Convexity

V. Leclère (ENPC)

March, 15th 2024

Why should I bother to learn this stuff?

- Convex vocabulary and results are needed throughout the course, especially to obtain optimality conditions and duality relations.
- Convex analysis tools like Fenchel transform appears in modern machine learning theory
- \Longrightarrow fundamental for M2 in continuous optimization
- \Longrightarrow usefull for M2 in operation research, machine learning (and some part of probability or mechanics)

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Affine sets

Let X be a normed vector space (usually $X=\mathbb{R}^{n}$), and $C \subset X$

- C is affine if it contains any lines going through two distinct points of C, i.e.,

$$
\forall x, y \in C, \quad \forall \theta \in \mathbb{R}, \quad \theta x+(1-\theta) y \in C
$$

- The affine hull of C is the set of affine combination of elements of C,

$$
\operatorname{aff}(C):=\left\{\sum_{i=1}^{K} \theta_{i} x_{i} \mid \forall x_{i} \in C, \forall \theta_{i} \in \mathbb{R}, \sum_{i=1}^{K} \theta_{i}=1, \forall i \in[K], \forall K \in \mathbb{N}\right\}
$$

- $\operatorname{aff}(C)$ is the smallest affine space containing C.
- The affine dimension of C is the dimension of aff(C) (i.e.,the dimension of the vector space $\operatorname{aff}(C)-x_{0}$ for $x_{0} \in C$).
- The relative interior of C is defined as

Affine sets

Let X be a normed vector space (usually $X=\mathbb{R}^{n}$), and $C \subset X$

- C is affine if it contains any lines going through two distinct points of C, i.e.,

$$
\forall x, y \in C, \quad \forall \theta \in \mathbb{R}, \quad \theta x+(1-\theta) y \in C
$$

- The affine hull of C is the set of affine combination of elements of C,

$$
\operatorname{aff}(C):=\left\{\sum_{i=1}^{K} \theta_{i} x_{i} \mid \forall x_{i} \in C, \forall \theta_{i} \in \mathbb{R}, \sum_{i=1}^{K} \theta_{i}=1, \forall i \in[K], \forall K \in \mathbb{N}\right\}
$$

- $\operatorname{aff}(C)$ is the smallest affine space containing C.
- The affine dimension of C is the dimension of $\operatorname{aff}(C)$ (i.e., the dimension of the vector space $\operatorname{aff}(C)-x_{0}$ for $\left.x_{0} \in C\right)$.
- The relative interior of C is defined as

$$
\operatorname{ri}(C):=\{x \in C \quad \mid \exists r>0, \quad B(x, r) \cap \operatorname{aff}(C) \subset C\}
$$

Convex sets

- C is convex if for any two points x and y in C the segment $[x, y] \subset C$, i.e.,

Convex set

$$
\begin{aligned}
\operatorname{conv}(C):=\{ & \sum_{i=1}^{K} \theta_{i} x_{i} \mid \forall x_{i} \in C, \\
& \left.\forall \theta_{i} \in[0,1], \sum_{i=1}^{K} \theta_{i}=1, \forall i \in[K], \forall K \in \mathbb{N}\right\}
\end{aligned}
$$

- $\operatorname{conv}(C)$ is the smallest convex set containing

©easycalculation.com C.

Cones

- C is a cone if for all $x \in C$ the ray $\mathbb{R}_{+} x \subset C$, ie.,

$$
\forall x \in C, \quad \forall \theta \in \mathbb{R}_{+}, \quad \theta x \in C
$$

- The (convex) conic hull of C is the set of all (convex) conic combination of elements of C ie.,

$$
\operatorname{cone}(C):=\left\{\sum_{i=1}^{K} \theta_{i} x_{i} \mid \forall x_{i} \in C, \forall \theta_{i} \in \mathbb{R}_{+}, \forall i \in[K], \forall K \in \mathbb{N}\right\}
$$

- cone (C) is the smallest convex cone containing C.
- A cone C is pointed if it does not contain any full line $\mathbb{R} x$ for $x \neq 0$.
- For C convex, cone $(C)=\bigcup_{t>0} t C$

Examples

Let $X=\mathbb{R}^{n}$.

- Any affine space is convex.
- Any hyperplane of X can be defined as $H:=\left\{x \in X \mid a^{\top} x=b\right\}$ for well choosen $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ and is an affine space of dimension $n-1$.
- H divide X into two half-spaces $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x \leq b\right.$ and $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x \geq b\right\}$ which are (closed) convex sets.
a (closed) convex set.
\& Exercise: Prove it.
- The set $C=\{(x, t) \in X \times \mathbb{R} \mid\|x\| \leq t\}$ is a cone.
- The set $C=\{x \in X \mid A x \leq b\}$ where A and b are given is a (closed) convex set called polyhedron.

Examples

Let $X=\mathbb{R}^{n}$.

