
Exercises : Markov Decision Process

June 12, 2023

Exercise 1 (A simple MDP). Let X = {0, 1, 2, 3},
A = {0, 1}. Let (Xt)t∈J1,5K be a controlled Markov
chain, such that, if a = 0, it stays in its state, and
if a = 1 it has a probability 0.5 of going 1 up (if
possible, otherwise stay in place), and 0.5 of going
1 down (if possible, otherwise stay in place).

Solve by Dynamic Programming the following op-
timization problem.

Max E
[ 4∑
t=0

X2
t | X0 = 0

]
You can represent the cost-to-go and the optimal
policy as matrices, each column representing one
time-step.

Exercise 2. Consider a unit that have 3 possi-
ble states : New, Working, Broken. When the
unit is New at the beginning of one year, it will
be Working at the beginning with probability 0.75
and Broken with probability 0.25. If it is in Work-
ing condition it can be either maintained or not.
If maintained, for a cost of 2, it stay in Working
condition with probability 1. If not maintainted,
there is a probability of 0.5 of staying in the same
condition, and of 0.5 of being Broken. If broken
you can either stay this way, for a cost of 5, or
repair it for a cost of 10, making it new for the
next step.

We want to manage the unit over an horizon of
T = 5 steps, starting with a new unit. Find the
policy with minimal expected cost.

Exercise 3 (Optimal stopping time). Consider
the following ”push your luck” game. At turn t the
player gain 1 point with probability 0 < p < 1, and
loose everything with probability 1− p. At the end
of the turn she chooses to stop, earning her current
points or continue - with the risk of loosing all.

Solve the problem of maximizing expected earned
points directly and by dynamic programming.

Answers: We see that if it is optimal to stop
when you reach x point, for any y > x it is
also optimal to stop. So the problem consists
in choosing the number of points (or equivalently
the number of turn) after which to stop. After x
turn you win x points, with probability px. Thus
the expected value is f(x) = xpx, and we have
f ′(x) = (1−p)x(1+x ln(1−p)) which is a concave
function maximized for x = −1/ ln(1 − p). The
optimal number of turn is thus ⌊−1/ ln(1− p)⌋ or
⌈−1/ ln(1− p)⌉.
The state x is the current number of point. The
Bellman equation reads V (x) = max{x, pV (x +
1)}. For x large enough we can guess that it is
optimal to stop, thus V (x) = x.
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Exercises: Convex analysis

June 12, 2023

Convex sets

Exercise 1 (Perspective function). Let P : Rn ×
R → Rn be the perspective function defined as
P (x, t) = x/t, with dom(P ) = Rn × R∗

+.

1. Show that the image by P of the segment
[
(
x
s

)
,
( y
t

)
] is the segment [P (

(
x
s

)
), P (

( y
t

)
)],

i.e. P ([
(
x
s

)
,
( y
t

)
]) = [P (

(
x
s

)
), P (

( y
t

)
)].

2. Show that, if C ⊂ Rn × R∗
+ is convex, then

P (C) is convex.

3. Show that, if D ⊂ Rn, then P−1(D) is convex.

Answers:

1. Let x and y be element of Rn × R∗
+.

P (θ
(
x
s

)
+ (1− θ)

( y
t

)
)

=
θx+ (1− θ)y

θs+ (1− θ)t

= µP (
(
x
s

)
) + (1− µ)P (

( y
t

)
)

with µ(θ) = θs
θs+(1−θ)t . Note that θ 7→ µ

is monotonous, and µ([0, 1]) = [0, 1]. Thus,
P ([x, y]) = [P (x), P (y)].

2. Consider two elements of P (C), P (x) and
P (y). To show convexity we need to show
that [P (x), P (y)] ⊂ P (C). By 1. we have
[P (x), P (y)] = P ([x, y]) and [x, y] ⊂ C by
convexity of C.

3. Now assume that
(
x
s

)
∈ P−1(C) and

( y
t

)
∈

P−1(C). We need to show that θx+(1−θ)y
θs+(1−θ)t ∈

C. This comes from θx+(1−θ)y
θs+(1−θ)t = µ(x/t)+(1−

µ)(y/s) with µ = θt
θt+(1−θ)s .

Exercise 2 (Dual cones). Recall that, for any set
K ⊂ Rn, K⊕ := {y ∈ Rn | ∀x ∈ K, ⟨y, x⟩ ≥ 0}.
We say that K is self dual if K⊕ = K.

1. Show that K = Rn
+ is self dual.

2. We consider the set of symmetric matrices
Sn with the scalar product ⟨A,B⟩ = tr(AB).
Show that K = S+

n (R) is self dual.

3. Let ∥ · ∥ be a norm, show that K =
{(x, t) | ∥x∥ ≤ t} has for dual K⊕ =
{(z, λ) | ∥z∥⋆ ≤ λ}, where ∥z∥⋆ :=
supx:∥x∥≤1 z

⊤x.

Answers:

1. obvious

2. Let Y ∈ Sn \ S+
n . Then there exists v ∈ Rn,

v⊤Y v < 0. Moreover, v⊤Y v = tr(v⊤Xv) =
tr(v⊤vX) < 0. Hence we haveX = v⊤v ∈ S+

n

such that ⟨Y,X⟩ < 0, i.e. Y ̸∈ (S+
n )

⊕.

On the other hand, consider Y ∈ S+
n .

We have the following decomposition Y =∑n
i=1 λiq

⊤
i qi, where λi ≥ 0 are the eigenval-

ues, and qi the associated eigenvectors. Thus,
for any X ∈ S+

n , we have

⟨Y,X⟩ = tr(X

n∑
i=1

λiq
⊤
i qi) = tr(

n∑
i=1

λiq
⊤
i Xqi) ≥ 0

hence Y ∈ (S+
n )

⊕

Exercise 3. We consider the set of n × n sym-
metric real matrices Sn(R).

1. Show that ⟨A,B⟩ = tr(AB) is a scalar product
on Sn.

2. Show that the set of semi-definite positive ma-
trices K = S+

n (R) is a cone.
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3. Show that K = S+
n (R) is self dual (i.e. K =

K⊕ for this scalar product).

Answers:

1. It is symetric and bilinear. tr(AA) =∑
ij a

2
ij = 0 implie A = 0.

2. Let A and B be in Sn
++, and t > 0 and t′ ≥ 0.

Then we have, for all x ∈ Rn, x ̸= 0,

x⊤(tA+ t′B)x = tx⊤Ax+ t′x⊤Bx > 0.

