
Exercises: Constrained Optimization

Exercise 1 (Penalization). We consider the fol-
lowing problem

(P ) min
x∈Rn

f(x)

s.t. Ax = b, x ≤ 0

with value v and the following penalized versions

(P in
t ) min

x∈Rn
f(x)− t

n∑
i=1

ln(−xi)

s.t.Ax = b, x < 0

and

(P out
t ) min

x∈Rn
f(x) + t

n∑
i=1

(xi)
+

s.t. Ax = b

with associated value vint and voutt , and an optimal
solution xint and xoutt .

1. Intuitively, assuming that f is ”well behaved”,
for t going to which value does (P in

t ) tends to
the original problem (P ) ? In which sense ?

2. What can you say about xint ?

3. Can you compare vint and v ?

4. Same questions for (P out
t ).

Exercise 2 (Decomposition by prices). We con-
sider the following energy problem:

• you are an energy producer with N production
units

• you have to satisfy a given demand planning
for the next 24h (i.e. the total output at time
t should be equal to dt)

• the time step is the hour, and each unit have
a production cost for each planning given as
a convex quadratic function of the planning

• For each unit i, the production planning ui =
(uit)t∈[24] has to satisfy polyhedral constraints
ui ∈ U i.

1. Model this problem as an optimization prob-
lem. In which class does it belongs ? How
many variables ?

2. Apply Uzawa’s algorithm to this problem.
Why could this be an interesting idea ?

3. Give an economic interpretation to this
method.

4. What would happen if each unit had produc-
tion constraints ?

Exercise 3 (Kelley’s convergence). We are going
to prove that, if f : Rn → R is convex, and X
a non-empty polytope (bounded polyhedron) then
Kelley’s cutting plane algorithm is converging.

Consider x1 ∈ X. We consider a sequence of
points (x(k))k∈N such that x(k+1) is an optimal so-
lution to

(P(k)) v(k+1) = Min
x∈X

z

s.t. f(x(κ)) +
〈
g(κ) , x− x(κ)

〉
≤ z ∀κ ∈ [k]

where g(k) ∈ ∂f(x(k)).

Denote v = minx∈X f(x).

1. Show that v exists and is finite, and that there
exists a sequence x(k).

2. Show that there exists L such that, for all
k1 and k2, we have ∥f(x(k1)) − f(x(k2))∥ ≤
L∥x(k1) − x(k2)∥, and ∥g(k)∥ ≤ L.
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3. Let Kε = {k ∈ N | f(x(k)) > v + ε} be the
set of index such that x(k) is not an ε-optimal
solution. Show that f(xk) → v if and only if
Kε is finite for all ε > 0

4. Consider k1, k2 ∈ Kε, such that k2 > k1.
Show that

f(x(k1)) +
〈
g(k1) , x(k2) − x(k1)

〉
≤ v(k2) ≤ v

5. Show that ε+f(x(k1))+
〈
g(k1) , x(k2)−x(k1)

〉
<

f(x(k2))

6. Show that ε < 2L∥x(k2) − x(k1)∥.

7. Prove that f(x(k)) → v.

8. (Optional - hard) Find a complexity bound for
the method (that is a number of iteration Nε

after which you are sure to have obtained a
ε-optimal solution).