- Any affine space is convex.
- Any hyperplane of X can be defined as $H:=\left\{x \in X \mid a^{\top} x=b\right\}$ for well choosen $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ and is an affine space of dimension $n-1$.
- H divide X into two half-spaces $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x \leq b\right.$ and $\left\{x \in \mathbb{R}^{n} \mid a^{\top} x \geq b\right\}$ which are (closed) convex sets.
- For any norm $\|\cdot\|$ the ball $B_{\|\cdot\|}\left(x_{0}, r\right):=\left\{x \in X \mid\left\|x-x_{0}\right\| \leq r\right\}$ is a (closed) convex set.
\& Exercise: Prove it.
- The set $C=\{(x, t) \in X \times \mathbb{R} \mid\|x\| \leq t\}$ is a cone.
- The set $C=\{x \in X \mid A x \leq b\}$ where A and b are given is a (closed) convex set called polyhedron.

Operations preserving convexity

Assume that all sets denoted by C (indexed or not) are convex.

- $C_{1}+C_{2}$ and $C_{1} \times C_{2}$ are convex sets.
- For any arbitrary index set \mathcal{I} the intersection $\bigcap_{i \in \mathcal{I}} C_{i}$ is convex.
- Let f be an affine function. Then $f(C)$ and $f^{-1}(C)$ are convex.
- In particular, $C+x_{0}$, and $t C$ are convex. The projection of C on any affine space is convex.
- The closure $\operatorname{cl}(C)$ and relative interior $\mathrm{ri}(C)$ are convex.
\& Exercise: Prove these results.

Perspective and linear-fractional function

Let $P: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ be the perspective function defined as $P(x, t)=x / t$, with $\operatorname{dom}(P)=\mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$.

Theorem

If $C \subset \operatorname{dom}(P)$ is convex, then $P(C)$ is convex.
If $C \subset \mathbb{R}^{n}$ is convex, then $P^{-1}(C)$ is convex.
© Exercise: Prove this result.

Perspective and linear-fractional function

Let $P: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ be the perspective function defined as $P(x, t)=x / t$, with $\operatorname{dom}(P)=\mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$.

```
Theorem
If C\subset\operatorname{dom}(P)\mathrm{ is convex, then }P(C)\mathrm{ is convex.}
If C\subset\mp@subsup{\mathbb{R}}{}{n}\mathrm{ is convex, then }\mp@subsup{P}{}{-1}(C)\mathrm{ is convex.}
```

A Exercise: Prove this result.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear-fractional function of the form $f(x):=(A x+b) /\left(c^{\top} x+d\right)$, with $\operatorname{dom}(f)=\left\{x \mid c^{\top} x+d>0\right\}$.

Theorem

If $C \subset \operatorname{dom}(f)$ is convex, then $f(C)$ and $f^{-1}(C)$ are convex.
\& Exercise: prove this result.

Cone ordering

Let $K \subset \mathbb{R}^{n}$ be a closed, convex, pointed cone with non-empty interior. We define the cone ordering according to K by

$$
x \preceq K y \quad \Longleftrightarrow \quad y-x \in K .
$$

\& Exercise: Prove that \preceq_{K} is a partial order (i.e.,reflexive, antisymmetric, transitive) compatible with scalar product, addition and limits.

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Separation

Let X be a Banach space, and X^{*} its topological dual (i.e. the set of all continuous linear forms on X).

Theorem (Simple separation)

Let A and B be convex non-empty, disjunct subsets of X. There exists a separating hyperplane $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$ such that

$$
\left\langle x^{*}, a\right\rangle \leq \alpha \leq\left\langle x^{*}, b\right\rangle \quad \forall a, b \in A \times B .
$$

Theorem (Strong separation)

Let A and B be convex non-empty, disjunct subsets of X. Assume that, A is closed, and B is compact (e.g. a point), then there exists a strict separating hyperplane $\left(x^{*}, \alpha\right) \in X^{*} \times \mathbb{R}$ such that, there exists $\varepsilon>0$,

$$
\left\langle x^{*}, a\right\rangle+\varepsilon \leq \alpha \leq\left\langle x^{*}, b\right\rangle-\varepsilon \quad \forall a, b \in A \times B .
$$

Remark: these theorems require the Zorn Lemma which is equivalent to the axiom of choice.

Supporting hyperplane

Theorem

Let $x_{0} \notin \operatorname{ri}(C)$ and C convex. Then there exists $a \neq 0$ such that

$$
a^{\top} x \geq a^{\top} x_{0}, \quad \forall x \in C
$$

If $x_{0} \in C$, say that $H=\left\{x \mid a^{\top} x=a^{\top} x_{0}\right\}$ is a supporting hyperplane of C at x_{0}.
\& Exercise: prove this theorem Remark: there can be more than one supporting hyperplane at a given point.

