Take home exam 2022

May 13, 2022

Personal work, to be returned on May 13th. Estimated work time : 4-6 hours.

Exercise 1 (Decomposition theorem). Let K be a non-empty, closed, convex subset of \mathbb{R}^n . We denote $K^{\ominus} = -K^{\oplus} = \{y \in \mathbb{R}^n \mid \langle y, z \rangle \leq 0, \forall z \in K\}$. Let $x \in \mathbb{R}^n$.

1. Show that there exists a unique $y \in K$, called the projection of x on K, and denoted $\operatorname{proj}_{K}(x)$ such that

$$||x - y||_2 = \inf_{z \in K} ||x - z||_2$$

2. Show that $y = \operatorname{proj}_{K}(x)$ is the only element of K such that

$$\langle x - y, z - y \rangle \le 0, \qquad \forall z \in K$$

- 3. From now on, assume that K is a closed convex cone. Show that there exists $y \in K$, and $z \in K^{\ominus}$, with $\langle y, z \rangle = 0$, such that x = y + z.
- 4. Deduce from the previous point that $K^{\ominus\ominus} = K$.
- 5. Show that we have x = y + z, with $y \in K$, and $z \in K^{\ominus}$, $\langle y, z \rangle = 0$, if and only if $y = \operatorname{proj}_{K}(x)$ and $z = \operatorname{proj}_{K^{\ominus}}(x)$.
- **Solution.** 1. $\operatorname{proj}_K(x)$ is an optimal solution to the following optimization problem : $\operatorname{Min}_{z \in K} f(z) := \|z x\|_2^2$, which is convex with strongly convex objective function, ensuring existence (0.5pts) and unicity (0.5pts).
 - 2. The convex optimality condition reads $-\nabla f(y) \in N_K(y)$, which yields $\langle -(y-x), z-y \rangle \leq 0.$ (1pts)
 - 3. (2pts) We set $y = \operatorname{proj}_{K}(x)$, and z = x y. Thus, for all $p \in K$, $\langle x y, p y \rangle \leq 0$. We choose p = ty, for t > 0. It follows, $(t 1)\langle z, y \rangle \leq 0$, thus $\langle z, y \rangle = 0$. Finally, as $0 \geq \langle x - y, p - y \rangle = \langle z, p \rangle - \langle z, y \rangle = \langle z, p \rangle$ we have $z \in K^{\ominus}$.
 - 4. (2pts) Obviously $K \subset K^{\ominus\ominus}$. Consider $x \in K^{\ominus\ominus}$, and $y \in K$, $z \in K^{\ominus}$ such that x = y + z and $\langle y, z \rangle = 0$. Then,

$$0 \ge \langle x, z \rangle = \langle y, z \rangle + \langle z, z \rangle = ||z||^2$$

Which means that z = 0 and x = y.

5. (2pts) The only if part is straight from the proof of 3. Now consider y and z satisfying the conditions. Then, for any $p \in K$ we have

$$\langle z - x, p - x \rangle = \langle y, p - x \rangle = \langle y, p \rangle \le 0,$$

which characterize the projection on K by question 2. We can do the same for the projection on K^{\ominus} .

Exercise 2 (SOCP). We define the second order cone $K_n = \{(x,t) \in \mathbb{R}^{n+1} \mid t \geq ||x||_2\}$. We say that a constraint is second order cone (SOC) representable if it can be written as $(y, \theta) \in K_m$ for adequately chosen y and θ .

We say that an optimization problem is an SOCP in standard form if it is written as

$$\underbrace{\operatorname{Min}}_{x \in \mathbb{R}^n} \quad c_0^{\top} x \tag{1a}$$

s.t.
$$||A_i^{\top}x + b_i|| \le c_i^{\top}x + d_i$$
 $\forall i \in [n]$ (1b)

- 1. Show that $\{w^T w \le xy, x \ge 0, y \ge 0\}$ is equivalent to $\left\| \begin{pmatrix} 2w \\ x-y \end{pmatrix} \right\| \le x+y$ where $w \in \mathbb{R}^n, x \in \mathbb{R}$, and $y \in \mathbb{R}$. Deduce that $\{w \in \mathbb{R}^n, x \ge 0, y \ge 0 \mid w^T w \le xy\}$ is SOC representable.
- 2. Show that, for any matrix and vector of adequate dimension, $\{x \in \mathbb{R}^n \mid ||Ax + b||_2 \leq c^{\top}x + d\}$ is SOC representable.
- 3. Show that, for any $Q \in S_n^{++}$, the constraint set $\{(x,t) \in \mathbb{R}^{n+1} \mid x^\top Q x \leq t\}$ is SOC representable.
- 4. Represent the following LP program as an SOCP in standard form.

