Exercises: Duality

April 12, 2023

Exercise 1 (Dual formulation). Let $g: \mathbb{R}^{n} \rightarrow$ Exercise 4 (Conic Programming). Let $K \subset$ \mathbb{R}^{m}. Show that

1. $\mathbb{I}_{g(x)=0}=\sup _{\lambda \in \mathbb{R}^{m}} \lambda^{\top} g(x)$
2. $\mathbb{I}_{g(x) \leq 0}=\sup _{\lambda \in \mathbb{R}_{+}^{m}} \lambda^{\top} g(x)$
3. $\mathbb{I}_{g(x) \in C}=\sup _{\lambda \in-C \oplus} \lambda^{\top} g(x)$ where C is a closed convex cone, and $C^{\oplus}:=\{\lambda \in$ $\left.\mathbb{R}^{m} \mid \lambda^{\top} c \geq 0, \forall c \in C\right\}$.

Exercise 2 (Linear Programming). Consider the following linear problem (LP)

$$
\begin{aligned}
(P) & \operatorname{Min}_{x \geq 0}
\end{aligned} c^{\top} x=1 \text { s.t. } \quad A x=b
$$

1. Show that the dual of (P) is an $L P$.
2. Show that the dual of the dual of (P) is equivalent to (P).

Exercise 3 (Quadratically Constrained Quadratic Programming). Consider the problem \mathbb{R}^{n} be a closed convex pointed cone, and denote $x \preceq_{K} y$ iff $y \in x+K$. Consider the following program, with $A \in M_{m, n}$ and $b \in \mathbb{R}^{m}$.

$$
\begin{aligned}
& \text { (P) } \underset{x \in \mathbb{R}^{n}}{\operatorname{Min}} c^{\top} x \\
& \text { s.t. } \quad A x=b \\
& x \preceq_{K} 0
\end{aligned}
$$

1. Show that (P) is a convex optimization problem.
2. Denote $\mathcal{L}(x, \lambda, \mu)=c^{\top} x+\lambda^{\top}(A x-$ b) $+\mu^{\top} x$. Show that $\operatorname{val}(P)=$ $\operatorname{Min}_{x \in \mathbb{R}^{n}} \sup _{\lambda \in \mathbb{R}^{m}, \mu \in K} \mathcal{L}(x, \lambda, \mu)$.
3. Give a dual problem to (P).

Exercise 5 (Duality gap). Consider the following problem

$$
\begin{aligned}
\operatorname{Min}_{x \in \mathbb{R}, y \in \mathbb{R}_{*}^{+}} & e^{-x} \\
\text { s.t. } & x^{2} / y \leq 0
\end{aligned}
$$

1. Find the optimal solution of this problem.
2. Write and solve the (Lagrangian) dual problem. Is there a duality gap?
$\begin{array}{lll}(Q C Q P) & \operatorname{Min}_{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{\top} P_{0} x+q_{0}^{\top} x+r_{0}\end{array} \quad \begin{gathered}\text { Exercise } \mathbf{6} \text { (Two-way partitionning). Let } W \in \\ \\ \\ \\ \\ \\ \end{gathered}$
where $P_{0} \in S_{++}^{n}$ and $P_{i} \in S_{+}^{n}$.
3. Show by duality that, for $\mu \in \mathbb{R}_{+}^{m}$, there exists P_{μ}, q_{μ} and r_{μ},such that $g(\mu)=$ $-\frac{1}{2} q_{\mu} P_{\mu}^{-1} q_{\mu}+r_{\mu} \leq \operatorname{val}(P)$.
4. Give an easy condition under which $\operatorname{val}(P)=\sup _{\mu \geq 0} g(\mu)$.

$$
\begin{aligned}
(P) \quad \operatorname{Min}_{x \in \mathbb{R}^{n}} & x^{\top} W x \\
\text { s.t. } & x_{i}^{2}=1 \quad \forall i \in[n]
\end{aligned}
$$

1. Consider a set of n element that you want to partition in 2 subsets, with a cost $c_{i, j}$ if i and j are in the same set, and a cost $-c_{i, j}$ if they are in a different set. Justify that it can be solved by solving (P).
2. Is (P) a convex problem?
3. Show that, for any $\lambda \in \mathbb{R}^{n}$ such that $W+$ $\operatorname{diag}(\lambda) \succeq 0$, we have $\operatorname{val}(P) \geq-\sum \lambda_{i}$. Deduce a lower bound on $\operatorname{val}(P)$.

Exercise 7 (Linear SVM : duality). Consider the following problem (see : https://www. youtube. com/watch? $v=10$ etFPgsMUc for background)

$$
\begin{array}{rll}
\min _{w \in \mathbb{R}^{d}, b \in \mathbb{R}^{2}} & \frac{1}{2}\|w\|^{2} & \\
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 & \forall i \in[n] \\
& \eta_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

1. In which case can we guarantee strong duality?
2. Write the dual of this optimization problem and express the optimal primal solution $\left(w^{\sharp}, b^{\sharp}\right)$ in terms of the optimal dual solution.

Exercise 8. We consider the following problem.

$$
\begin{array}{cl}
\operatorname{Min}_{x_{1}, x_{2}} & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & \left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1 \\
& \left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1 \tag{3}
\end{array}
$$

1. Classify this problem (After 5th course)
2. Find the optimal solution and value of this problem.
3. Write and solve the KKT equation for this problem.
4. Derive and solve the Lagrangian dual of this problem.
5. Do we have strong duality? If yes, could we have known it from the start ? If not, can you comment on why?
