
Convex optimization - Take home exam 2024
—To be returned by May, 17th—

Let c ∈ Rn, b ∈ Rm and A ∈ Rm×n given data. We define the primal linear program (LP) and its dual as:

min
x∈Rn

c⊤x s.t. Ax = b , x ≥ 0 , max
λ∈Rm,s∈Rn

b⊤λ s.t. A⊤λ+ s = c , s ≥ 0 . (1)

We recall the following theorem.

Theorem 1 (Goldman-Tucker). Suppose the primal and dual LP (1) are feasible. There exists at least one
primal-dual solution (x⋆, λ⋆, s⋆) satisfying strict complementarity: x⋆ + s⋆ > 0.

1 Self duality

Let f ∈ Rn, g ∈ Rm two vectors and C ∈ Rn×n, D ∈ Rn×m and E ∈ Rm×m three matrices. We define the
linear program (LP)

min
u∈Rn,v∈Rm

f⊤u+ g⊤v

subject to Cu+Dv ≥ −f [⇝ ũ]

−D⊤u+ Ev = −g [⇝ ṽ]

u ≥ 0 [⇝ w]

(2)

We suppose C and E are skew-symmetric matrices: C⊤ = −C and E⊤ = −E. We will note by (ũ, ṽ, w)
the Lagrangian multipliers attached respectively to the constraints Cu+Dv ≥ −f , −D⊤u+ Ev = −g and
u ≥ 0.

1. Write the KKT conditions of the LP (2).

Solution: We note ũ, ṽ and w the Lagrangian multipliers associated respectively to Cu+Dv ≥ −f ,
−D⊤u+ Ev = −g and u ≥ 0. The Lagrangian of (2) is

L(u, v, ũ, ṽ, w) = f⊤u+ g⊤v − ũ⊤(f + Cu+Dv)− ṽ⊤(g −D⊤u+ Ev)− w⊤u .

The KKT conditions are:

f − C⊤ũ+Dṽ − w = 0 (∇uL(·) = 0)

g −D⊤ũ− E⊤ṽ = 0 (∇vL(·) = 0)

f + Cu+Dv ≥ 0 (∇ũL(·) = 0)

g −D⊤u+ Ev = 0 (∇ṽL(·) = 0)

ũ⊤(Cu+Dv + f) = 0 (complementarity)

(u, ũ, w) ≥ 0 (dual admissibility)

2. Show that the LP (2) is self-dual, in the sense that its Lagrangian dual problem is exactly (2).

Solution: The dual problem is defined as

max
ũ,ṽ,w

(
min
u,v

L(u, v, ũ, ṽ, w)
)

subject to (ũ, w) ≥ 0 .



After some reordering, we obtain:

L(u, v, ũ, ṽ, w) = −f⊤ũ− g⊤ṽ + (f − C⊤ũ+Dṽ − w)⊤u+ (g −D⊤ũ− E⊤ṽ)⊤v .

We have minu,v L(u, v, ũ, ṽ, w) > −∞ only if f −C⊤ũ+Dṽ−w = 0 and g−D⊤ũ−E⊤ṽ = 0. Hence
the dual problem writes

max
ũ,ṽ,w

− f⊤ũ− g⊤ṽ

subject to f − C⊤ũ+Dṽ − w = 0

g −D⊤ũ− E⊤ṽ = 0

(ũ, w) ≥ 0 ,

(3)

Using C⊤ = −C, E⊤ = −E and eliminating w ≥ 0 in the formulation, we get exactly (2) after
replacing max(·) by min−(·).

3. Show that the LP (2) is equivalent to the linear complementarity problem (LCP):

Find (u, v, w) such that


[
w
0

]
=

[
C D

−D⊤ E

] [
u
v

]
+

[
f
g

]
,

(u,w) ≥ 0 , u⊤w = 0 .

(4)

Solution: ⇒ From the previous question, we deduce that any optimal solution of the dual is an
optimal solution to the primal: (u, v) = (ũ, ṽ). Hence, we can eliminate the redundancy in the KKT
equations explicited in the Question 1:

f − C⊤u+D⊤v − w = 0

g −D⊤u− E⊤v = 0

u⊤(Cu+Dv + f) = 0

(u,w) ≥ 0

Using the first equation, we get w = Cu+Dv + f . The complementarity condition reformulates as
u⊤w = 0, and we deduce that (u, v, w) is solution of (4).

⇐ Suppose (u, v, w) is solution of (4). We can verify that (u, v, ũ, ṽ, w) := (u, v, u, v, w) is a primal-
dual optimal solution of the LP (2).

4. Use the Goldman-Tucker theorem to prove that if the LP (2) is feasible, then the LCP (4) has a strictly
complementary solution: i.e., there exists (u, v, w) solution of (4) such that u+ w > 0.

Solution: Using the Goldman-Tucker theorem, there exists (u, v, ũ, ṽ, w) satisfying strict comple-
mentarity: ũ+ (Cu+Dv+ f) > 0 and u+w > 0. Using self-duality, (ũ, ṽ, u, v, w) is also a solution
satisfying strict complementarity, with non-zero products set at the same location as (u, v, ũ, ṽ, w).
For i = 1, · · · , n, we have either

(ui, ũi) > 0 , (Cu+Dv + f)i = 0 or (ui, ũi) = 0 , (Cu+Dv + f)i > 0 .

