Exercises: Optimality conditions

March 27, 2023

Exercise 1. Solve the following optimization Recall that problem

$$\underset{x,y \in \mathbb{R}^2}{\text{Min}} \quad (x-1)^2 + (y-2)^2$$

$$x \le y$$

$$x + 2y \le 2$$

Answers: The problem is convex and qualified through Slater's condition (e.g. (-1,0)). Lagrangian

$$\mathcal{L}(x, y, \mu) = (x - 1)^2 + (y - 2)^2 + \mu_1(x - y) + \mu_2(x + 2y - 2)$$

KKT conditions

$$\begin{cases} 2(x-1) + \mu_1 + \mu_2 = 0 \\ 2(y-2) - \mu_1 + 2\mu_2 = 0 \\ x \le y, \quad x + 2y \le 2 \\ \mu_1 \ge 0, \mu_2 \ge 0 \\ \mu_1 = 0 \quad \text{or} \quad x = y \\ \mu_2 = 0 \quad \text{or} \quad x + 2y = 2 \end{cases}$$

If $\mu_1 = \mu_2 = 0$ we get x = 1, y = 2 thus x + 2y = 5 > 2 not admissible.

If $\mu_1 = 0$ and $\mu_2 > 0$, we get x = 2 - 2y and $\mu_2 = 2(1-x) = 4y - 2$, leading to 2(y-2) +2(4y-2)=0. Thus, y=4/5, x=2/5, $\mu_1=0$, $\mu_2 = 6/5 > 0$ satisfy KKT conditions, and thus is optimal by convexity.

Exercise 2 (First order optimality condition). Consider, for f differentiable,

$$(P) \quad \underset{x \in \mathbb{R}^n}{\text{Min}} \quad f(x)$$

$$s.t. \quad x \in X$$

$$T_X(x_0) = \left\{ d \in \mathbb{R}^n \mid \exists d_k \to d, \exists t_k \searrow 0, \\ s.t. \ x_0 + t_k d_k \in X \right\}$$

and $K^{\oplus} = \{ \lambda \mid \lambda^{\top} x \ge 0, \ \forall x \in K \}.$ Show that

- 1. If x_0 is an optimal solution to (P), then $\nabla f(x_0) \in [T_X(x_0)]^+$.
- 2. If f is convex, X is closed convex, and $\nabla f(x_0) \in [T_X(x_0)]^+$, then x_0 is an opti $mal\ solution\ to\ (P).$

Answers:

- 1. Assume that $\nabla f(x_0) \notin [T_X(x_0)]^+$. Then we have $d \in T_X(x_0)$ such that $d^{\top} \nabla f(x_0) <$ 0. By continuity of scalar product we have, for k large enough, $d_k^{\top} \nabla f(x_0) < 0$. We have $x_0 + t_k d_k \in X$, and $f(x_0 + t_k d_k) =$ $f(x_0) + t_k d_k^{\mathsf{T}} \nabla f(x_0) + o(t_k d_k)$. Thus, for k large enough, $f(x_0 + t_k d_k) < f(x_0)$.
- 2. By convexity of X, we have, for $x \in X$, $(x-x_0) \in T_X(x_0)$. Further, by convexity of f, $f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle \ge$ $f(x_0)$.

Exercise 3. In the following cases, are the KKT conditions necessary / sufficient?

1.

$$\min_{x_1, x_2, x_3} \quad 12x_1 - 5x_2 + 3x_3$$
s.t.
$$x_1 + 2x_2 - x_3 = 5$$

$$x_1 - x_2 \ge -2$$

$$2x_1 - 4x_2 \le 12$$

2.

$$\min_{x_1, x_2} \quad 4x_1^2 - x_1 x_2 + x_2^2 - 12x_1$$
s.t.
$$x_1 - 2x_2 + x_3 = 5$$

$$x_1^2 + 3x_2^2 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

3.