Convex set as intersection of half-spaces

- The closed convex hull of $C \subset X$, denoted $\overline{\operatorname{conv}}(C)$ is the smallest closed convex set containing C.
- $\overline{\operatorname{conv}}(C)$ is the intersection of all the half-spaces containing C.
- A polyhedron is a finite intersection of half-spaces while a convex set is a possibly non-finite intersection of half-spaces.

Dual and normal cones

- Let $C \subset \mathbb{R}^{n}$ be a set. We define its dual cone by

$$
C^{\oplus}:=\left\{x \mid x^{\top} c \geq 0, \quad \forall c \in C\right\}
$$

- For any set C, C^{\oplus} is a closed convex cone.

Dual and normal cones

- Let $C \subset \mathbb{R}^{n}$ be a set. We define its dual cone by

$$
C^{\oplus}:=\left\{x \mid x^{\top} c \geq 0, \quad \forall c \in C\right\}
$$

- For any set C, C^{\oplus} is a closed convex cone.
- The normal cone of C at x_{0} is

$$
\begin{aligned}
N_{C}\left(x_{0}\right):=\{\lambda \in E \mid & \lambda^{\top}\left(x-x_{0}\right) \leq 0, \\
& \forall x \in C\}
\end{aligned}
$$

Examples

- The positive orthant $K=\mathbb{R}_{+}^{n}$ is a self dual cone, that is $K^{\oplus}=K$.
- In the space of symetric matrices $S_{n}(\mathbb{R})$, with the scalar product $\langle A, B\rangle=\operatorname{tr}(A B)$, the set of positive semidefinite matrices $K=S_{n}^{+}(\mathbb{R})$ is self dual.
- Let $\|\cdot\|$ be a norm. The cone $K=\{(x, t) \mid\|x\| \leq t\}$ has for dual $K^{\oplus}=\left\{(\lambda, z) \mid\|\lambda\|_{\star} \leq z\right\}$, where $\|\lambda\|_{\star}:=\sup _{x:\|x\| \leq 1} \lambda^{\top} x$.
© Exercise: prove these results

Some basic properties

Let $K \subset \mathbb{R}^{n}$ be a cone.

- K^{\oplus} is closed convex.
- $K_{1} \subset K_{2}$ implies $K_{2}^{\oplus} \subset K_{1}^{\oplus}$
- $K^{\oplus \oplus}=\overline{\text { conv }} K$
\& Exercise: Prove these results

Video ressources

https://www.youtube.com/watch?v=P3W_wFZ2kUo

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Functions with non finite values

- It is very useful in optimization to allow functions to take non-finite values, that is to take values in $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$.
- If both $-\infty$ and $+\infty$ are allowed be very careful of each addition !

- The epigraph of f as

- the domain of f as

- The sublevel set of level α

$$
\operatorname{lev}_{\alpha}(f):=\{x \in X \quad \mid \quad f(x) \leq \alpha\} .
$$

- f is said to be lower semi continuous (l.s.c.) if epi (f) is closed
- f is said to be nroner if it never takes value $-\infty$, has a nonempty domain (at least one finite value).

Functions with non finite values

- It is very useful in optimization to allow functions to take non-finite values, that is to take values in $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$.
- If both $-\infty$ and $+\infty$ are allowed be very careful of each addition !
- Let $f: X \rightarrow \overline{\mathbb{R}}$. We define
- The epigraph of f as

$$
\operatorname{epi}(f):=\{(x, t) \in X \times \mathbb{R} \quad \mid \quad f(x) \leq t\}
$$

- the domain of f as

$$
\operatorname{dom}(f):=\{x \in X \quad \mid \quad f(x)<+\infty\} .
$$

- The sublevel set of level α

$$
\operatorname{lev}_{\alpha}(f):=\{x \in X \quad \mid \quad f(x) \leq \alpha\} .
$$

- f is said to be lower semi continuous (I.s.c.) if epi (f) is closed
- f is said to be proper if it never takes value $-\infty$, has a non-empty

Functions with non finite values

- It is very useful in optimization to allow functions to take non-finite values, that is to take values in $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$.
- If both $-\infty$ and $+\infty$ are allowed be very careful of each addition !
- Let $f: X \rightarrow \overline{\mathbb{R}}$. We define
- The epigraph of f as

$$
\operatorname{epi}(f):=\{(x, t) \in X \times \mathbb{R} \quad \mid \quad f(x) \leq t\}
$$

- the domain of f as

$$
\operatorname{dom}(f):=\{x \in X \quad \mid \quad f(x)<+\infty\} .
$$

- The sublevel set of level α

$$
\operatorname{lev}_{\alpha}(f):=\{x \in X \quad \mid \quad f(x) \leq \alpha\} .
$$

- f is said to be lower semi continuous (l.s.c.) if api (f) is closed.
- f is said to be proper if it never takes value $-\infty$, has a nonempty domain (at least one finite value).

