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Why should I bother to learn this stuff?

Convex vocabulary and results are needed throughout the course,
especially to obtain optimality conditions and duality relations.

Convex analysis tools like Fenchel transform appears in modern
machine learning theory

=⇒ fundamental for M2 in continuous optimization

=⇒ usefull for M2 in operation research, machine learning (and some
part of probability or mechanics)
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Affine sets ♡
Let X be a normed vector space (usually X = Rn), and C ⊂ X

C is affine if it contains any lines going through two distinct points of
C , i.e.,

∀x , y ∈ C , ∀θ ∈ R, θx + (1− θ)y ∈ C .

The affine hull of C is the set of affine combination of elements of C ,

aff(C ) :=
{ K∑

i=1

θixi

∣∣∣ ∀xi ∈ C , ∀θi ∈ R,
K∑
i=1

θi = 1, ∀i ∈ [K ], ∀K ∈ N
}

aff(C ) is the smallest affine space containing C .

The affine dimension of C is the dimension of aff(C ) (i.e.,the
dimension of the vector space aff(C )− x0 for x0 ∈ C ).

The relative interior of C is defined as

ri(C ) :=
{
x ∈ C

∣∣∣ ∃r > 0, B(x , r) ∩ aff(C ) ⊂ C
}
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Convex sets ♡

C is convex if for any two points x and y in C
the segment [x , y ] ⊂ C , i.e.,

∀x , y ∈ C , ∀θ ∈ [0, 1], θx + (1− θ)y ∈ C .

The convex hull of C as the set of convex
combination of elements of C , i.e.,

conv(C ) :=
{ K∑

i=1

θixi | ∀xi ∈ C ,

∀θi ∈ [0, 1],
K∑
i=1

θi = 1, ∀i ∈ [K ], ∀K ∈ N
}

conv(C ) is the smallest convex set containing

C .
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Cones ♡

C is a cone if for all x ∈ C the ray R+x ⊂ C , i.e.,

∀x ∈ C , ∀θ ∈ R+, θx ∈ C .

The (convex) conic hull of C is the set of all (convex) conic
combination of elements of C i.e.,

cone(C ) :=
{ K∑

i=1

θixi | ∀xi ∈ C , ∀θi ∈ R+, ∀i ∈ [K ], ∀K ∈ N
}

cone(C ) is the smallest convex cone containing C .

A cone C is pointed if it does not contain any full line Rx for x ̸= 0.

For C convex, cone(C ) =
⋃
t>0

tC
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Examples

Let X = Rn.

Any affine space is convex.

Any hyperplane of X can be defined as H := {x ∈ X | a⊤x = b} for
well choosen a ∈ Rn and b ∈ R and is an affine space of dimension
n − 1.

H divide X into two half-spaces {x ∈ Rn | a⊤x ≤ b and
{x ∈ Rn | a⊤x ≥ b} which are (closed) convex sets.

For any norm ∥ · ∥ the ball B∥· ∥(x0, r) := {x ∈ X | ∥x − x0∥ ≤ r} is
a (closed) convex set.
♣ Exercise: Prove it.

The set C = {(x , t) ∈ X × R | ∥x∥ ≤ t } is a cone.

The set C = {x ∈ X | Ax ≤ b} where A and b are given is a (closed)
convex set called polyhedron.
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Operations preserving convexity ♡

Assume that all sets denoted by C (indexed or not) are convex.

C1 + C2 and C1 × C2 are convex sets.

For any arbitrary index set I the intersection
⋂
i∈I

Ci is convex.

Let f be an affine function. Then f (C ) and f −1(C ) are convex.

In particular, C + x0, and tC are convex. The projection of C on any
affine space is convex.

The closure cl(C ) and relative interior ri(C ) are convex.

♣ Exercise: Prove these results.
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Perspective and linear-fractional function ♢

Let P : Rn × R → Rn be the perspective function defined as
P(x , t) = x/t, with dom(P) = Rn × R∗

+.

Theorem

If C ⊂ dom(P) is convex, then P(C ) is convex.
If C ⊂ Rn is convex, then P−1(C ) is convex.

♠ Exercise: Prove this result.

Let f : Rn → Rm be a linear-fractional function of the form
f (x) := (Ax + b)/(c⊤x + d), with dom(f ) = {x |c⊤x + d > 0}.

Theorem

If C ⊂ dom(f ) is convex, then f (C ) and f −1(C ) are convex.

♣ Exercise: prove this result.
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Cone ordering

Let K ⊂ Rn be a closed, convex, pointed cone with non-empty interior.
We define the cone ordering according to K by

x ⪯K y ⇐⇒ y − x ∈ K .