3. Let Y ∈ Sn \ S+
n . Then there exists v ∈ Rn,

v⊤Y v < 0. Moreover, v⊤Y v = tr(v⊤Xv) =
tr(v⊤vX) < 0. Hence we haveX = v⊤v ∈ S+

n

such that ⟨Y,X⟩ < 0, i.e. Y ̸∈ (S+
n )

⊕.

On the other hand, consider Y ∈ S+
n .

We have the following decomposition Y =∑n
i=1 λiq

⊤
i qi, where λi ≥ 0 are the eigenval-

ues, and qi the associated eigenvectors. Thus,
for any X ∈ S+

n , we have

⟨Y,X⟩ = tr(X
n∑

i=1

λiq
⊤
i qi)

= tr(
n∑

i=1

λiq
⊤
i Xqi) ≥ 0

hence Y ∈ (S+
n )

⋆

Convex functions

Exercise 4 (Moving average). Let f : R → R be
a convex function.

1. Show that, s 7→
∫ 1
0 f(st)dt is convex.

2. Show that, R∗
+ ∋ T 7→ 1/T

∫ T
0 f(t)dt is con-

vex.

Answers:

1. Obvious from convexity of f and monotonic-
ity of the integral.

2. Change of variable u = t/T .

Exercise 5 (Partial infimum). Let f : Rn×Rm →
R̄ be a convex function and C ⊂ Rm a convex set.
Show that the function

g : x 7→ inf
y∈C

f(x, y)

is convex.

Answers: Consider x1 and x2 in dom(g). For
ε > 0, we have yi such that f(xi, yi) ≤ g(xi) + ε.
Thus,

g(θx1 + (1− θ)x2)

= inf
y∈C

f(θx1 + (1− θ)x2, y)

≤ f(θx1 + (1− θ)x2, θy1 + (1− θ)y2)

≤ θf(x1, y1) + (1− θ)f(x2, y2)

≤ θg(x1) + (1− θ)g(x2) + ε

taking the limit in ε yields the result.

Exercise 6 (log determinant). Let, for any X ∈
Sn, f(X) = ln(det(X)) for X ≻ 0, −∞ otherwise.
Consider, for Z ≻ 0, and V ∈ Sn, the function
g : t 7→ f(Z + tV ).

1. Show that g(t) =
∑n

i=1 ln(1 + tλi) +
f(Z), where the λi are the eigenvalues of
Z−1/2V Z−1/2.

2. Show that g is concave. Conclude that f is
concave.

Answers:

1. We have

g(t) = f(Z1/2(I + tZ−1/2V Z−1/2)Z1/2)

= ln det(Z) + ln det(I + tZ−1/2V Z−1/2)

= f(Z) +

n∑
i=1

ln(1 + tλi)

2. Concavity of g is obvious as sum of concave
functions. We have f(tX + (1− t)Y ) = g(t),
with Z = X and V = Y − X. Hence f is
concave.

Exercise 7 (Perspective function). Let ϕ : E →
R ∪ {+∞}. The perspective of ϕ is defined as ϕ̃ :
R∗
+ × E → R by

ϕ̃(η, y) := ηϕ(y/η).

Show that ϕ is convex iff ϕ̃ is convex.

Answers:

(η, y, z) ∈ epi ϕ̃ ⇔ ηϕ(y/η) ≤ z

⇔ ϕ(y/η) ≤ z/η

⇔ (y/η, z/η) ∈ epiϕ



Thus epiϕ is the image of epi ϕ̃ through the per-
spective function which preserve convexity (see ex-
ercise 1).

Fenchel transform and subdifferential

Exercise 8 (Norm). Let ∥ · ∥ be a norm on Rn

and ∥y∥⋆ := supx:∥x∥≤1 y⊤x be its dual norm. Let
f : x 7→ ∥x∥. Compute f⋆ and ∂f(0).

Answers: Recall that f⋆(y) = supx y
⊤x − ∥x∥.

We have y⊤x ≤ ∥x∥∥y∥⋆. Thus, if ∥y∥⋆ ≤ 1, we
have f⋆(y) ≤ supx ∥x∥(∥y∥⋆ − 1) ≤ 0 attained for
x = 0.
Otherwise, if ∥y∥⋆ > 1, there exists x such that
y⊤x > 1, and we have, for all t > 0, f⋆(y) ≥
t(y⊤x− ∥x∥). Consequently f⋆(y) = I∥·∥⋆≤1.
By Fenchel-Young, ∂f(0) = {y ∈ Rn | ∥y∥⋆ ≤ 1}.

Exercise 9 (Log sum exp). We consider f(x) :=
ln(
∑n

i=1 e
xi).

1. Show that f is convex. Hint : recall Holder’s
inequality x⊤y ≤ ∥x∥p∥y∥q for 1/p+1/q = 1.

2. Show that f⋆(y) =
∑n

i=1 yi ln(yi) if y ≥ 0 and∑
i yi = 1, +∞ otherwise.

Answers:

1. Let x, y ∈ Rn and set ui = exi and vi = eyi .
For θ ∈ [0, 1], we have

f(θx+ (1− θ)y) = ln(

n∑
i=1

eθxi+(1−θ)yi)

= ln(
n∑

i=1

uθi v
1−θ
i )

We use p = 1/θ and q = 1/(1− θ) in Holder’s
inequality to get

f(θx+ (1− θ)y) ≤ ln

( n∑
i=1

ui

)θ( n∑
i=1

ui

)1−θ


= θf(x) + (1− θ)f(y)

2.



Exercises: Optimality conditions
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Exercise 1. Solve the following optimization
problem

Min
x,y∈R2

(x− 1)2 + (y − 2)2

x ≤ y

x+ 2y ≤ 2

Answers: The problem is convex and qualified
through Slater’s condition (e.g. (−1, 0)). La-
grangian

L(x, y, µ) =(x− 1)2 + (y − 2)2

+ µ1(x− y) + µ2(x+ 2y − 2)

KKT conditions

2(x− 1) + µ1 + µ2 = 0

2(y − 2)− µ1 + 2µ2 = 0

x ≤ y, x+ 2y ≤ 2

µ1 ≥ 0, µ2 ≥ 0

µ1 = 0 or x = y

µ2 = 0 or x+ 2y = 2

If µ1 = µ2 = 0 we get x = 1, y = 2 thus x+ 2y =
5 > 2 not admissible.