Convex function

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is convex if its epigraph is convex.
- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex jiff
$\forall t \in[0,1], \forall x, y \in X$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

- f is concave if $-f$ is convex.

Basic properties

- If f, g convex, $t>0$, then $t f+g$ is convex.
- If f convex non-decreasing, g convex, then $f \circ g$ convex.
- If f convex and a affine, then $f \circ a$ is convex.
- If $\left(f_{i}\right)_{i \in I}$ is a family of convex functions, then $\sup _{i \in I} f_{i}$ is convex.
- The domain and the sublevel sets of a convex function are convex.
- A convex function is always above its tangents.
\& Exercise: Prove these results.

Basic properties

- If f, g convex, $t>0$, then $t f+g$ is convex.
- If f convex non-decreasing, g convex, then $f \circ g$ convex.
- If f convex and a affine, then $f \circ a$ is convex.
- If $\left(f_{i}\right)_{i \in I}$ is a family of convex functions, then $\sup _{i \in I} f_{i}$ is convex.
- The domain and the sublevel sets of a convex function are convex.
- A convex function is always above its tangents.
\& Exercise: Prove these results.

Theorem (Jensen inequality)

Let f be a convex function and X an integrable random variable. Then we have

$$
f(\mathbb{E}[\boldsymbol{X}]) \leq \mathbb{E}[f(X)]
$$

Convex function: regularity

Consider a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$.

- f is continuous (on \mathbb{R}^{n}) if and only if $\operatorname{dom}(f)=\mathbb{R}^{n}$ (i.e., if it is finite everywhere)
- f is continuous on the interior of its domain
- f is lower-semicontinuous if and only if the domain is closed and the restriction of f to its domain is continuous

Convex functions: strict and strong convexity

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is strictly convex jiff

$$
\forall t \in] 0,1[, \quad \forall x, y \in X, \quad f(t x+(1-t) y)<t f(x)+(1-t) f(y)
$$

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall t \in] 0,1[, \quad \forall x, y \in X$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} \alpha t(1-t)\|x-y\|^{2}
$$

Convex functions: strict and strong convexity

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is strictly convex iff

$$
\forall t \in] 0,1[, \quad \forall x, y \in X, \quad f(t x+(1-t) y)<t f(x)+(1-t) f(y)
$$

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall t \in] 0,1[, \quad \forall x, y \in X$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} \alpha t(1-t)\|x-y\|^{2}
$$

- If $f \in C^{1}\left(\mathbb{R}^{n}\right)$
- $\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0$ iff f convex
- if strict inequality holds, then f strictly convex
- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall x, y \in X$

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\alpha}{2}\|y-x\|^{2}
$$

Convex functions: strict and strong convexity

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is strictly convex iff

$$
\forall t \in] 0,1[, \quad \forall x, y \in X, \quad f(t x+(1-t) y)<t f(x)+(1-t) f(y)
$$

- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall t \in] 0,1[, \quad \forall x, y \in X$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} \alpha t(1-t)\|x-y\|^{2}
$$

- If $f \in C^{1}\left(\mathbb{R}^{n}\right)$
- $\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0$ iff f convex
- if strict inequality holds, then f strictly convex
- $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is α-convex iff $\forall x, y \in X$

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\alpha}{2}\|y-x\|^{2}
$$

- If $f \in C^{2}\left(\mathbb{R}^{n}\right)$,
- $\nabla^{2} f \succcurlyeq 0$ iff f convex
- if $\nabla^{2} f \succ 0$ then f strictly convex
- if $\nabla^{2} f \succcurlyeq \alpha l$ then f is α-convex

Important examples

- The indicator function of a set $C \subset X$,

$$
\mathbb{I}_{C}(x):=\left\{\begin{array}{lc}
0 & \text { if } x \in C \\
+\infty & \text { otherwise }
\end{array}\right.
$$

is convex iff C is convex.

- $x \mapsto e^{a x}$ is convex for any $a \in \mathbb{R}$
- $x \mapsto\|x\|^{q}$ is convex for $q \geq 1$ and any norm
- $x \mapsto \ln (x)$ is concave
- $x \mapsto x \ln (x)$ is convex
- $x \mapsto \ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ is convex

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Convex optimization problem

$$
\operatorname{Min}_{x \in C} f(x)
$$

Where C is closed convex and f convex finite valued, is a convex optimization problem.

- If C is compact and f proper Isc, then there exists an optimal solution.
- If f is proper Isc and coercive, then there exists an optimal solution.
- The set of optimal solutions is convex.
- If f is strictly convex the minimum (if it exists) is unique.
- If f is α-convex the minimum exists and is unique.
\& Exercise: Prove these results.

Optimality conditions

Note that minimizing f over C or minimizing $f+\mathbb{I}_{C}$ over X is the same thing.
We consider the (unconstrained) optimization problem

with x^{\sharp} an optimal solution and f not necessarily convex.