♣ Exercise: Prove that ⪯K is a partial order (i.e.,reflexive, antisymmetric,
transitive) compatible with scalar product, addition and limits.
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Separation ♢
Let X be a Banach space, and X ∗ its topological dual (i.e. the set of all
continuous linear forms on X ).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X . There exists a
separating hyperplane (x∗, α) ∈ X ∗ × R such that

⟨x∗, a⟩ ≤ α ≤ ⟨x∗, b⟩ ∀a, b ∈ A× B.

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X . Assume that, A is
closed, and B is compact (e.g. a point), then there exists a strict separating
hyperplane (x∗, α) ∈ X ∗ × R such that, there exists ε > 0,

⟨x∗, a⟩+ ε ≤ α ≤ ⟨x∗, b⟩ − ε ∀a, b ∈ A× B.

Remark: these theorems require the Zorn Lemma which is equivalent to the
axiom of choice.
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Supporting hyperplane ♢

Theorem

Let x0 /∈ ri(C ) and C convex. Then
there exists a ̸= 0 such that

a⊤x ≥ a⊤x0, ∀x ∈ C

If x0 ∈ C , say that
H = {x | a⊤x = a⊤x0} is a supporting
hyperplane of C at x0.

♣ Exercise: prove this theorem
Remark: there can be more than one
supporting hyperplane at a given point.
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Convex set as intersection of half-spaces ♢

The closed convex hull of C ⊂ X , denoted conv(C ) is the smallest
closed convex set containing C .

conv(C ) is the intersection of all the half-spaces containing C .

A polyhedron is a finite intersection of half-spaces while a convex set
is a possibly non-finite intersection of half-spaces.
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Dual and normal cones

Let C ⊂ Rn be a set. We define
its dual cone by

C⊕ := {x | x⊤c ≥ 0, ∀c ∈ C}

For any set C , C⊕ is a closed
convex cone.

The normal cone of C at x0 is

NC (x0) := {λ ∈ E | λ⊤(x − x0) ≤ 0,

∀x ∈ C }
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Examples

The positive orthant K = Rn
+ is a self dual cone, that is K⊕ = K .

In the space of symetric matrices Sn(R), with the scalar product
⟨A,B⟩ = tr(AB), the set of positive semidefinite matrices
K = S+

n (R) is self dual.
Let ∥ · ∥ be a norm. The cone K = {(x , t) | ∥x∥ ≤ t} has for dual
K⊕ = {(λ, z) | ∥λ∥⋆ ≤ z}, where ∥λ∥⋆ := supx :∥x∥≤1 λ

⊤x .

♠ Exercise: prove these results
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Some basic properties

Let K ⊂ Rn be a cone.

K⊕ is closed convex.

K1 ⊂ K2 implies K⊕
2 ⊂ K⊕

1

K⊕⊕ = convK

♣ Exercise: Prove these results
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Video ressources

https://www.youtube.com/watch?v=P3W_wFZ2kUo
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Functions with non finite values ♡
It is very useful in optimization to allow functions to take non-finite
values, that is to take values in R̄ := R ∪ {−∞,+∞}.
If both −∞ and +∞ are allowed be very careful of each addition !

Let f : X → R̄. We define
▶ The epigraph of f as

epi(f ) := {(x , t) ∈ X × R | f (x) ≤ t }

▶ the domain of f as

dom(f ) := {x ∈ X | f (x) < +∞}.

▶ The sublevel set of level α

levα(f ) := {x ∈ X | f (x) ≤ α}.

f is said to be lower semi continuous (l.s.c.) if epi(f ) is closed.

f is said to be proper if it never takes value −∞, has a non-empty
domain (at least one finite value).
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Convex function ♡

A function f : X → R̄ is
convex if its epigraph is
convex.

f : X → R ∪ {+∞} is
convex iff

∀t ∈ [0, 1], ∀x , y ∈ X ,

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)

f is concave if −f is convex.
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Basic properties ♡

If f , g convex, t > 0, then tf + g is convex.

If f convex non-decreasing, g convex, then f ◦ g convex.

If f convex and a affine, then f ◦ a is convex.

If (fi )i∈I is a family of convex functions, then supi∈I fi is convex.

The domain and the sublevel sets of a convex function are convex.

A convex function is always above its tangents.

♣ Exercise: Prove these results.