$$\min_{x_1, x_2, x_3} e_1^x - x_1 x_2 + x_3^3$$

$$s.t. \quad \ln(e^{x_1 - 4x_2} + e^{x_1 + x_3}) \le 2x_1 + 3$$

$$2x_1^2 + x_2^2 \le 2$$

4.

$$\min_{x_1, x_2} -x_1$$
s.t. $-x_2 - (x_1 - 1)^3 \le 0$

$$x_1, x_2 \ge 0$$

5.

$$\min_{x_1, x_2} -x_1$$
s.t. $x_2 - (x_1 - 1)^3 \le 0$

$$x_1, x_2 > 0$$

Answers:

- 1. CNS as problem is linear, thus convex and qualified everywhere
- 2. CNS as problem is convex and qualified by Slater
- 3. CN as constraints are convex and qualified by Slater but objective is nonconvex
- 4. CN, constraints are qualified due to "positive-independence" condition.
- 5. Neither. Indeed, no sufficient qualification conditions are satisfied and we can even check that the constraints are not qualified at $x_0 = (1,0)$. Indeed, we have $(x_1 \ge 0 \text{ is }$ not active at x_0)

$$T_{x_0}^{\ell} X = \{ x \mid x_2 - 0 \le 0, \ x_2 \le 0 \} = \mathbb{R} \times \{ 0 \};$$

$$T_{x_0} X = \mathbb{R}^+ \times \{ 0 \}.$$

Exercise 4. Solve the following problem using first order optimality conditions

$$\min_{x_1, x_2} \quad -2(x_1 - 2)^2 - x_2^2$$
s.t.
$$x_1^2 + x_2^2 \le 25$$

$$x_1 \ge 0$$

Answers: First note that the constraint set is convex, and (1,1) is a Slater's point, ensuring qualification everywhere.

The Lagrangian reads

$$\mathcal{L}(x_1, x_2, \mu_1, \mu_2) = -2(x_1 - 2)^2 - x_2^2 + \mu_1(x_1^2 + x_2^2 - 25) - \mu_2 x_1$$

The KKT conditions thus read

$$\begin{cases}
-4(x_1 - 2) + 2\mu_1 x_1 - \mu_2 = 0 \\
-2x_2 + 2\mu_1 x_2 = 0 \\
x_1^2 + x_2^2 \le 25 \\
x_1 \ge 0 \\
\mu_1, \mu_2 \ge 0 \\
\mu_1 = 0 \quad \text{or} \quad x_1^2 + x_2^2 = 25 \\
\mu_2 = 0 \quad \text{or} \quad x_1 = 0
\end{cases}$$

If $\mu_1 = \mu_2 = 0$, we have $x_1 = 2$ and $x_2 = 0$ which satisfies the primal constraints. Thus $\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a primal-dual point satisfying KKT conditions with associated value 0.

If $\mu_1 = 0$ and $\mu_2 > 0$ we have $x_1 = x_2 = 0$ with $\mu_2 = 8 > 0$ which is a primal-dual point with value -8.

If $\mu_2 = 0$ and $\mu_1 > 0$ we have

and
$$\mu_1 > 0$$
 we have
$$\begin{cases}
-4(x_1 - 2) + 2\mu_1 x_1 = 0 \\
-2x_2 + 2\mu_1 x_2 = 0 \\
x_1 \ge 0 \\
\mu_1 > 0 \\
x_1^2 + x_2^2 = 25
\end{cases}$$

Thus, either $x_2 = 0$ or $\mu_1 = 1$. In the first case we get $x_1 = 5$, $x_2 = 0$, thus $\mu_1 = 6/5 > 0$ and $\mu_2 = 0$ which is a KKT point with value -18. In the second case we get $x_1 = 4$ and $x_2 = \pm 3$, with $\mu_1 = 1$ and $\mu_2 = 0$ which are two KKT points with value -17.

Finally, if $\mu_2 > 0$ and $\mu_1 > 0$, we have $x_1 = 0$ and $x_2 = \pm 5$ with $\mu_1 = 1$ and $\mu_2 = 8$, which are two KKT points with value -33, and thus the global minima.