- If f is differentiable then $\nabla f\left(x^{\sharp}\right)=0$.
- If f is twice differentiable, then $\nabla^{2} f\left(x^{\sharp}\right) \succeq 0$.
- If f is twice differentiable and $\nabla^{2} f\left(x_{0}\right) \succ 0$ then x_{0} is a local minimum

If, in addition, f is convex then $\nabla f(x)=0$ is a sufficient optimality condition.

Optimality conditions

Note that minimizing f over C or minimizing $f+\mathbb{I}_{C}$ over X is the same thing.
We consider the (unconstrained) optimization problem

$$
\operatorname{Min}_{x \in X} \quad f(x)
$$

with x^{\sharp} an optimal solution and f not necessarily convex.

- If f is differentiable, then $\nabla f\left(x^{\sharp}\right)=0$.
- If f is twice differentiable, then $\nabla^{2} f\left(x^{\sharp}\right) \succeq 0$.
- If f is twice differentiable and $\nabla^{2} f\left(x_{0}\right) \succ 0$ then x_{0} is a local minimum.

If, in addition, f is convex then $\nabla f(x)=0$ is a sufficient optimality condition.

Optimality conditions

Note that minimizing f over C or minimizing $f+\mathbb{I}_{C}$ over X is the same thing.
We consider the (unconstrained) optimization problem

$$
\operatorname{Min}_{x \in X} \quad f(x)
$$

with x^{\sharp} an optimal solution and f not necessarily convex.

- If f is differentiable, then $\nabla f\left(x^{\sharp}\right)=0$.
- If f is twice differentiable, then $\nabla^{2} f\left(x^{\sharp}\right) \succeq 0$.
- If f is twice differentiable and $\nabla^{2} f\left(x_{0}\right) \succ 0$ then x_{0} is a local minimum.
If, in addition, f is convex then $\nabla f(x)=0$ is a sufficient optimality condition.

Optimality conditions

Note that minimizing f over C or minimizing $f+\mathbb{I}_{C}$ over X is the same thing.
We consider the (unconstrained) optimization problem

$$
\operatorname{Min}_{x \in X} \quad f(x)
$$

with x^{\sharp} an optimal solution and f not necessarily convex.

- If f is differentiable, then $\nabla f\left(x^{\sharp}\right)=0$.
- If f is twice differentiable, then $\nabla^{2} f\left(x^{\sharp}\right) \succeq 0$.
- If f is twice differentiable and $\nabla^{2} f\left(x_{0}\right) \succ 0$ then x_{0} is a local minimum.
If, in addition, f is convex then $\nabla f(x)=0$ is a sufficient optimality condition.

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Partial infimum

Let f be a convex function and C a convex set. The function

$$
g: x \mapsto \inf _{y \in C} f(x, y)
$$

is convex.
© Exercise: Prove this result.

\& Exercise: Prove that the function distance to a convex set C defined by

Partial infimum

Let f be a convex function and C a convex set. The function

$$
g: x \mapsto \inf _{y \in C} f(x, y)
$$

is convex.
A Exercise: Prove this result.
\& Exercise: Prove that the function distance to a convex set C defined by

$$
d_{C}(x):=\inf _{c \in C}\|c-x\|
$$

is convex.

Perspective function

Let $\phi: E \rightarrow \overline{\mathbb{R}}$. The perspective of ϕ is defined as
$\tilde{\phi}: \mathbb{R}_{+}^{*} \times E \rightarrow \mathbb{R}$ by

$$
\tilde{\phi}(\eta, y):=\eta \phi(y / \eta) .
$$

Theorem

ϕ is convex iff $\tilde{\phi}$ is convex.
© Exercise: prove this result

Inf-Convolution

Let f and g be proper function from X to $\mathbb{R} \cup\{+\infty\}$. We define

$$
f \square g: x \mapsto \inf _{y \in X} f(y)+g(x-y)
$$

\& Exercise: Show that

- $f \square g=g \square f$
- If f and g are convex then so is $f \square g$

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Subdifferential of convex function

Let X be an Hilbert space, $f: X \rightarrow \overline{\mathbb{R}}$ convex.

- The subdifferential of f at $x \in \operatorname{dom}(f)$ is the set of slopes of all affine minorants of f exact at x :

$$
\partial f(x):=\{\lambda \in X \quad \mid \quad f(\cdot) \geq\langle\lambda, \cdot-x\rangle+f(x)\} .
$$

- If f is derivable at x then

$$
\partial f(x)=\{\nabla f(x)\}
$$

Examples

- If $f: x \mapsto|x|$, then

$$
\partial f(x)= \begin{cases}-1 & \text { if } x<0 \\ {[-1,1]} & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

- If C is convex then, for $x \in C, \partial\left(\mathbb{I}_{C}\right)(x)=N_{C}(x)$
\& Exercise: Prove it.
- If f_{1} and f_{2} are convex and differentiable. Define $f=\max \left(f_{1}, f_{2}\right)$. Then
- if $f_{1}(x)>f_{2}(x), \partial f(x)=\left\{\nabla f_{1}(x)\right\}$
- if $f_{1}(x)<f_{2}(x), \partial f(x)=\left\{\nabla f_{2}(x)\right\}$;
- if $f_{1}(x)=f_{2}(x), \partial f(x)=\overline{\operatorname{conv}}\left(\left\{\nabla f_{1}(x), \nabla f_{2}(x)\right\}\right)$.