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & c_0^\top x \\ s.t. & Ax \le b \end{array}$$

5. Represent the following convex QP program as an SOCP in standard form.

$$\begin{array}{ll} & \underset{x \in \mathbb{R}^n}{\min} & x^\top Q x + c_0^\top x \\ & s.t. & A x \leq b \end{array}$$

- 6. Compute, for $v \in \mathbb{R}^n$ and $\lambda > 0$, $\sup \{ u^\top v \mid ||u||_2 \le \lambda \}$.
- 7. Show that the SOCP problem in standard form (1) admit the following dual formulation [hint: you can use the results of the previous question]

$$\begin{aligned} \max_{\substack{(u_i,\mu_i)_{i\in[m]}\in(\mathbb{R}^n\times\mathbb{R}_+)^m \\ i=1 \end{aligned}} & \sum_{i=1}^m u_i^\top b_i - \mu_i d_i \\ s.t. & \sum_{i=1}^m (A_i^\top u_i - \mu_i c_i) = c_0 \\ & \|u_i\|_2 \le \mu_i \end{aligned} \qquad i \in [m] \end{aligned}$$

Is it an SOCP ? Give a simple condition to have strong duality.

8. Represent the following square root lasso problem

$$\underset{w \in \mathbb{R}^n}{\min} \quad \|Aw - b\| + r\|w\|_1$$

as an SOCP, and give a dual formulation. Is there a duality gap ?

- **Solution.** 1. (1pts) Taking the square of the norm (possible by non-negativity) we get $4w^{\top}w + 2(x-y)^2 \leq (x+y)^2$ developing and checking sign yields the result.
 - 2. (0.5pts) y = Ax + b and $\theta = c^{\top}x + d$.
 - 3. (1pts) $w = Q^{1/2}x$, $\theta = t$, we then have $w^{\top}w \leq t1$ and the previous reformulation yields

$$\left\| \begin{pmatrix} 2Q^{1/2}x\\t-1 \end{pmatrix} \right\| \le t+1$$

- 4. (0.5pts) $C_i \leftarrow 0, b_i \leftarrow 0, c_i \leftarrow -a_i \text{ and } d_i \leftarrow b_i$
- 5. (0.5pts)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}, t \ge 0}{\operatorname{Min}} & t + c_{0}^{\top} x \\ s.t. & Ax \le b \\ & \left\| \begin{pmatrix} 2Q^{1/2}x \\ t-1 \end{pmatrix} \right\| \le t+1
\end{array}$$

- 6. (0.5pts) $\sup \{ u^{\top} v \mid ||u||_2 \le \lambda \} = \lambda ||v||_2$
- 7. (3pts) We have

$$p^{\sharp} = \underset{x \in \mathbb{R}^{n}}{\min} \quad c_{0}^{\top} x + \sum_{i=1}^{m} \underset{\mu_{i} \ge 0}{\sup} \mu_{i} \Big[\|A_{i}x + b_{i}\|_{2} - (c_{i}^{\top}x + d_{i}) \Big]$$
$$= \underset{x \in \mathbb{R}^{n}}{\min} \quad c_{0}^{\top} x + \sum_{i=1}^{m} \underset{\mu_{i} \ge 0}{\sup} \Big(\underset{u_{i}: \|u_{i}\| \le \mu_{i}}{\sup} u_{i}^{\top} (A_{i}x + b_{i}) - \mu_{i} (c_{i}^{\top}x + d_{i}) \Big)$$

And the dual reads

$$\begin{aligned} d^{\sharp} &= \underset{(u_i,\mu_i)_{i\in[m]}\in(\mathbb{R}^n\times\mathbb{R}_+)^m}{\operatorname{Max}} \quad \inf_{x\in\mathbb{R}^n} c_0^{\top}x + \sum_{i=1}^m \left(u_i^{\top}(A_ix+b_i) - \mu_i(c_i^{\top}x+d_i)\right) \\ & s.t. \quad \|u_i\| \le \mu_i \\ &= \underset{(u_i,\mu_i)_{i\in[m]}\in(\mathbb{R}^n\times\mathbb{R}_+)^m}{\operatorname{Max}} \sum_{i=1}^m u_i^{\top}b_i - \mu_i^{\top}d_i + \underset{x\in\mathbb{R}^n}{\inf} x^{\top}\left(c + \sum_{i=1}^m A_i^{\top}u_i - \mu_ic_i\right) \\ & s.t. \quad \|u_i\| \le \mu_i \end{aligned}$$

8. (2pts)