Theorem (Jensen inequality)

Let f be a convex function and X an integrable random variable. Then we
have

f (E
[
X
]
) ≤ E

[
f (X )

]
.
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Convex function: regularity ♡

Consider a convex function f : Rn → R ∪ {+∞}.
f is continuous (on Rn) if and only if dom(f ) = Rn (i.e., if it is finite
everywhere)

f is continuous on the interior of its domain

f is lower-semicontinuous if and only if the domain is closed and the
restriction of f to its domain is continuous
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Convex functions: strict and strong convexity ♡
f : X → R ∪ {+∞} is strictly convex iff

∀t ∈]0, 1[, ∀x , y ∈ X , f (tx + (1− t)y) < tf (x) + (1− t)f (y)

f : X → R ∪ {+∞} is α-convex iff ∀t ∈]0, 1[, ∀x , y ∈ X ,

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)− 1

2
αt(1− t)∥x − y∥2

If f ∈ C 1(Rn)

▶ ⟨∇f (x)−∇f (y), x − y⟩ ≥ 0 iff f convex
▶ if strict inequality holds, then f strictly convex
▶ f : X → R ∪ {+∞} is α-convex iff ∀x , y ∈ X

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ α

2
∥y − x∥2

If f ∈ C 2(Rn),

▶ ∇2f ≽ 0 iff f convex
▶ if ∇2f ≻ 0 then f strictly convex
▶ if ∇2f ≽ αI then f is α-convex
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Important examples

The indicator function of a set C ⊂ X ,

IC (x) :=

{
0 if x ∈ C

+∞ otherwise

is convex iff C is convex.

x 7→ eax is convex for any a ∈ R
x 7→ ∥x∥q is convex for q ≥ 1 and any norm

x 7→ ln(x) is concave

x 7→ x ln(x) is convex

x 7→ ln(
∑n

i=1 e
xi ) is convex
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Convex optimization problem ♡

Min
x∈C

f (x)

Where C is closed convex and f convex finite valued, is a convex
optimization problem.

If C is compact and f proper lsc, then there exists an optimal solution.

If f is proper lsc and coercive, then there exists an optimal solution.

The set of optimal solutions is convex.

If f is strictly convex the minimum (if it exists) is unique.

If f is α-convex the minimum exists and is unique.

♣ Exercise: Prove these results.
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Optimality conditions ♡

Note that minimizing f over C or minimizing f + IC over X is the same
thing.
We consider the (unconstrained) optimization problem

Min
x∈X

f (x),

with x ♯ an optimal solution and f not necessarily convex.

If f is differentiable, then ∇f (x ♯) = 0.

If f is twice differentiable, then ∇2f (x ♯) ⪰ 0.

If f is twice differentiable and ∇2f (x0) ≻ 0 then x0 is a local
minimum.

If, in addition, f is convex then ∇f (x) = 0 is a sufficient optimality
condition.
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Partial infimum ♡

Let f be a convex function and C a convex set. The function

g : x 7→ inf
y∈C

f (x , y)

is convex.
♠ Exercise: Prove this result.

♣ Exercise: Prove that the function distance to a convex set C defined by

dC (x) := inf
c∈C

∥c − x∥

is convex.
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Perspective function ♢

Let ϕ : E → R̄. The perspective
of ϕ is defined as
ϕ̃ : R∗

+ × E → R by

ϕ̃(η, y) := ηϕ(y/η).

Theorem

ϕ is convex iff ϕ̃ is convex.

♠ Exercise: prove this result
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Inf-Convolution ♢

Let f and g be proper function from X to R ∪ {+∞}. We define

f□g : x 7→ inf
y∈X

f (y) + g(x − y)

♣ Exercise: Show that

f□g = g□f

If f and g are convex then so is f□g
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Subdifferential of convex function ♢

Let X be an Hilbert space, f : X → R̄ convex.

The subdifferential of f at x ∈ dom(f ) is the set of slopes of all affine
minorants of f exact at x :

∂f (x) :=
{
λ ∈ X | f (·) ≥ ⟨λ, · − x⟩+ f (x)

}
.

If f is derivable at x then

∂f (x) =
{
∇f (x)

}
.
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Examples ♢

If f : x 7→ |x |, then

∂f (x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

If C is convex then, for x ∈ C , ∂(IC )(x) = NC (x)
♣ Exercise: Prove it.

If f1 and f2 are convex and differentiable. Define f = max(f1, f2).
Then

▶ if f1(x) > f2(x), ∂f (x) = {∇f1(x)}
▶ if f1(x) < f2(x), ∂f (x) = {∇f2(x)};
▶ if f1(x) = f2(x), ∂f (x) = conv({∇f1(x),∇f2(x)}).
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Subdifferential calculus ♢
Let f1 and f2 be proper convex functions.

Theorem

We have
∂(f1)(x) + ∂(f2)(x) ⊂ ∂(f1 + f2)(x), ∀x

Further if ri(dom(f1)) ∩ ri(dom(f2)) ̸= ∅ then

∂(f1)(x) + ∂(f2)(x) = ∂(f1 + f2)(x), ∀x

When fi is polyhedral you can replace ri(dom(fi )) by dom(fi ) in the
condition.