Subdifferential calculus

Let f_{1} and f_{2} be proper convex functions.
Theorem
We have

$$
\partial\left(f_{1}\right)(x)+\partial\left(f_{2}\right)(x) \subset \partial\left(f_{1}+f_{2}\right)(x), \quad \forall x
$$

Further if ri $\left(\operatorname{dom}\left(f_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(f_{2}\right)\right) \neq \emptyset$ then

$$
\partial\left(f_{1}\right)(x)+\partial\left(f_{2}\right)(x)=\partial\left(f_{1}+f_{2}\right)(x), \quad \forall x
$$

When f_{i} is polyhedral you can replace $\operatorname{ri}\left(\operatorname{dom}\left(f_{i}\right)\right)$ by $\operatorname{dom}\left(f_{i}\right)$ in the condition.

Subdifferential calculus

Let f_{1} and f_{2} be proper convex functions.
Theorem
We have

$$
\partial\left(f_{1}\right)(x)+\partial\left(f_{2}\right)(x) \subset \partial\left(f_{1}+f_{2}\right)(x), \quad \forall x
$$

Further if $\operatorname{ri}\left(\operatorname{dom}\left(f_{1}\right)\right) \cap \operatorname{ri}\left(\operatorname{dom}\left(f_{2}\right)\right) \neq \emptyset$ then

$$
\partial\left(f_{1}\right)(x)+\partial\left(f_{2}\right)(x)=\partial\left(f_{1}+f_{2}\right)(x), \quad \forall x
$$

When f_{i} is polyhedral you can replace $\operatorname{ri}\left(\operatorname{dom}\left(f_{i}\right)\right)$ by $\operatorname{dom}\left(f_{i}\right)$ in the condition.

Theorem

If f is convex and $a: x \mapsto A x+b$ with $\operatorname{Im}(a) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \emptyset$, then

$$
\partial(f \circ a)(x)=A^{\top} \partial f(A x+b) .
$$

First order optimality conditions

Theorem

Let $f: X \mapsto \mathbb{R} \cup\{+\infty\}$ be a convex function (not necessarily) differentiable. x^{\sharp} is a minimizer of f if and only if $0 \in \partial f\left(x^{\sharp}\right)$.

First order optimality conditions

Theorem

Let $f: X \mapsto \mathbb{R} \cup\{+\infty\}$ be a convex function (not necessarily) differentiable. x^{\sharp} is a minimizer of f if and only if $0 \in \partial f\left(x^{\sharp}\right)$.

Theorem

Let f be a proper convex function and C a closed non-empty convex set such that $\operatorname{ri}(C) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \emptyset$ then x^{\sharp} is an optimal solution to

$$
\min _{x \in C} \quad f(x)
$$

iff

$$
0 \in \partial f\left(x^{\sharp}\right)+N_{C}\left(x^{\sharp}\right),
$$

iff

$$
\exists \lambda \in \partial f\left(x^{\sharp}\right), \quad \lambda \in-N_{C}\left(x^{\sharp}\right) .
$$

Normal cone, Tangent cone and optimality

Let C be a convex set. We define the tangent cone of $C \subset \mathbb{R}^{n}$ at point $x \in C$, as the set of directions in which you can move from x while staying in C for some time, that is

$$
T_{C}(x):=\left\{\lambda(y-x) \mid y \in C, \quad \lambda \in \mathbb{R}^{+}\right\}
$$

In particular, $T_{C}(x)=\mathbb{R}^{n}$ iff $x \in \operatorname{int}(C)$.
\% Exercise: Prove that $\left[T_{C}(x)\right]^{\oplus}=-N_{C}(x)$.

Normal cone, Tangent cone and optimality

Let C be a convex set. We define the tangent cone of $C \subset \mathbb{R}^{n}$ at point $x \in C$, as the set of directions in which you can move from x while staying in C for some time, that is

$$
T_{C}(x):=\left\{\lambda(y-x) \mid y \in C, \quad \lambda \in \mathbb{R}^{+}\right\}
$$

In particular, $T_{C}(x)=\mathbb{R}^{n}$ iff $x \in \operatorname{int}(C)$.
\& Exercise: Prove that $\left[T_{C}(x)\right]^{\oplus}=-N_{C}(x)$.

