Exercises: Convex analysis

March 30, 2023

Convex sets

Exercise 1 (Perspective function). Let $P: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the perspective function defined as P(x,t) = x/t, with $dom(P) = \mathbb{R}^n \times \mathbb{R}^*_+$.

- 1. Show that the image by P of the segment $\begin{bmatrix} {x \choose s}, {y \choose t} \end{bmatrix}$ is the segment $[P({x \choose s}), P({y \choose t})]$, i.e. $P([{x \choose s}, {y \choose t}]) = [P({x \choose s}), P({y \choose t})]$.
- 2. Show that, if $C \subset \mathbb{R}^n \times \mathbb{R}_+^*$ is convex, then P(C) is convex.
- 3. Show that, if $D \subset \mathbb{R}^n$, then $P^{-1}(D)$ is convex.

Exercise 2 (Dual cones). Recall that, for any set $K \subset \mathbb{R}^n$, $K^{\oplus} := \{y \in \mathbb{R}^n \mid \forall x \in K, \langle y, x \rangle \geq 0\}$. We say that K is self dual if $K^{\oplus} = K$.

- 1. Show that $K = \mathbb{R}^n_+$ is self dual.
- 2. We consider the set of symmetric matrices S_n with the scalar product $\langle A, B \rangle = \operatorname{tr}(AB)$. Show that $K = S_n^+(\mathbb{R})$ is self dual.
- 3. Let $\|\cdot\|$ be a norm, show that $K = \{(x,t) \mid \|x\| \le t\}$ has for dual $K^{\oplus} = \{(z,\lambda) \mid \|z\|_{\star} \le \lambda\}$, where $\|z\|_{\star} := \sup_{x:\|x\| \le 1} z^{\top}x$.

Exercise 3. We consider the set of $n \times n$ symmetric real matrices $S_n(\mathbb{R})$.

- 1. Show that $\langle A, B \rangle = \operatorname{tr}(AB)$ is a scalar product on S_n .
- 2. Show that the set of semi-definite positive matrices $K = S_n^+(\mathbb{R})$ is a cone.
- 3. Show that $K = S_n^+(\mathbb{R})$ is self dual (i.e. $K = K^{\oplus}$ for this scalar product).

Convex functions

Exercise 4 (Moving average). Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function.

- 1. Show that, $s \mapsto \int_0^1 f(st)dt$ is convex.
- 2. Show that, $\mathbb{R}_+^* \ni T \mapsto 1/T \int_0^T f(t)dt$ is convex.

Exercise 5 (Partial infimum). Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be a convex function and $C \subset \mathbb{R}^m$ a convex set. Show that the function

$$g: x \mapsto \inf_{y \in C} f(x, y)$$

is convex.

Exercise 6 (log determinant). Let, for any $X \in S_n$, $f(X) = \ln(\det(X))$ for $X \succ 0$, $-\infty$ otherwise. Consider, for $Z \succ 0$, and $V \in S_n$, the function $g: t \mapsto f(Z + tV)$.

- 1. Show that $g(t) = \sum_{i=1}^{n} \ln(1 + t\lambda_i) + f(Z)$, where the λ_i are the eigenvalues of $Z^{-1/2}VZ^{-1/2}$.
- 2. Show that g is concave. Conclude that f is concave.

Exercise 7 (Perspective function). Let ϕ : $E \to \mathbb{R} \cup \{+\infty\}$. The perspective of ϕ is defined as $\tilde{\phi} : \mathbb{R}_+^* \times E \to \mathbb{R}$ by

$$\tilde{\phi}(\eta, y) := \eta \phi(y/\eta).$$

Show that ϕ is convex iff $\tilde{\phi}$ is convex.

Fenchel transform and subdifferential

Exercise 8 (Norm). Let $\|\cdot\|$ be a norm on \mathbb{R}^n and $\|y\|_{\star} := \sup_{x:\|x\| \le 1} y \top x$ be its dual norm. Let $f: x \mapsto \|x\|$. Compute f^{\star} and $\partial f(0)$.

Exercise 9 (Log sum exp). We consider $f(x) := \ln(\sum_{i=1}^{n} e^{x_i})$.

- 1. Show that f is convex. Hint: recall Holder's inequality $x^{\top}y \leq \|x\|_p \|y\|_q$ for 1/p + 1/q = 1.
- 2. Show that $f^*(y) = \sum_{i=1}^n y_i \ln(y_i)$ if $y \ge 0$ and $\sum_i y_i = 1$, $+\infty$ otherwise.