Theorem

If f is convex and a : x 7→ Ax + b with Im(a) ∩ ri(dom(f )) ̸= ∅, then

∂(f ◦ a)(x) = A⊤∂f (Ax + b).
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First order optimality conditions ♢

Theorem

Let f : X 7→ R ∪ {+∞} be a convex function (not necessarily)
differentiable. x ♯ is a minimizer of f if and only if 0 ∈ ∂f (x ♯).

Theorem

Let f be a proper convex function and C a closed non-empty convex set
such that ri(C ) ∩ ri(dom(f )) ̸= ∅ then x ♯ is an optimal solution to

min
x∈C

f (x)

iff
0 ∈ ∂f (x ♯) + NC (x

♯),

iff
∃λ ∈ ∂f (x ♯), λ ∈ −NC (x

♯).
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Normal cone, Tangent cone and optimality

Let C be a convex set. We define the tangent cone of C ⊂ Rn at point
x ∈ C , as the set of directions in which you can move from x while staying
in C for some time, that is

TC (x) :=
{
λ(y − x)

∣∣∣ y ∈ C , λ ∈ R+
}

In particular, TC (x) = Rn iff x ∈ int(C ).

♣ Exercise: Prove that [TC (x)]
⊕ = −NC (x).
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Partial infimum ♢

Let f : X × Y → R̄ be a jointly convex and proper function, and define

v(x) = inf
y∈Y

f (x , y)

then v is convex.
If v is proper, and v(x) = f (x , y ♯(x)) then

∂v(x) =
{
g ∈ X | (g , 0) ∈ ∂f (x , y ♯(x))

}
proof:

g ∈ ∂v(x) ⇔ ∀x ′, v(x ′) ≥ v(x) + ⟨g , x ′ − x⟩

⇔ ∀x ′, y ′ f (x ′, y ′) ≥ f (x , y ♯(x)) +

〈(
g
0

)
,

(
x ′

y ′

)
−

(
x

y ♯(x)

)〉
⇔

(
g
0

)
∈ ∂f (x , y ♯(x))
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Convex function: regularity ♢

Assume f convex, then f is continuous on the relative interior of its
domain, and Lipschitz on any compact contained in the relative
interior of its domain.

A proper convex function is subdifferentiable on the relative interior of
its domain.

If f is convex, it is L-Lipschitz iff ∂f (x) ⊂ B(0, L), ∀x ∈ dom(f )
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Fenchel transform ♢

Let X be a Hilbert space, f : X → R̄ be a proper function.

The Fenchel transform of f , is f ⋆ : X → R̄ with

f ⋆(λ) := sup
x∈X

⟨λ, x⟩ − f (x).

f ⋆ is convex lsc as the supremum of affine functions.

f ≤ g implies that f ⋆ ≥ g⋆.

If f is proper convex lsc, then f ⋆⋆ = f , otherwise f ⋆⋆ ≤ f .

♣ Exercise: Prove the first two points
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Fenchel transform and subdifferential ♢
By definition f ⋆(λ) ≥ ⟨λ, x⟩ − f (x) for all x ,

thus we always have (Fenchel-Young) f (x) + f ⋆(λ) ≥ ⟨λ, x⟩.
Recall that λ ∈ ∂f (x) iff,

f (x ′) ≥ f (x) + ⟨λ, x ′ − x⟩, ∀x ′

iff
⟨λ, x⟩ − f (x) ≥ ⟨λ, x ′⟩ − f (x ′) ∀x ′

that is

λ ∈ ∂f (x) ⇔ x ∈ argmax
x ′∈X

{
⟨λ, x ′⟩ − f (x ′)

}
⇔ f (x) + f ⋆(λ) = ⟨λ, x⟩

If f proper convex lsc

λ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ⋆(λ).
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What you have to know

What is a affine set, a convex set, a polyhedron, a (convex) cone

What is a convex function, that it is above its tangents.

Jensen inequality

What is a convex optimization problem. That any local minimum is a
global minimum.

The necessary optimality condition ∇f (x ♯) ∈ [TX (x
♯)]⊕
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What you really should know

That you can separate convex sets with a linear function

What is the positive dual of a cone

Basic manipulations preserving convexity (sum, cartesian product,
intersection, linear projection)

What is the domain, the sublevel of a function f

What is a lower semi-continuous function, a proper convex function

Conditions of (strict, strong) convexity for differentiable functions

The partial minimum of a convex function is convex

The definition of the subdifferential.

The definition of the Fenchel transform.

The link between Fenchel transform and subdifferential.
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What you have to be able to do

Show that a set is convex

Show that a function is (strictly, strongly) convex

Go from constrained problem to unconstrained problem using the
indicator function IX
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What you should be able to do

Compute dual cones

Use advanced results (projection, partial infimum, perspective) to
show that a function or a set is convex

Compute the Fenchel transform of simple functions
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