Partial infimum

Let $f: X \times Y \rightarrow \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$
v(x)=\inf _{y \in Y} f(x, y)
$$

then v is convex.
If v is proper, and $v(x)=f\left(x, y^{\sharp}(x)\right)$ then

$$
\partial v(x)=\left\{g \in X \quad \mid \quad(g, 0) \in \partial f\left(x, y^{\sharp}(x)\right)\right\}
$$

proof:

Partial infimum

Let $f: X \times Y \rightarrow \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$
v(x)=\inf _{y \in Y} f(x, y)
$$

then v is convex.
If v is proper, and $v(x)=f\left(x, y^{\sharp}(x)\right)$ then

$$
\partial v(x)=\left\{g \in X \quad \mid \quad(g, 0) \in \partial f\left(x, y^{\sharp}(x)\right)\right\}
$$

proof:

Partial infimum

Let $f: X \times Y \rightarrow \overline{\mathbb{R}}$ be a jointly convex and proper function, and define

$$
v(x)=\inf _{y \in Y} f(x, y)
$$

then v is convex.
If v is proper, and $v(x)=f\left(x, y^{\sharp}(x)\right)$ then

$$
\partial v(x)=\left\{g \in X \quad \mid \quad(g, 0) \in \partial f\left(x, y^{\sharp}(x)\right)\right\}
$$

proof:

$$
\begin{aligned}
g \in \partial v(x) & \Leftrightarrow \forall x^{\prime}, \quad v\left(x^{\prime}\right) \geq v(x)+\left\langle g, x^{\prime}-x\right\rangle \\
& \Leftrightarrow \forall x^{\prime}, y^{\prime} \quad f\left(x^{\prime}, y^{\prime}\right) \geq f\left(x, y^{\sharp}(x)\right)+\left\langle\binom{ g}{0},\binom{x^{\prime}}{y^{\prime}}-\binom{x}{y^{\sharp}(x)}\right\rangle \\
& \Leftrightarrow\binom{g}{0} \in \partial f\left(x, y^{\sharp}(x)\right)
\end{aligned}
$$

Convex function: regularity

- Assume f convex, then f is continuous on the relative interior of its domain, and Lipschitz on any compact contained in the relative interior of its domain.
- A proper convex function is subdifferentiable on the relative interior of its domain.
- If f is convex, it is L-Lipschitz iff $\partial f(x) \subset B(0, L), \quad \forall x \in \operatorname{dom}(f)$

Contents

(1) Convex sets [BV 2]

- Fundamental definitions
- Separation theorems
(2) Convex functions [BV 3]
- definitions
- Convex function and optimization
- Some results on convex functions
(3) Convex analysis
- Subdifferential
- Fenchel transform
(4) Wrap-up

Fenchel transform

Let X be a Hilbert space, $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function.

- The Fenchel transform of f, is $f^{\star}: X \rightarrow \overline{\mathbb{R}}$ with

$$
f^{\star}(\lambda):=\sup _{x \in X}\langle\lambda, x\rangle-f(x) .
$$

- f^{\star} is convex Isc as the supremum of affine functions.
- $f<g$ implies that $f^{\star}>g^{\star}$.
- If f is proper convex Isc, then $f^{\star \star}=f$, otherwise $f^{\star \star} \leq f$
\& Exercise: Prove the first two points

Fenchel transform

Let X be a Hilbert space, $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function.

- The Fenchel transform of f, is $f^{\star}: X \rightarrow \overline{\mathbb{R}}$ with

$$
f^{\star}(\lambda):=\sup _{x \in X}\langle\lambda, x\rangle-f(x) .
$$

- f^{\star} is convex Isc as the supremum of affine functions.
- $f \leq g$ implies that $f^{\star} \geq g^{\star}$.
- If f is proper convex Isc, then $f^{\star \star}=f$, otherwise $f^{\star \star} \leq f$.
\& Exercise: Prove the first two points

Fenchel transform

Let X be a Hilbert space, $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function.

- The Fenchel transform of f, is $f^{\star}: X \rightarrow \overline{\mathbb{R}}$ with

$$
f^{\star}(\lambda):=\sup _{x \in X}\langle\lambda, x\rangle-f(x) .
$$

- f^{\star} is convex Isc as the supremum of affine functions.
- $f \leq g$ implies that $f^{\star} \geq g^{\star}$.
- If f is proper convex Isc, then $f^{\star \star}=f$, otherwise $f^{\star \star} \leq f$

\& Exercise: Prove the first two points

Fenchel transform

Let X be a Hilbert space, $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function.