If µ1 = 0 and µ2 > 0, we get x = 2− 2y and µ2 =
2(1−x) = 4y−2, leading to 2(y−2)+2(4y−2) = 0.
Thus, y = 4/5, x = 2/5, µ1 = 0, µ2 = 6/5 > 0
satisfy KKT conditions, and thus is optimal by
convexity.

Exercise 2 (First order optimality condition).
Consider, for f differentiable,

(P ) Min
x∈Rn

f(x)

s.t. x ∈ X

Recall that

TX(x0) =
{
d ∈ Rn | ∃dk → d,∃tk ↘ 0,

s.t. x0 + tkdk ∈ X
}

and K⊕ =
{
λ | λ⊤x ≥ 0, ∀x ∈ K

}
.

Show that

1. If x0 is an optimal solution to (P ), then
∇f(x0) ∈ [TX(x0)]

+.

2. If f is convex, X is closed convex, and
∇f(x0) ∈ [TX(x0)]

⊕, then x0 is an optimal
solution to (P ).

Answers:

1. Assume that ∇f(x0) /∈ [TX(x0)]
⊕. Then we

have d ∈ TX(x0) such that d⊤∇f(x0) < 0.
By continuity of scalar product we have, for
k large enough, d⊤k ∇f(x0) < 0. We have
x0 + tkdk ∈ X, and f(x0 + tkdk) = f(x0) +
tkd

⊤
k ∇f(x0) + o(tkdk). Thus, for k large

enough, f(x0 + tkdk) < f(x0).

2. By convexity of X, we have, for x ∈ X, (x−
x0) ∈ TX(x0). Further, by convexity of f ,
f(x) ≥ f(x0) +

〈
∇f(x0) , x− x0

〉
≥ f(x0).

Exercise 3. In the following cases, are the KKT
conditions necessary / sufficient ?

1.

min
x1,x2,x3

12x1 − 5x2 + 3x3

s.t. x1 + 2x2 − x3 = 5

x1 − x2 ≥ −2

2x1 − 4x2 ≤ 12

1



2.

min
x1,x2

4x21 − x1x2 + x22 − 12x1

s.t. x1 − 2x2 + x3 = 5

x21 + 3x22 ≤ 10

x1, x2, x3 ≥ 0

3.

min
x1,x2,x3

ex1 − x1x2 + x33

s.t. ln(ex1−4x2 + ex1+x3) ≤ 2x1 + 3

2x21 + x22 ≤ 2

4.

min
x1,x2

− x1

s.t. − x2 − (x1 − 1)3 ≤ 0

x1, x2 ≥ 0

5.

min
x1,x2

− x1

s.t. x2 − (x1 − 1)3 ≤ 0

x1, x2 ≥ 0

Answers:

1. CNS as problem is linear, thus convex and
qualified everywhere

2. CNS as problem is convex and qualified by
Slater

3. CN as constraints are convex and qualified by
Slater but objective is nonconvex

4. CNS, constraints are qualified due to
”positive-independence” condition.

5. Neither. Indeed, no sufficient qualification
conditions are satisfied and we can even check
that the constraints are not qualified at x0 =
(1, 0). Indeed, we have (x1 ≥ 0 is not active
at x0)

T ℓ
x0
X =

{
x | x2 − 0 ≤ 0, x2 ≤ 0

}
= R×

{
0
}
;

Tx0X = R+ ×
{
0
}
.

Exercise 4. Solve the following problem using
first order optimality conditions

min
x1,x2

− 2(x1 − 2)2 − x22

s.t. x21 + x22 ≤ 25

x1 ≥ 0

Answers: First note that the constraint set is
convex, and (1, 1) is a Slater’s point, ensuring
qualification everywhere.
The Lagrangian reads

L(x1, x2, µ1, µ2) = −2(x1−2)2−x22+µ1(x
2
1+x22−25)−µ2x1

The KKT conditions thus read

−4(x1 − 2) + 2µ1x1 − µ2 = 0

−2x2 + 2µ1x2 = 0

x21 + x22 ≤ 25

x1 ≥ 0

µ1, µ2 ≥ 0

µ1 = 0 or x21 + x22 = 25

µ2 = 0 or x1 = 0

If µ1 = µ2 = 0, we have x1 = 2 and x2 = 0 which

satisfies the primal constraints. Thus

(
2
0

)
,

(
0
0

)
is a primal-dual point satisfying KKT conditions
with associated value 0.
If µ1 = 0 and µ2 > 0 we have x1 = x2 = 0 with
µ2 = 8 > 0 which is a primal-dual point with value
−8.
If µ2 = 0 and µ1 > 0 we have

−4(x1 − 2) + 2µ1x1 = 0

−2x2 + 2µ1x2 = 0

x1 ≥ 0

µ1 > 0

x21 + x22 = 25

Thus, either x2 = 0 or µ1 = 1. In the first case
we get x1 = 5, x2 = 0, thus µ1 = 6/5 > 0 and
µ2 = 0 which is a KKT point with value −18. In
the second case we get x1 = 4 and x2 = ±3, with
µ1 = 1 and µ2 = 0 which are two KKT points
with value −17.
Finally, if µ2 > 0 and µ1 > 0, we have x1 = 0 and
x2 = ±5 with µ1 = 1 and µ2 = 8, which are two
KKT points with value −33, and thus the global
minima.
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Exercise 1 (Dual formulation). Let g : Rn → Rm.
Show that

1. Ig(x)=0 = supλ∈Rm λ⊤g(x)

2. Ig(x)≤0 = supλ∈Rm
+
λ⊤g(x)

3. Ig(x)∈C = supλ∈−C⊕ λ⊤g(x) where C is a
closed convex cone, and C⊕ := {λ ∈
Rm | λ⊤c ≥ 0, ∀c ∈ C}.

Answers:

1. If g(x) ̸= 0 there is i ∈ [m] such that gi(x) ̸=
0, and we choose λi accordingly.

2. Same reasoning.

3. If g(x) ∈ C, λ⊤g(x) ≤ 0, and 0 ∈ −C⊕. If
g(x) ̸∈ C, by separation of the convex com-
pact {g(x)} from the closed convex set C
there exists λ ∈ Rn such that λ⊤g(x) > b >
λ⊤c for all c ∈ C. As C is a cone, tc ∈ C for
all t > 0, and thus λ ∈ −C⊕. Further b ≥ 0,
thus tλ⊤g(x) → +∞ when t → ∞.

