Exercises: Gradient algorithms

Exercise 1 (A quadratic example in R?). Con-
sider, for v > 0, f(z) = (2 +v23). We ap-
ply the gradient descent method with optimal step,
starting at (0 = (v,1).

1. Show that f is m-convex with M -Lipschitz
gradient. Find the tightest m and M con-
stants.

2. Show that
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3. Show that, on this example, the convergence
is exactly linear, that is f(z®*)) — vt is a geo-
metric series. Give its reason. Compare with
the theoretical bound.

4. When is this algorithm fast and slow ¢

Exercise 2 (Strongly convex - optimal step). Let
f:R* = R be a m-convexr C* function. Define,
for given (),
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1. Show that there exists M > m such that mI <
V2 (")) < MI

2. Show that, for any interesting t (to be defined)
we have
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3. Show that,
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4. Show that f(z*) > f(z) — 5=V f(2)]3
5. Show that
m
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6. Show that the algorithm converges, and give
its convergence speed.

Exercise 3 (Strictly convex case). Let f : R" —
R be a C?, convex function with M -Lipschitz gra-

dient such that f(z*) = inf f. We define, for given
(0)
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with t <1/M.

1. Show that, for all z andy (y—=z) V2 f(2)(y—
z) < Mlly — |3

2. Show that
M
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3. Show that f(x*D)) < f(a®)— L[|V f(a®)|?
4. Show that
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5. Deduce that
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6. Show that
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7. Conclude that
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