Let $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ given data. We define the primal linear program (LP) and its dual as:

$$\min_{x \in \mathbb{R}^n} c^{\mathsf{T}} x \quad \text{s.t.} \quad Ax = b \;, \; x \ge 0 \;, \qquad \max_{\lambda \in \mathbb{R}^m \; s \in \mathbb{R}^n} b^{\mathsf{T}} \lambda \quad \text{s.t.} \quad A^{\mathsf{T}} \lambda + s = c \;, \; s \ge 0 \;. \tag{1}$$

We recall the following theorem.

Theorem 1 (Goldman-Tucker). Suppose the primal and dual LP (1) are feasible. There exists at least one primal-dual solution (x^*, λ^*, s^*) satisfying strict complementarity: $x^* + s^* > 0$.

1 Self duality

Let $f \in \mathbb{R}^n$, $g \in \mathbb{R}^m$ two vectors and $C \in \mathbb{R}^{n \times n}$, $D \in \mathbb{R}^{n \times m}$ and $E \in \mathbb{R}^{m \times m}$ three matrices. We define the linear program (LP)

We suppose C and D are skew-symmetric matrices: $C^{\top} = -C$ and $E^{\top} = -E$. We will note by $(\widetilde{u}, \widetilde{v}, w)$ the Lagrangian multipliers attached respectively to the constraints $Cu + Dv \ge -f$, $-D^{\top}u + Ev = -g$ and $u \ge 0$.

- 1. Write the KKT conditions of the LP (2).
- 2. Show that the LP (2) is self-dual, in the sense that its Lagrangian dual problem is exactly (2).
- 3. Show that the LP (2) is equivalent to the linear complementarity problem (LCP):

Find
$$(u, v, w)$$
 such that
$$\begin{cases} \begin{bmatrix} w \\ 0 \end{bmatrix} = \begin{bmatrix} C & D \\ -D^{\top} & E \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} f \\ g \end{bmatrix}, \\ (u, w) \ge 0, \ u^{\top}w = 0. \end{cases}$$
 (4)

4. Use the Goldman-Tucker theorem to prove that if the LP (2) is feasible, then the LCP (4) has a strictly complementary solution: i.e., there exists (u, v, w) solution of (4) such that u + w > 0.

2 Simplified homogeneous self-dual (HSD) embedding

We introduce the following LP:

$$\min_{x,\lambda,\tau,s,\kappa} 0$$
s.t.
$$\begin{bmatrix}
0 & -A^{\top} & c \\
A & 0 & -b \\
-c^{\top} & b^{\top} & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\lambda \\
\tau
\end{bmatrix} = \begin{bmatrix}
s \\
0 \\
\kappa
\end{bmatrix}$$

$$(x,\tau,s,\kappa) \ge 0.$$
(5)

1. Show that the LP (5) has a trivial solution, and all feasible points are optimal and satisfy

$$s^{\top}x + \kappa\tau = 0. ag{6}$$

- 2. Justify that if $(x, \lambda, \tau, s, \kappa)$ is solution of the LP (5), then for all t > 0 the vector $(tx, t\lambda, t\tau, ts, t\kappa)$ is also a solution of (5).
- 3. Suppose that $(x, \lambda, \tau, s, \kappa)$ is solution of (5), with $\tau > 0$ and $\kappa = 0$. Show that $(\hat{x}, \hat{\lambda}, \hat{s}) := (x/\tau, \lambda/\tau, s/\tau)$ is a solution of the original LP (1).
- 4. Show that the LP (5) has the same structure as the self-dual LP (2). Explicit the matrix C, D, E and the vectors f, g. Deduce that the original LP (2) is equivalent to the LCP:

Find
$$(x, \lambda, \tau, s, \kappa)$$
 such that
$$\begin{cases} \begin{bmatrix} 0 & -A^{\top} & c \\ A & 0 & -b \\ -c^{\top} & b^{\top} & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \\ \tau \end{bmatrix} = \begin{bmatrix} s \\ 0 \\ \kappa \end{bmatrix} \\ (x, \tau, s, \kappa) \ge 0, \quad s^{\top}x + \kappa\tau = 0. \end{cases}$$
 (7)

3 Generalization to conic programming

We recall the following result.

Theorem 2 (Moreau decomposition). Let K be a closed convex cone and K^{\oplus} its positive dual cone. We note P_K (resp. $P_{-K^{\oplus}}$) the Euclidean projection onto K (resp. $-K^{\oplus}$). For $x, y, z \in \mathbb{R}^n$, the following statements are equivalent:

1.
$$z = x + y$$
 for $x \in K$, $y \in -K^{\oplus}$ and $x^{\top}y = 0$.

2.
$$x = P_K(z) \text{ and } y = P_{-K^{\oplus}}(z).$$

- 1. Let $K = \mathbb{R}^n_+ \times \mathbb{R}^m \times \mathbb{R}_+$.
 - (a) Give the expression of the dual cone K^{\oplus} .
 - (b) For a matrix Q to be explicited, deduce that we can rewrite (7) more compactly as

Find
$$(u, v)$$
 such that
$$\begin{cases} v = Qu, \\ (u, v) \in K \times K^{\oplus}. \end{cases}$$
 (8)

(c) Use the Moreau decomposition theorem to prove that (8) is equivalent to finding $z \in \mathbb{R}^{n+m+1}$ such that

$$-P_{-K^{\oplus}}(z) = QP_K(z) . \tag{9}$$

2. [Bonus question:] Let $\mathcal{C} \subset \mathbb{R}^n$ a proper cone. How to adapt the homogeneous self-dual embedding to solve the following conic problem?

$$\min_{x \in \mathbb{R}^n} c^{\top} x \quad \text{s.t.} \quad Ax = b \;, \; x \in \mathcal{C} \;. \tag{10}$$