Exercise 2 (Linear Programming). Consider the
following linear problem (LP)

(P ) Min
x≥0

c⊤x

s.t. Ax = b

1. Show that the dual of (P ) is an LP.

2. Show that the dual of the dual of (P ) is equiv-
alent to (P ).

Answers:

1. The dual of (P) is

(D) Max
λ

− b⊤λ

s.t. A⊤λ+ c ≤ 0

2. Direct by computing the dual of (D).

Exercise 3 (Quadratically Constrained
Quadratic Programming). Consider the problem

(QCQP ) Min
x∈Rn

1

2
x⊤P0x+ q⊤0 x+ r0

1

2
x⊤Pix+ q⊤i x+ ri ≤ 0 ∀i ∈ [m]

where P0 ∈ Sn
++ and Pi ∈ Sn

+.

1. Show by duality that, for µ ∈ Rm
+ , there exists

Pµ, qµ and rµ,such that g(µ) = −1
2qµP

−1
µ qµ +

rµ ≤ val(P ).

2. Give an easy condition under which val(P ) =
supµ≥0 g(µ).

Answers:

1. Simply write the dual function we get

Pµ = P0 +
∑
i

µiPi, qµ = q0 +
∑
i

µiqi

rµ = r0 +
∑
i

µiri

2. The problem is convex, Slater’s condition en-
sure constraint qualification, thus a condition
would be the existence of a strictly satisfying
all constraints.

Exercise 4 (Conic Programming). Let K ⊂ Rn be
a closed convex pointed cone, and denote x ⪯K y
iff y ∈ x + K. Consider the following program,
with A ∈ Mm,n and b ∈ Rm.

(P ) Min
x∈Rn

c⊤x

s.t. Ax = b

x ⪯K 0

1



1. Show that (P ) is a convex optimization prob-
lem.

2. Denote L(x, λ, µ) = c⊤x + λ⊤(Ax −
b) + µ⊤x. Show that val(P ) =
Minx∈Rn supλ∈Rm,µ∈K⊕ L(x, λ, µ).

3. Give a dual problem to (P ).

Answers:

1. x ⪯K 0 iff x ∈ −K, and −K is convex.

2. If x ∈ −K, for any µ ∈ K⊕, µ⊤x ≤ 0, thus
supµ∈K⊕ µ⊤x = 0. If −x ̸∈ K = K⊕⊕, there

exists λ ∈ K⊕, such that −x⊤λ < 0, hence
supµ∈K⊕ µ⊤x = +∞. (or see ex 1).

3. By min-max duality we consider

Max
λ∈Rm,µ∈K⊕

−b⊤λ+ inf
x∈Rn

(A⊤λ+ c+ µ)⊤x+

wich yields

(D) Max − b⊤λ

A⊤λ+ c+ µ = 0 µ ∈ K⊕

Exercise 5 (Duality gap). Consider the following
problem

Min
x∈R,y∈R+

∗

e−x

s.t. x2/y ≤ 0

1. Find the optimal solution of this problem.

2. Write and solve the (Lagrangian) dual prob-
lem. Is there a duality gap ?

Answers:

L(x, y;µ) = e−x + µx2/y

g(µ) = inf
x∈R,y>0

e−x + µx2/y = 0

as the term inside the inf is positive, and choosing
x = t, y = t3 goes to 0 for all µ.

Exercise 6 (Two-way partitionning). Let W ∈
Sn be a symmetric matrix, consider the following
problem.

(P ) Min
x∈Rn

x⊤Wx

s.t. x2i = 1 ∀i ∈ [n]

1. Consider a set of n element that you want to
partition in 2 subsets, with a cost ci,j if i and
j are in the same set, and a cost −ci,j if they
are in a different set. Justify that it can be
solved by solving (P ).

2. Is (P ) a convex problem ?

3. Show that, for any λ ∈ Rn such that W +
diag(λ) ⪰ 0, we have val(P ) ≥ −

∑
λi. De-

duce a lower bound on val(P ).

Answers:

1. The constraint ensures that xi ∈ {−1, 1},
each value representing one subset. We set
Wi,j = ci,j .

2. No, because the set of admissible points is
{−1, 1}n.

3. The Lagrangian of (P ) is

L(x, λ) = x⊤Wx+
n∑

i=1

λi(x
2
i − 1)

= x⊤(W + diag(λ))x−
n∑

i=1

λi

And we have,

g(λ) = inf
x
x⊤(W + diag(λ))x−

n∑
i=1

λi

= −
n∑

i=1

λi − IW+diag(λ)≥0 ≤ val(P )

Thus, if λmin is the small eigenvalue of W we
have W + diag(λ) ≥ 0, and val(P ) ≥ nλmin.

Exercise 7 (Linear SVM : duality). Consider the
following problem (see : https: // www. youtube.
com/ watch? v= IOetFPgsMUc for background)

min
w∈Rd,b∈R

1

2
∥w∥2

s.t. yi(w
⊤xi + b) ≥ 1 ∀i ∈ [n]

ηi ≥ 0 ∀i ∈ [n]

1. In which case can we guarantee strong duality
?

https://www.youtube.com/watch?v=IOetFPgsMUc
https://www.youtube.com/watch?v=IOetFPgsMUc


2. Write the dual of this optimization prob-
lem and express the optimal primal solution
(w♯, b♯) in terms of the optimal dual solution.

Exercise 8. We consider the following problem.

Min
x1,x2

x21 + x22 (1)

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1 (2)

(x1 − 1)2 + (x2 + 1)2 ≤ 1 (3)

1. Classify this problem (After 5th course)

2. Find the optimal solution and value of this
problem.

3. Write and solve the KKT equation for this
problem.

4. Derive and solve the Lagrangian dual of this
problem.

5. Do we have strong duality ? If yes, could we
have known it from the start ? If not, can you
comment on why ?

Answers:

1. This is a convex QCQP

2. The only admissible point, and hence the op-
timal solution is (1, 0), with value 1.

3. The Lagrangian is

L(x, λ) =x21 + x22 + λ1((x1 − 1)2 + (x2 − 1)2 − 1)

+ λ2((x1 − 1)2 + (x2 + 1)2 − 1)

KKT condition are

• Gradient of Lagrangian is null :

2x1 + 2λ1(x1 − 1) + 2λ2(x1 − 1) = 0

2x2 + 2λ1(x2 − 1) + 2λ2(x2 + 1) = 0

• x is primal feasible : (x1 − 1)2 + (x2 −
1)2 ≤ 1 and (x1 − 1)2 + (x2 + 1)2 ≤ 1

• λ is dual feasible λ1 ≥ 0, λ2 ≥ 0.

