Exercises: Optimality conditions

March 31, 2023

Exercise 1. Solve the following optimization problem

$$
\begin{array}{ll}
\operatorname{Min}_{x, y \in \mathbb{R}^{2}} & (x-1)^{2}+(y-2)^{2} \\
& x \leq y \\
& x+2 y \leq 2
\end{array}
$$

Answers: The problem is convex and qualified through Slater's condition (e.g. ($-1,0$)). Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, y, \mu)= & (x-1)^{2}+(y-2)^{2} \\
& +\mu_{1}(x-y)+\mu_{2}(x+2 y-2)
\end{aligned}
$$

KKT conditions

$$
\left\{\begin{array}{l}
2(x-1)+\mu_{1}+\mu_{2}=0 \\
2(y-2)-\mu_{1}+2 \mu_{2}=0 \\
x \leq y, \quad x+2 y \leq 2 \\
\mu_{1} \geq 0, \mu_{2} \geq 0 \\
\mu_{1}=0 \quad \text { or } \quad x=y \\
\mu_{2}=0 \quad \text { or } \quad x+2 y=2
\end{array}\right.
$$

If $\mu_{1}=\mu_{2}=0$ we get $x=1, y=2$ thus $x+2 y=5>2$ not admissible.
If $\mu_{1}=0$ and $\mu_{2}>0$, we get $x=2-2 y$ and $\mu_{2}=2(1-x)=4 y-2$, leading to $2(y-2)+$ $2(4 y-2)=0$. Thus, $y=4 / 5, x=2 / 5, \mu_{1}=0$, $\mu_{2}=6 / 5>0$ satisfy KKT conditions, and thus is optimal by convexity.

Exercise 2 (First order optimality condition). Consider, for f differentiable,

$$
\begin{aligned}
(P) \quad \underset{x \in \mathbb{R}^{n}}{ } & f(x) \\
\text { s.t. } & x \in X
\end{aligned}
$$

$$
\begin{array}{r}
T_{X}\left(x_{0}\right)=\left\{d \in \mathbb{R}^{n} \mid \exists d_{k} \rightarrow d, \exists t_{k} \searrow 0,\right. \\
\text { s.t. } \left.x_{0}+t_{k} d_{k} \in X\right\}
\end{array}
$$

and $K^{\oplus}=\left\{\lambda \mid \lambda^{\top} x \geq 0, \forall x \in K\right\}$.
Show that

1. If x_{0} is an optimal solution to (P), then $\nabla f\left(x_{0}\right) \in\left[T_{X}\left(x_{0}\right)\right]^{+}$.
2. If f is convex, X is closed convex, and $\nabla f\left(x_{0}\right) \in\left[T_{X}\left(x_{0}\right)\right]^{\oplus}$, then x_{0} is an optimal solution to (P).

Answers:

1. Assume that $\nabla f\left(x_{0}\right) \notin\left[T_{X}\left(x_{0}\right)\right]^{\oplus}$. Then we have $d \in T_{X}\left(x_{0}\right)$ such that $d^{\top} \nabla f\left(x_{0}\right)<$ 0 . By continuity of scalar product we have, for k large enough, $d_{k}^{\top} \nabla f\left(x_{0}\right)<0$. We have $x_{0}+t_{k} d_{k} \in X$, and $f\left(x_{0}+t_{k} d_{k}\right)=$ $f\left(x_{0}\right)+t_{k} d_{k}^{\top} \nabla f\left(x_{0}\right)+o\left(t_{k} d_{k}\right)$. Thus, for k large enough, $f\left(x_{0}+t_{k} d_{k}\right)<f\left(x_{0}\right)$.
2. By convexity of X, we have, for $x \in X$, $\left(x-x_{0}\right) \in T_{X}\left(x_{0}\right)$. Further, by convexity of $f, f(x) \geq f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \geq$ $f\left(x_{0}\right)$.

Exercise 3. In the following cases, are the KKT conditions necessary / sufficient?
1.