We deduce that for all i, ui+(Cu+Dv+ f)i > 0, implying ui+wi > 0. As a consequence, (u, v, w)
is strict complementarity solution of (4).
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2 Simplified homogeneous self-dual (HSD) embedding

We introduce the following LP:

min
x,λ,τ,s,κ

0

s.t.

 0 −A⊤ c
A 0 −b

−c⊤ b⊤ 0

xλ
τ

 =

s0
κ


(x, τ, s, κ) ≥ 0 .

(5)

1. Show that the LP (5) has a trivial solution, and all feasible points are optimal and satisfy

s⊤x+ κτ = 0 . (6)

Solution: (x, λ, τ, s, κ) = (0, 0, 0, 0, 0) is a trivial solution. The objective function is 0, so all feasible
points are optimal. For all feasible solution, we have:

s⊤x+ κτ = (−A⊤λ+ τc)⊤x+ (Ax− τb)⊤λ+ (−c⊤x+ b⊤λ)τ

= −λ⊤Ax+ τc⊤x+ λ⊤Ax− τb⊤λ− τc⊤x+ τb⊤λ

= 0

2. Justify that if (x, λ, τ, s, κ) is solution of the LP (5), then for all t > 0 the vector (tx, tλ, tτ, ts, tκ) is also
a solution of (5).

Solution: The feasible set of LP (5) is an intersection of a linear subspace with a cone.

3. Suppose that (x, λ, τ, s, κ) is solution of (5), with τ > 0 and κ = 0. Show that (x̂, λ̂, ŝ) := (x/τ, λ/τ, s/τ)
is a solution of the original LP (1).

Solution: For (x, λ, τ, s, κ) solution of (5), (x̂, λ̂, ŝ) satisfies
A⊤λ̂− c+ ŝ = 0

Ax̂ = b

c⊤x̂ = b⊤λ̂

(x̂, ŝ) ≥ 0

In addition, we have

ŝ⊤x̂ = (−A⊤λ̂+ c)⊤x̂

= −λ⊤Ax̂+ c⊤x̂

= −λ⊤Ax̂+ λ̂⊤b

As Ax̂ = b, we deduce ŝ⊤x̂ = 0. Hence, (x̂, λ̂, ŝ) satisfies the KKT conditions of the LP (1):
c−A⊤λ− s = 0

Ax = b

s⊤x = 0

(x, s) ≥ 0
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4. Show that the LP (5) has the same structure as the self-dual LP (2). Explicit the matrix C, D, E and
the vectors f , g. Deduce that the original LP (2) is equivalent to the LCP:

Find (x, λ, τ, s, κ) such that


 0 −A⊤ c

A 0 −b
−c⊤ b⊤ 0

xλ
τ

 =

s0
κ


(x, τ, s, κ) ≥ 0 , s⊤x+ κτ = 0 .

(7)

Solution: We identify the vectors and the matrices one by one. First, we have f = 0 and g = 0

as the objective is zero. Second, we have C =

[
0 −A⊤

A 0

]
skew-symmetric, E = 0 and D =

[
c

−b

]
.

The equivalence with (7) follows from Section 1

3 Generalization to conic programming

We recall the following result.

Theorem 2 (Moreau decomposition). Let K be a closed convex cone and K⊕ its positive dual cone. We
note PK (resp. P−K⊕) the Euclidean projection onto K (resp. −K⊕). For x, y, z ∈ Rn, the following
statements are equivalent:

1. z = x+ y for x ∈ K, y ∈ −K⊕ and x⊤y = 0.

2. x = PK(z) and y = P−K⊕(z).

1. Let K = Rn
+ × Rm × R+.

(a) Give the expression of the dual cone K⊕.

Solution: The positive orthant Rn
+ is self-dual, and (Rm)⊕ = {0}m. Hence K⊕ = Rn

+×{0}m×
R+.

(b) For a matrix Q to be explicited, deduce that we can rewrite (7) more compactly as

Find (u, v) such that

{
v = Qu ,

(u, v) ∈ K ×K⊕ .
(8)

Solution: Let Q =

 0 −A⊤ c
A 0 −b

−c⊤ b⊤ 0

. For (x, λ, τ, s, κ) solution of (7), we have u :=

(x, λ, τ) ∈ K and v = (s, 0, κ) ∈ K⊕ and v = Qu. Conversely, we can build a solution of
(7) from (u, v) solution of (8).

(c) Use the Moreau decomposition theorem to prove that (8) is equivalent to finding z ∈ Rn+m+1 such
that

−P−K⊕(z) = QPK(z) . (9)
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Solution: The proof is direct using the Moreau decomposition theorem.

2. [Bonus question:] Let C ⊂ Rn a proper cone. How to adapt the homogeneous self-dual embedding to
solve the following conic problem?

min
x∈Rn

c⊤x s.t. Ax = b , x ∈ C . (10)

Solution: The KKT conditions of the conic program are
c−A⊤λ− s = 0

Ax = b

s⊤x = 0

(x, s) ∈ C × C⊕

(11)

Using the same procedure as before, we can prove that the KKT system is equivalent to the HSD
embedding (8), with K = C × Rm × R+ and K⊕ = C⊕ × {0}m × R+.
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