• Complementary slackness:

λ1 = 0 or (x1 − 1)2 + (x2 − 1)2 = 1

λ2 = 0 or (x1 − 1)2 + (x2 + 1)2 = 1

x feasible is x = (1, 0), which imply 2 = 0
which is impossible. Thus there is no pair
(x, λ) satisfying the KKT equations. The
KKT equations fails to give the optimal solu-
tion because the constraints are not qualified.

4. The Lagrange dual function is

g(λ1, λ2) = inf
x1,x2

L(x, λ)

= inf
x1,x2

(1 + λ1 + λ2)(x
2
1 + x2)

2

− 2(λ1 + λ2)x1 − 2(λ1 − λ2)x2 + λ1 + λ2

=λ1 + λ2 −
(λ1 + λ2)

2 + (λ1 − λ2)
2

1 + λ1 + λ2

if 1 + λ1 + λ2 > 0

The dual problem reads

Max
λ

λ1 + λ2 − (λ1 − λ2)
2

1 + λ1 + λ2

s.t. λ1 ≥ 0, λ2 ≥ 0

By symmetry the optimum is attained at
λ1 = λ2, thus the dual reads

Max
λ1≥0

2λ1

2λ1 + 1

Which has value 1 and no solution.

5. The dual problem have the same value as the
primal problem, thus we have strong duality.

However there does not exist a dual multi-
plier, which is why there is no solution to the
KKT equations.

We could not guarantee the existence of a
primal-dual optimal solution through KKT as
the constraints were not qualified.



Exercises: optimization problem classes

Exercise 1 (Hyperbolic constraints as SOCP).

1. Show that, for all x ∈ Rn, y ∈ R, z ∈ R,

x⊤x ≤ yz, y ≥ 0, z ≥ 0

iff ∥∥∥∥( 2x
y − z

)∥∥∥∥ ≤ y + z y ≥ 0, z ≥ 0

2. Represent the following problem as an SOCP

(P ) Max

(
n∑

i=1

1/(a⊤i x− b)

)−1

s.t. Ax > b

Answers:

1. Assume y ≥ 0, z ≥ 0, then y + z ≥ 0 ⇐⇒
xy ≥ 0. We now assume y + z ≥ 0, then we
have ∥∥∥∥( 2x

y − z

)∥∥∥∥ ≤ y + z

⇐⇒
∥∥∥∥( 2x

y − z

)∥∥∥∥2 ≤ (y + z)2

⇐⇒ 4x⊤x+ (y − z)2 ≤ y2 + 2yz + z2

⇐⇒ 4x⊤x ≤ 4yz

⇐⇒ x⊤x ≤ yz

2. Since t 7→ 1/t is decreasing (P ) is equivalent
to

Min

n∑
i=1

1/(a⊤i x− b)

s.t. Ax > b

By adding the lift variables zi, (P ) is equiva-
lent to the problem

Min
n∑

i=1

zi

s.t. Ax > b

1/(a⊤i x− b) ≥ zi ≥ 0, ∀i ∈ [n]

which is equivalent to

Min

n∑
i=1

zi

s.t. Ax ≥ b

1 ≤ z(a⊤i x− b), ∀i ∈ [n]

zi ≥ 0, ∀i ∈ [n]

By question 1. it is equivalent to the following
SOCP:

Min

n∑
i=1

zi

s.t. −Ax ≤ −b∥∥∥∥( 2
a⊤i x− b− z

)∥∥∥∥ ≤ a⊤i x− b+ z, ∀i ∈ [n]

zi ≥ 0, ∀i ∈ [n]

Exercise 2. We consider a physical function Φ
that is approximated as the superposition of multi-
ple simple phenomenon (e.g. waves). Each simple
phenomenon p ∈ [P ] is represented by a function
Φp : Rd → R.
We have data points (xk, yk)k∈[n], and want to find
the Φ that match at best the data while being a
linear combination of Φp.

Propose a least-square regression that answer this
question.

1



Answers: We define the matrix M ∈ Rn×P with
coefficients Mk,p = Φp(xk). We propose the fol-
lowing last square regression problem:

Min
α∈RP

∥Mα− y∥2 + λ∥α∥1

Exercise 3. Consider a chocolate manufacturing
company that produces only two types of chocolate
– A and B. Both the chocolates require Milk and
Choco only. To manufacture each unit of A and
B, the following quantities are required:

• Each unit of A requires 1 unit of Milk and 3
units of Choco

• Each unit of B requires 1 unit of Milk and 2
units of Choco

The company kitchen has a total of 5 units of Milk
and 12 units of Choco. On each sale, the company
makes a profit of

• 6 per unit A sold

• 5 per unit B sold.

Model this as an LP.

Exercise 4. A classical extension of the least-
square problem, which has strong theoretical and
practical intereset is the LASSO problem

Min
x∈Rp

∥Ax− b∥2 + λ∥x∥1

Show that this problem can be cast as a QP prob-
lem.

Answers: The LASSO problem is equivalent to
the following QP problem

Min
x∈Rn,z∈Rn

x⊤A⊤Ax− 2b⊤Ax+ λ
n∑

i=1

zi

s.t. xi ≤ zi

− xi ≤ zi

Exercise 5. Consider the following optimization
problem.

Min
x∈Rn

c⊤x

s.t. Ax = b

xi ∈ {0, 1} ∀i ∈ I

Write this problem as a QCQP. Is it convex ?

Answers: The constraint xi ∈ {0, 1} is equiv-
alent to xi(1 − xi) = 0. We define qi :=
(0, · · · , 0, 1, 0, · · · , 0) as the vector with all coor-
dinates equal to 0 except the ith which equals 1.
We set Qi = 2diag(qi) = 2qiq

⊤
i . Then, this prob-

lem is equivalent to the following QCQP problem

Min
x∈Rn

c⊤x

s.t. Ax = b

1

2
x⊤Qix+ q⊤i x ≤ 0 ∀i ∈ I

− 1

2
x⊤Qix− q⊤i x ≤ 0 ∀i ∈ I

It is not convex in the general case (i.e. if the
admissible set is neither empty or reduced to a
singleton) since the set {0, 1}n is not convex. Re-
mark that −Qi is not positive.

