.

2 If in addition f is convex, then ∇f (x ♯) = 0 iff x ♯ is a global minimizer.

Proof:

1 Assume ∇f (x♯) ̸= 0. DL of order 1 at x♯ show that
f (x♯ − t∇f (x♯)) < f (x♯) for t > 0 small enough.

2 f (y) ≥ f (x♯) + ⟨∇f (x♯), y − x♯⟩.
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Convex case ♡

Theorem

Consider f : Rn → R̄. Then x ♯ is a global minimum iff

0 ∈ ∂f (x ♯)

Theorem

Consider a proper convex function f : Rn → R̄, and X a closed convex set,
such that ri(dom(f )) ∩ ri(X ) ̸= ∅.
Then x ♯ is a minimizer of f on X iff there exists g ∈ ∂f (x ♯) such that
−g ∈ NX (x

♯).

proof : The technical assumption ensures that ∂(f + IX ) = ∂f + ∂(IX ).
As ∂(IX ) = NX , we have, 0 ∈ ∂(f + IX )(x♯) iff there exists g ∈ ∂f (x♯) such that

−g ∈ NX (x
♯).
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Tangent cones ♢
For f : Rn → R, we consider an optimization problem of the form

Min
x∈X

f (x).

Definition

We say that d ∈ Rn is tangent to X at x ∈ X if there exists a sequence
xk ∈ X converging to x and a sequence tk ↘ 0 such that

d = lim
k

xk − x

tk
.

Let TX (x) be the tangent cone of X at x , that is, the set of all tangent to
X at x .

Equivalently,

TX (x) = { d ∈ Rn | ∃tk ↘ 0, ∃dk → d , x + tkdk ∈ X}
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Optimality conditions - differentiable case

Consider a function f : Rn → R and the optimization problem

(P) Min
x∈X

f (x).

If x ♯ /∈ int(X ) we do not necessarily need to have ∇f (x ♯) = 0, indeed we
just to have ⟨d ,∇f (x ♯)⟩ ≤ 0 for all ”admissible” direction d .

Theorem

Assume that f is differentiable at x ♯.

1 If x ♯ is a local minimizer of (P) we have

∇f (x ♯) ∈
[
TX (x

♯)
]⊕

. (∗)

2 If f and X are both convex, and (∗) holds, then x ♯ is an optimal
solution of (P)

♠ Exercise: Prove this result.
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Convex case ♢

Let K ad
X (x) be the cone of admissible direction

K ad
X (x) :=

{
t(y − x) ∈ Rn | y ∈ X , t ≥ 0

}
Lemma

If X ⊂ Rn is convex, and x ∈ X , we have

TX (x) = K ad
X (x).

Recall that

TX (x) = { d ∈ Rn | ∃tk ↘ 0, ∃dk → d , x + tkdk ∈ X}

♠ Exercise: Prove this lemma
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Differentiable constraints ♢
We consider the following set of admissible solution

X =
{
x ∈ Rn | gi (x) = 0, i ∈ [nE ] hj(x) ≤ 0, j ∈ [nj ]

}
,

where g and h are differentiable functions.

Recall that the tangent cone is given by

TX (x) = { d ∈ Rn | ∃tk ↘ 0, ∃dk → d , g(x+tkdk) = 0, h(x+tkdk) ≤ 0}

We define the linearized tangent cone

T ℓ
X (x) := { d ∈ Rn |

〈
∇gi (x) , d

〉
= 0, ∀i ∈ [nE ]〈

∇hj(x) , d
〉
≤ 0, ∀j ∈ I0(x)}

where
I0(x) :=

{
j ∈ [nI ] | hj(x) = 0

}
.
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Constraint qualifications ♢

We always have
TX (x) ⊂ T ℓ

X (x).

♣ Exercise: Prove it.
We say that the constraints are qualified at x if

TX (x) = T ℓ
X (x).
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Sufficient qualification conditions ♡

Recall that g and h are assumed differentiable.
We denote the index set of active constraints at x

I0(x) :=
{
i ∈ [nI ] | hi (x) = 0

}
.

The following conditions are sufficient qualification conditions at x :

1 g and hi for i ∈ I0(x) are locally affine;

2 (Slater) g is affine, hj are convex, and there exists xS such that
g(xS) = 0 and hj(xS) < 0 ;

3 (Mangasarian-Fromowitz) For all α ∈ RnE and β ∈ RnI
+ ,∑

i∈[nE ]

αi∇gi (x) +
∑

j∈I0(x)

βj∇hj(x) = 0 =⇒ α = 0 and β = 0
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Expliciting the optimality condition I ♢

Under constraint qualification, the optimality condition reads

∇f (x) ∈
[
T ℓ
X (x)

]⊕
where

T ℓ
X (x) = { d ∈ Rn |

〈
∇gi (x) , d

〉
= 0, i ∈ [nI ]

〈
∇hj(x) , d

〉
≤ 0, j ∈ I0(x)︸ ︷︷ ︸

= Axd ∈ C

}.

with Ax =

(
((∇gi (x))

⊤)i∈[nI ]
((∇hj(x))

⊤)j∈I0(x)

)
and C = {0}nE × (R−)

nI .

♣ Exercise: Show that C⊕ = RnE × (R−)
nI
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Expliciting the optimality condition II ♢
Recall that the positive dual cone of a set K is

K⊕ := {d ∈ Rn | ⟨d , x⟩ ≥ 0,∀x ∈ K}.
Let C be a closed convex set. Consider

K = A−1C :=
{
x ∈ Rn | Ax ∈ C

}
,

then
K⊕ =

{
A⊤λ | λ ∈ C⊕}.

♣ Exercise: prove it.
Hence,

∇f (x) ∈
[
T ℓ
X (x)︸ ︷︷ ︸
A−1
x C

]⊕
⇐⇒ ∃λ ∈ C⊕, ∇f (x) = A⊤

x λ

⇐⇒ ∃λ ∈ RnE , ∃µ ∈ RI0(x)
+ ∇f (x)+

nE∑
i=1

λi∇gi (x)+
∑

j∈I0(x)

µj∇hj(x) = 0.
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Karush Kuhn Tucker condition ♡

Theorem (KKT)

Assume that the objective function f and the constraint function gi and hj are
differentiable. Assume that the constraints are qualified at x .

Then if x is a local minimum of

min
x̃∈Rn

{
f (x̃) | gi (x̃) = 0, ∀i ∈ [nE ] hj(x̃) ≤ 0, ∀j ∈ [nI ]

}
then there exists dual variables λ, µ such that

∇f (x) +

nE∑
i=1

λi∇gi (x) +

nI∑
j=1

µj∇hj(x) = 0 ∇xL = 0

g(x) = 0, h(x) ≤ 0 Primal feasibility

λ ∈ RnE , µ ∈ RnI
+ dual feasibility

µjhj(x) = 0 ∀j ∈ [nI ] complementarity constraint
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Exercise

Solve the following optimization problem

Min
x ,y∈R2

(x − 1)2 + (y − 2)2

x ≤ y

x + 2y ≤ 2
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What you have to know

Basic vocabulary: objective, constraint, admissible solution,
differentiable optimization problem

First order necessary KKT conditions
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What you really should know

What is a tangent cone

Sufficient qualification conditions (linear and Slater’s)

That KKT conditions are sufficient in the convex case
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What you have to be able to do

Write the KKT condition for a given explicit problem and use them to
solve said problem
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What you should be able to do

Check that constraints are qualified
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