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}, x_{3}} & 12 x_{1}-5 x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}-x_{3}=5 \\
& x_{1}-x_{2} \geq-2 \\
& 2 x_{1}-4 x_{2} \leq 12
\end{array}
$$

2.

$$
\begin{array}{rl}
\min _{x_{1}, x_{2}} & 4 x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-12 x_{1} \\
\text { s.t. } & x_{1}-2 x_{2}+x_{3}=5 \\
& x_{1}^{2}+3 x_{2}^{2} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

3.

$$
\begin{aligned}
\min _{x_{1}, x_{2}, x_{3}} & e^{x_{1}}-x_{1} x_{2}+x_{3}^{3} \\
\text { s.t. } & \ln \left(e^{x_{1}-4 x_{2}}+e^{x_{1}+x_{3}}\right) \leq 2 x_{1}+3 \\
& 2 x_{1}^{2}+x_{2}^{2} \leq 2
\end{aligned}
$$

4.

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & -x_{1} \\
\text { s.t. } & -x_{2}-\left(x_{1}-1\right)^{3} \leq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

5.

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & -x_{1} \\
\text { s.t. } & x_{2}-\left(x_{1}-1\right)^{3} \leq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Answers:

1. CNS as problem is linear, thus convex and qualified everywhere
2. CNS as problem is convex and qualified by Slater
3. CN as constraints are convex and qualified by Slater but objective is nonconvex
4. CNS, constraints are qualified due to "positive-independence" condition.
5. Neither. Indeed, no sufficient qualification conditions are satisfied and we can even check that the constraints are not qualified at $x_{0}=(1,0)$. Indeed, we have $\left(x_{1} \geq 0\right.$ is not active at x_{0})
$T_{x_{0}}^{\ell} X=\left\{x \mid x_{2}-0 \leq 0, x_{2} \leq 0\right\}=\mathbb{R} \times\{0\} ;$

$$
T_{x_{0}} X=\mathbb{R}^{+} \times\{0\}
$$

Exercise 4. Solve the following problem using first order optimality conditions

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & -2\left(x_{1}-2\right)^{2}-x_{2}^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 25 \\
& x_{1} \geq 0
\end{aligned}
$$

Answers: First note that the constraint set is convex, and $(1,1)$ is a Slater's point, ensuring qualification everywhere.
The Lagrangian reads
$\mathcal{L}\left(x_{1}, x_{2}, \mu_{1}, \mu_{2}\right)=-2\left(x_{1}-2\right)^{2}-x_{2}^{2}+\mu_{1}\left(x_{1}^{2}+x_{2}^{2}-25\right)-\mu_{2} x_{1}$ The KKT conditions thus read

$$
\left\{\begin{array}{l}
-4\left(x_{1}-2\right)+2 \mu_{1} x_{1}-\mu_{2}=0 \\
-2 x_{2}+2 \mu_{1} x_{2}=0 \\
x_{1}^{2}+x_{2}^{2} \leq 25 \\
x_{1} \geq 0 \\
\mu_{1}, \mu_{2} \geq 0 \\
\mu_{1}=0 \quad \text { or } \quad x_{1}^{2}+x_{2}^{2}=25 \\
\mu_{2}=0 \quad \text { or } \quad x_{1}=0
\end{array}\right.
$$

If $\mu_{1}=\mu_{2}=0$, we have $x_{1}=2$ and $x_{2}=0$ which satisfies the primal constraints. Thus $\binom{2}{0},\binom{0}{0}$ is a primal-dual point satisfying KKT conditions with associated value 0 .
If $\mu_{1}=0$ and $\mu_{2}>0$ we have $x_{1}=x_{2}=0$ with $\mu_{2}=8>0$ which is a primal-dual point with value -8 .
If $\mu_{2}=0$ and $\mu_{1}>0$ we have

$$
\left\{\begin{array}{l}
-4\left(x_{1}-2\right)+2 \mu_{1} x_{1}=0 \\
-2 x_{2}+2 \mu_{1} x_{2}=0 \\
x_{1} \geq 0 \\
\mu_{1}>0 \\
x_{1}^{2}+x_{2}^{2}=25
\end{array}\right.
$$

Thus, either $x_{2}=0$ or $\mu_{1}=1$. In the first case we get $x_{1}=5, x_{2}=0$, thus $\mu_{1}=6 / 5>0$ and $\mu_{2}=0$ which is a KKT point with value -18 . In the second case we get $x_{1}=4$ and $x_{2}= \pm 3$, with $\mu_{1}=1$ and $\mu_{2}=0$ which are two KKT points with value -17 .
Finally, if $\mu_{2}>0$ and $\mu_{1}>0$, we have $x_{1}=0$ and $x_{2}= \pm 5$ with $\mu_{1}=1$ and $\mu_{2}=8$, which are two KKT points with value -33 , and thus the global minima.