Exercise 6. Consider a facility that plan to de-
liver product to clients by drone (thus in direct
line). Assume that you have N clients, each with
position (in R2) xn. The drone make each time a
direct travel from the facility location to the client.
Assume that the drone have a maximum range of
R, and that you want to minimize the average
travel distance while being able to serve all of your
clients.

Model the problem of choosing the facility location
as an SOCP.

Answers: We want to minimize the average
travel distance 1

N

∑N
n=1 ∥xn − y∥ from a center y

to the clients (xn) while being able to serve all of
your clients. We modelize this by the problem

Min
y∈R2

1

N

N∑
n=1

∥xn − y∥ (1)

s.t. ∥xn − y∥ ≤ R, ∀n ∈ [N ] (2)

By adding lift variables zn, this equivalent to the
following SOCP:

Min
y∈R2,z∈RN

1

n

N∑
n=1

zn (3)

s.t. ∥xn − y∥ ≤ R, ∀n ∈ [N ] (4)

∥xn − y∥ ≤ zn, ∀n ∈ [N ] (5)



Exercise 7. Consider the following robust linear
program

Min
x∈Rn

c⊤x

s.t. (ai +Riδi)
⊤x ≤ bi ∀∥δi∥2 ≤ 1, ∀i ∈ [m]

where Ri are positive real numbers. Write this
problem as an SOCP.

Answers: The constraint (ai + Riδi)
⊤x ≤

bi, ∀∥δi∥2 ≤ 1 is equivalent to

max
δi | ∥δi∥2≤1

(ai +Riδi)
⊤x ≤ bi

which is equivalent to

Ri max
δi | ∥δi∥2≤1

δ⊤i x ≤ bi − a⊤i x.

However, maxδi | ∥δi∥2≤1 δ
⊤
i x = ∥x∥. Indeed, this

result is trivial for x = 0, for x ̸= 0, we have
that ∥x∥ is an upper bound by Cauchy-Swhartz
inequality which is attained for δi = x

∥x∥ . Thus,
our problem is equivalent to the following SOCP:

Min
x∈Rn

c⊤x

s.t. Ri∥x∥ ≤ −a⊤i x+ bi, ∀i ∈ [m]

Exercise 8. Let F (θ) be a symmetric matrix
parametrized by θ ∈ Rd whose coefficients are lin-
ear in θ. Model the problem of finding the param-
eter θ ∈ Θ, where Θ is a polyhedron, minimizing
κ(θ) as an SDP.
What happen if the coefficient of F (θ) are affine
in θ ? Suggest a solution method ? (hard)

Exercise 9. Consider a finite set X = {xi}i∈[n],
and P+ the set of probabilities on X. For P,Q ∈
P, with supp(Q) = X, we define the Kullback-
Leibler divergence as

dKL(P|Q) =

n∑
i=1

pi ln(pi/qi)

where pi = P(X = xi) and qi = Q(X = xi).
Let X be 100 equidistant points spanning in
[−1, 1]. Let Q be uniform on X.
We are looking for the probability P on X such
that

• EP[X] ∈ [−0.1, 0.1]

• EP[X
2] ∈ [0.5, 0.6]

• EP[3X
2 − 2X] ∈ [−0.3,−0.2]

• P(X < 0) ∈ [0.3, 0.4]

that minimize the Kullback-Leibler divergence
from Q.
Model this problem as an optimization problem. In
which class does it belongs ?

Exercise 10. Consider that you sell a given prod-
uct over T days. The demand for each day is dt.
Having a quantity xt of items in stock have a cost
(per day) of cxt. You can order, each day, a quan-
tity qt, and have to satisfy the demand.
For each of the following variation : model the
problem, explicit the class to which it belongs, and
give the optimal solution if easily found.

1. Without any further constraint / specifica-
tions.

2. There is an ”ordering cost”: each time you
order, you have to pay a fix cost κ.

3. Instead of an ”ordering cost” there is a max-
imum number of days at which you can order
a replenishment.



Exercises: Gradient algorithms

Exercise 1 (A quadratic example in R2). Con-
sider, for γ > 0, f(x) = 1

2(x
2
1 + γx22). We ap-

ply the gradient descent method with optimal step,
starting at x(0) = (γ, 1).

1. Show that f is m-convex with M -Lipschitz
gradient. Find the tightest m and M con-
stants.

2. Show that

x(k) =

(
γ
(γ − 1

γ + 1

)k
,
(
− γ − 1

γ + 1

)k
)

and

f(x(k)) =
γ(γ + 1)

2

(γ − 1

γ + 1

)2k
f(x(0))

3. Show that, on this example, the convergence
is exactly linear, that is f(x(k))− v♯ is a geo-
metric series. Give its reason. Compare with
the theoretical bound.

4. When is this algorithm fast and slow ?

Exercise 2 (Strongly convex - optimal step). Let
f : Rn → R be a m-convex C2 function. Define,
for given x(0),

f̃k : t 7→ f(x(k) − t∇f(x(k)))

t(k) = argmin
t∈R

f̃k(t)

x(k+1) = x(k) − t(k)∇f(x(k))

1. Show that there exists M ≥ m such that mI ⪯
∇2f(x(k)) ⪯ MI

2. Show that, for any interesting t (to be defined)
we have

f̃k(t) ≤ f(x(k))−t∥∇f(x(k))∥22+
Mt2

2
∥∇f(x(k))∥22

3. Show that,

f(x(k+1)) ≤ f(x(k))− 1

2M
∥∇f(x(k))∥22

4. Show that f(x♯) ≥ f(x)− 1
2m∥∇f(x)∥22

5. Show that

f(x(k+1))− f(x♯) ≤ (1− m

M
)[f(x(k))− f(x♯)]

6. Show that the algorithm converges, and give
its convergence speed.

Answers:

1. Let S = levf(x(0)) f . By strong convexity it

is a bounded set. f being C2, its Hessian is
continuous and thus bounded on S, where all
x(k) lives.

2. For any t such that y := x(k)−t∇f(x(k)) ∈ S,
there exists z ∈ [x(k), y], such that

f(y) =f(x(k))−∇f(x(k))⊤(y − x(k))

+
1

2
(y − x(k))⊤∇2f(z)(y − x(k))

replacing y by its value, and using the upper
bound on ∇2f(z) yields the result.