- The Fenchel transform of f, is $f^{\star}: X \rightarrow \overline{\mathbb{R}}$ with

$$
f^{\star}(\lambda):=\sup _{x \in X}\langle\lambda, x\rangle-f(x)
$$

- f^{\star} is convex Isc as the supremum of affine functions.
- $f \leq g$ implies that $f^{\star} \geq g^{\star}$.
- If f is proper convex Isc, then $f^{\star \star}=f$, otherwise $f^{\star \star} \leq f$.
\& Exercise: Prove the first two points

Fenchel transform and subdifferential

- By definition $f^{\star}(\lambda) \geq\langle\lambda, x\rangle-f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x)+f^{\star}(\lambda) \geq\langle\lambda, x\rangle$.
- Recall that $\lambda \in \partial f(x)$ iff,

- If f proper convex Isc

$$
\lambda \in \partial f(x)
$$

Fenchel transform and subdifferential

- By definition $f^{\star}(\lambda) \geq\langle\lambda, x\rangle-f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x)+f^{\star}(\lambda) \geq\langle\lambda, x\rangle$.
- Recall that $\lambda \in \partial f(x)$ iff,

$$
f\left(x^{\prime}\right) \geq f(x)+\left\langle\lambda, x^{\prime}-x\right\rangle, \quad \forall x^{\prime}
$$

iff

$$
\langle\lambda, x\rangle-f(x) \geq\left\langle\lambda, x^{\prime}\right\rangle-f\left(x^{\prime}\right) \quad \forall x^{\prime}
$$

that is
$\lambda \in \partial f(x) \Leftrightarrow$ $\in \arg \max \{$

- If f proper convex Isc

Fenchel transform and subdifferential

- By definition $f^{\star}(\lambda) \geq\langle\lambda, x\rangle-f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x)+f^{\star}(\lambda) \geq\langle\lambda, x\rangle$.
- Recall that $\lambda \in \partial f(x)$ iff,

$$
f\left(x^{\prime}\right) \geq f(x)+\left\langle\lambda, x^{\prime}-x\right\rangle, \quad \forall x^{\prime}
$$

iff

$$
\langle\lambda, x\rangle-f(x) \geq\left\langle\lambda, x^{\prime}\right\rangle-f\left(x^{\prime}\right) \quad \forall x^{\prime}
$$

that is

$$
\lambda \in \partial f(x) \Leftrightarrow x \in \underset{x^{\prime} \in X}{\arg \max }\left\{\left\langle\lambda, x^{\prime}\right\rangle-f\left(x^{\prime}\right)\right\} \Leftrightarrow f(x)+f^{\star}(\lambda)=\langle\lambda, x\rangle
$$

- If f proper convex Isc

Fenchel transform and subdifferential

- By definition $f^{\star}(\lambda) \geq\langle\lambda, x\rangle-f(x)$ for all x,
- thus we always have (Fenchel-Young) $f(x)+f^{\star}(\lambda) \geq\langle\lambda, x\rangle$.
- Recall that $\lambda \in \partial f(x)$ iff,

$$
f\left(x^{\prime}\right) \geq f(x)+\left\langle\lambda, x^{\prime}-x\right\rangle, \quad \forall x^{\prime}
$$

iff

$$
\langle\lambda, x\rangle-f(x) \geq\left\langle\lambda, x^{\prime}\right\rangle-f\left(x^{\prime}\right) \quad \forall x^{\prime}
$$

that is

$$
\lambda \in \partial f(x) \Leftrightarrow x \in \underset{x^{\prime} \in X}{\arg \max }\left\{\left\langle\lambda, x^{\prime}\right\rangle-f\left(x^{\prime}\right)\right\} \Leftrightarrow f(x)+f^{\star}(\lambda)=\langle\lambda, x\rangle
$$

- If f proper convex Isc

$$
\lambda \in \partial f(x) \quad \Longleftrightarrow \quad x \in \partial f^{\star}(\lambda)
$$

What you have to know

- What is a affine set, a convex set, a polyhedron, a (convex) cone
- What is a convex function, that it is above its tangents.
- Jensen inequality
- What is a convex optimization problem. That any local minimum is a global minimum.
- The necessary optimality condition $\nabla f\left(x^{\sharp}\right) \in\left[T_{X}\left(x^{\sharp}\right)\right]^{\oplus}$

What you really should know

- That you can separate convex sets with a linear function
- What is the positive dual of a cone
- Basic manipulations preserving convexity (sum, cartesian product, intersection, linear projection)
- What is the domain, the sublevel of a function f
- What is a lower semi-continuous function, a proper convex function
- Conditions of (strict, strong) convexity for differentiable functions
- The partial minimum of a convex function is convex
- The definition of the subdifferential.
- The definition of the Fenchel transform.
- The link between Fenchel transform and subdifferential.

What you have to be able to do

- Show that a set is convex
- Show that a function is (strictly, strongly) convex
- Go from constrained problem to unconstrained problem using the indicator function \mathbb{I}_{X}

What you should be able to do

- Compute dual cones
- Use advanced results (projection, partial infimum, perspective) to show that a function or a set is convex
- Compute the Fenchel transform of simple functions

