Take home exam 2023

April 21, 2023

Personal work, to be returned on May 12th. Estimated work time: 4-6 hours.

Logistic regression

Let $x \in \mathbb{R}^{n}$ denote a vector of feature variables, and $y \in\{-1,+1\}$ denote an associated binary outcome. We aim at predicting the outcome y with the help of the feature variables x with the help of a logistic model. For a given parameter $\theta \in \mathbb{R}^{n}$, the logistic model is defined by

$$
P_{\theta}(y \mid x)=\frac{1}{1+\exp \left(-y \cdot \theta^{\top} x\right)}
$$

where $P_{\theta}(y \mid x)$ is the conditional probability of y given $x \in \mathbb{R}^{n}$. Suppose we are given a set of m observations

$$
\left(x_{i}, y_{i}\right) \in \mathbb{R}^{n} \times\{-1,+1\}, \quad \forall i=1, \cdots, m
$$

The likelihood associated with the observations is $\prod_{i=1}^{m} P_{\theta}\left(y_{i} \mid x_{i}\right)$. We aim at finding the parameter $\theta \in \mathbb{R}^{n}$ that maximizes the (log)-likelihood.

Formulation of the logistic regression problem

1. Show that maximizing the log-likelihood is equivalent to minimizing the empirical logistic loss

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{n}} L(\theta) \quad \text { with } \quad L(\theta):=\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i} \cdot \theta^{\top} x_{i}\right)\right) \tag{1}
\end{equation*}
$$

Problem (1) is called the logistic regression problem. We define the logistic loss function as $f(z)=\log (1+\exp (-z))$, such that $L(\theta)=\frac{1}{m} \sum_{i=1}^{m} f\left(y_{i} \cdot \theta^{\top} x_{i}\right)$.
2. Show that the logistic regression problem (1) is convex. Is it strongly convex?
3. For a fixed $\theta \in \mathbb{R}^{n}$, compute the gradient $\nabla_{\theta} L(\theta)$ and the Hessian $\nabla_{\theta \theta}^{2} L(\theta)$ of the function L.
4. Discuss which numerical algorithm(s) would be appropriate to solve (1).
5. Show that the conjugate of the logistic loss function f is, for $p \in \mathbb{R}$,

$$
f^{\star}(p)=\sup _{z \in \mathbb{R}}\left\{p^{\top} z-f(z)\right\}=\left\{\begin{array}{lr}
-p \log (-p)+(1+p) \log (1+p), & \text { if } p \in]-1,0[\tag{2}\\
0, & \text { if } p \in\{-1,0\} \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

6. Deduce the expression of the conjugate function $L^{\star}(q)$ of the function L for $q \in \mathbb{R}^{n}$.

ℓ_{1}-regularized logistic regression

We add a ℓ_{1} regularization to the original logistic regression problem (1). Let $\mu>0$ be a given parameter. From now on, we consider the problem:

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{n}} L(\theta)+\mu\|\theta\|_{1}=\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i} \cdot \theta^{\top} x_{i}\right)\right)+\mu \sum_{i=1}^{m}\left|\theta_{i}\right| . \tag{3}
\end{equation*}
$$

7. Is the regularized problem (3) convex? Differentiable?
8. Show that an optimal solution θ^{\sharp} of (3) satisfies the inclusion

$$
0 \in \nabla L\left(\theta^{\sharp}\right)+\mu \partial\left\|\theta^{\sharp}\right\|_{1} .
$$

9. Show that the regularized problem (3) is equivalent to the smooth reformulation

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{n}, \alpha \in \mathbb{R}^{n}} L(\theta)+\mu 1^{\top} \alpha \quad \text { subject to } \quad-\alpha_{j} \leq \theta_{j} \leq \alpha_{j}, \quad \forall j=1, \cdots, n \tag{4}
\end{equation*}
$$

Name one algorithm able to solve the constrained problem (4).
Alternatively, using variable lifting the regularized problem is equivalent to

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}} \frac{1}{m} \sum_{i=1}^{m} f\left(z_{i}\right)+\mu\|\theta\|_{1} \quad \text { subject to } \quad z_{i}=y_{i} \cdot x_{i}^{\top} \theta, \quad \forall i=1, \cdots, m . \tag{5}
\end{equation*}
$$

Let $A \in \mathbb{R}^{m \times n}$ the matrix defined as $A=\left[\begin{array}{c}y_{1} \cdot x_{1} \\ \vdots \\ y_{m} \cdot x_{m}\end{array}\right]$.
10. Show that the dual problem of (5) is given by (6). Is there a duality gap?

$$
\begin{equation*}
\max _{p \in \mathbb{R}^{m}}-\frac{1}{m} \sum_{i=1}^{m} f^{\star}\left(-m p_{i}\right) \quad \text { subject to } \quad\left\|A^{\top} p\right\|_{\infty} \leq \mu \tag{6}
\end{equation*}
$$