3. Use t = 1/M in the upperbound of the previ-
ous question. Note that this choice of t mini-
mizes said upper bound.

4. We have, by strong convexity,

f(y) ≥f(x) +∇f(x)⊤(y − x) +
m

2
∥y − x∥2

≥f(x) +∇f(x)⊤(ỹ − x) +
m

2
∥ỹ − x∥2

=f(x)− 1

2m
∥∇f(x)∥2

where ỹ minizes the right hand side. We then
apply to y = x♯.

1



5. By the previous question we have
∥∇f(x(k))∥2 ≥ 2m(f(x(k)) − v♯). Ques-
tion 3 then yields

f(x(k+1)) ≤ f(x(k))−m/M(f(x(k))− v♯)

substracting v♯ on each sides yields the result.

6. Recursively we get f(x(k))−v♯ ≤ ck(f(x(0))−
v♯), with c = 1−m/M . In particular, for any
ε > 0, we have f(x(k))− v♯ ≤ ε after at most
ln(ε)−ln(f(x(0)−v♯))

ln(c) iterations.

Exercise 3 (Strictly convex case). Let f : Rn →
R be a C2, convex function with M -Lipschitz gra-
dient such that f(x♯) = inf f . We define, for given
x(0).

x(k+1) = x(k) − t∇f(x(k))

with t ≤ 1/M .

1. Show that, for all x and y (y−x)⊤∇2f(z)(y−
x) ≤ M∥y − x∥22

2. Show that

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
M

2
∥y − x∥2

3. Show that f(x(k+1)) ≤ f(x(k))− t
2∥∇f(x(k))∥2

4. Show that

f(x(k+1)) ≤ v♯+∇f(x(k))⊤(x(k)−x♯)− t

2
∥∇f(x(k))∥2

5. Deduce that

f(x(k+1)) ≤ v♯+
1

2t
(∥x(k)−x♯∥2−∥x(k+1)−x♯∥2)

6. Show that

k∑
i=1

f(x(i))− v♯ ≤ 1

2t
∥x(0) − x♯∥2

7. Conclude that

f(x(k))− v♯ ≤ 1

2kt
∥x(0) − x♯∥2.

Answers:

1. We have ∇2f(x) ⪯ MI, thus (y − x)⊤(MI −
∇2f(x))(y − x) ≥ 0.

2. Using Taylor remainder theorem we have the
existence of z ∈ [x, y] such that

f(y) = f(x)+∇f(x)⊤(y−x)+
1

2
(y−x)⊤∇2f(z)(y−x)

3. We obtain

f(x(k+1)) ≤ f(x(k))− (1− Mt

2
)∥∇f(x(k))∥22

and with the condition on t we have 1 −
Mt/2 ≥ 1/2.

4. We use the convexity inequality to get
f(x(k)) ≤ f(x♯) + ∇f(x(k))⊤(x(k) − x♯) and
the result of the previous question.

5. We have

1

2t
(∥x(k) − x♯∥2 − ∥x(k+1) − x♯∥2)

=
1

2t
(∥x(k) − x♯∥2 − ∥x(k) − x♯ − t∇f(x(k))∥2)

= ∇f(x(k))⊤(x(k) − x♯)− t

2
∥∇f(x(k))∥2

Thus,

f(x(k+1)) ≤ v♯ +∇f(x(k))⊤(x(k) − x♯)− t

2
∥∇f(x(k))∥2

= v♯ +
1

2t
(∥x(k) − x♯∥2 − ∥x(k+1) − x♯∥2)

6. Sum the previous inequality

7. As f(x(i))− v♯ is non-increasing we have that
the last term of the sum is lower than the
mean of the sum.

Exercise 4 (Kelley’s convergence). We are going
to prove that, if f : Rn → R is convex, and X
a non-empty polytope (bounded polyhedron) then
Kelley’s cutting plane algorithm is converging.
Consider x1 ∈ X. We consider a sequence of
points (x(k))k∈N such that x(k+1) is an optimal so-
lution to

(P(k)) v(k+1) = Min
x∈X

z

s.t. f(x(κ)) +
〈
g(κ) , x− x(κ)

〉
≤ z ∀κ ∈ [k]

where g(k) ∈ ∂f(x(k)).
Denote v = minx∈X f(x).



1. Show that v exists and is finite, and that there
exists a sequence x(k).

2. Show that there exists L such that, for all
k1 and k2, we have ∥f(x(k1)) − f(x(k2))∥ ≤
L∥x(k1) − x(k2)∥, and ∥g(k)∥ ≤ L.

3. Let Kε = {k ∈ N | f(x(k)) > v + ε} be the
set of index such that x(k) is not an ε-optimal
solution. Show that f(xk) → v if and only if
Kε is finite for all ε > 0

4. Consider k1, k2 ∈ Kε, such that k2 > k1.
Show that

f(x(k1)) +
〈
g(k1) , x(k2) − x(k1)

〉
≤ v(k2) ≤ v

5. Show that ε+f(x(k1))+
〈
g(k1) , x(k2)−x(k1)

〉
<

f(x(k2))

6. Show that ε < 2L∥x(k2) − x(k1)∥.

7. Prove that f(x(k)) → v.

8. (Optional - hard) Find a complexity bound for
the method (that is a number of iteration Nε

after which you are sure to have obtained a
ε-optimal solution).

Answers:

1. f is finite convex and thus continuous on X
which is compact, yielding the existence and
finiteness of v.

f is subdifferentiable, thus we have the exis-
tence of g(k), and an optimal solution to P(k)

exists as the solution of a bounded linear pro-
gramm.

2. We have seen that on any compact Kincluded
in the domain of a convex function f , f is
L-Lipschitz. Here dom(f) = Rn, so on the
compact K = X + B(0, ε) f is L-Lipschitz,
and on X any subgradient g is of norm lower
than L.

3. f(xk) → v iff ∀ε > 0,∃Nε ∈ N, k ≥ K =⇒
f(xk) ≤ v + ε. Hence Kε ⊂ [Nε].

4. By subgradient inequality f(y) ≥ f(x(k)) +〈
g(k) , y − x(k)

〉
. Thus, for all k, v ≥ v(k).

Further, note that v(k) = f(x(k)), hence using
k = k1, and y = x(k2) we get

f(x(k1)) +
〈
g(k1) , x(k2) − x(k1)

〉
≤ v(k2) ≤ v.

5. As k2 ∈ Kε, we have f(x(k2)) = v(k2) > v +
ε ≥ f(x(k1)) +

〈
g(k1) , x(k2) − x(k1)

〉
+ ε by the

previous question.

6. We have

ε < |f(x(k2))−f(x(k1))|+|
〈
g(k1), x(k2)−x(k1)

〉
| ≤ 2L∥x(k2)−x(k1)∥

by Cauchy-Schwartz and question 2.

7. If f(x(k)) ̸→ v, then there exists ε > 0 such
that (x(k))k∈Kε) is not finite. AsX is compact
we can exctract a converging subsequence,
that is x(σ(k) such that x(σ(k)) → x⋆ and
σ(k) ∈ Kε, which is in contradiction with the
result of 6.



Exercises: Constrained Optimization

Exercise 1 (Penalization). We consider the fol-
lowing problem

(P ) min
x∈Rn

f(x)

s.t. Ax = b, x ≤ 0

with value v and the following penalized versions

(P in
t ) min

x∈Rn
f(x)− t

n∑
i=1

ln(−xi)

s.t.Ax = b, x < 0

and

(P out
t ) min

x∈Rn
f(x) + t

n∑
i=1

(xi)
+

s.t. Ax = b

with associated value vint and voutt , and an optimal
solution xint and xoutt .

1. Intuitively, assuming that f is ”well behaved”,
for t going to which value does (P in

t ) tends to
the original problem (P ) ? In which sense ?

2. What can you say about xint ?

3. Can you compare vint and v ?

4. Same questions for (P out
t ).

Answers: For t going to 0 we have that (P in
t )

tends toward (P ) : in the sense that v
(in)
t → v

and xt goes toward an optimal solution . For t
small enough we have vint ≥ v. In any case xint is
admissible.
For t going to +∞, we have that (P out

t ) tends to-

ward (P ) in the sense that v
(out)
t → v and xoutt goes

toward an optimal solution. For t large enough,

xoutt is optimal for (P ). We always have v
(out)
t ≤ v.

Exercise 2 (Decomposition by prices). We con-
sider the following energy problem:

• you are an energy producer with N production
units

• you have to satisfy a given demand planning
for the next 24h (i.e. the total output at time
t should be equal to dt)

• the time step is the hour, and each unit have
a production cost for each planning given as
a convex quadratic function of the planning

• For each unit i, the production planning ui =
(uit)t∈[24] has to satisfy polyhedral constraints
ui ∈ U i.

1. Model this problem as an optimization prob-
lem. In which class does it belongs ? How
many variables ?

2. Apply Uzawa’s algorithm to this problem.
Why could this be an interesting idea ?

3. Give an economic interpretation to this
method.

4. What would happen if each unit had produc-
tion constraints ?

Exercise 3 (Kelley’s convergence). We are going
to prove that, if f : Rn → R is convex, and X
a non-empty polytope (bounded polyhedron) then
Kelley’s cutting plane algorithm is converging.
Consider x1 ∈ X. We consider a sequence of
points (x(k))k∈N such that x(k+1) is an optimal so-
lution to

(P(k)) v(k+1) = Min
x∈X

z

s.t. f(x(κ)) +
〈
g(κ) , x− x(κ)

〉
≤ z ∀κ ∈ [k]

where g(k) ∈ ∂f(x(k)).
Denote v = minx∈X f(x).

1



1. Show that v exists and is finite, and that there
exists a sequence x(k).

2. Show that there exists L such that, for all
k1 and k2, we have ∥f(x(k1)) − f(x(k2))∥ ≤
L∥x(k1) − x(k2)∥, and ∥g(k)∥ ≤ L.

3. Let Kε = {k ∈ N | f(x(k)) > v + ε} be the
set of index such that x(k) is not an ε-optimal
solution. Show that f(xk) → v if and only if
Kε is finite for all ε > 0

4. Consider k1, k2 ∈ Kε, such that k2 > k1.
Show that

f(x(k1)) +
〈
g(k1) , x(k2) − x(k1)

〉
≤ v(k2) ≤ v

5. Show that ε+f(x(k1))+
〈
g(k1) , x(k2)−x(k1)

〉
<

f(x(k2))

6. Show that ε < 2L∥x(k2) − x(k1)∥.

7. Prove that f(x(k)) → v.

8. (Optional - hard) Find a complexity bound for
the method (that is a number of iteration Nε

after which you are sure to have obtained a
ε-optimal solution).

Answers:

1. f is finite convex and thus continuous on X
which is compact, yielding the existence and
finiteness of v.

f is subdifferentiable, thus we have the exis-
tence of g(k), and an optimal solution to P(k)

exists as the solution of a bounded linear pro-
gramm.

2. We have seen that on any compact Kincluded
in the domain of a convex function f , f is
L-Lipschitz. Here dom(f) = Rn, so on the
compact K = X + B(0, ε) f is L-Lipschitz,
and on X any subgradient g is of norm lower
than L.

3. f(xk) → v iff ∀ε > 0,∃Nε ∈ N, k ≥ K =⇒
f(xk) ≤ v + ε. Hence Kε ⊂ [Nε].

4. By subgradient inequality f(y) ≥ f(x(k)) +〈
g(k) , y − x(k)

〉
. Thus, for all k, v ≥ v(k).

Further, note that v(k) = f(x(k)), hence using
k = k1, and y = x(k2) we get

f(x(k1)) +
〈
g(k1) , x(k2) − x(k1)

〉
≤ v(k2) ≤ v.

5. As k2 ∈ Kε, we have f(x(k2)) = v(k2) > v +
ε ≥ f(x(k1)) +

〈
g(k1) , x(k2) − x(k1)

〉
+ ε by the

previous question.

6. We have

ε < |f(x(k2))− f(x(k1))|+ |
〈
g(k1) , x(k2) − x(k1)

〉
|

≤ 2L∥x(k2) − x(k1)∥

by Cauchy-Schwartz and question 2.

7. If f(x(k)) ̸→ v, then there exists ε > 0 such
that (x(k))k∈Kε) is not finite. AsX is compact
we can exctract a converging subsequence,
that is x(σ(k) such that x(σ(k)) → x⋆ and
σ(k) ∈ Kε, which is in contradiction with the
result of 6.


