Take home exam 2022

May 13, 2022

Personal work, to be returned on May 13th. Estimated work time : 4-6 hours.

Exercise 1 (Decomposition theorem). Let K be a non-empty, closed, convex subset of \mathbb{R}^{n}. We denote $K^{\ominus}=-K^{\oplus}=\left\{y \in \mathbb{R}^{n} \quad \mid \quad\langle y, z\rangle \leq 0, \quad \forall z \in K\right\}$.
Let $x \in \mathbb{R}^{n}$.

1. Show that there exists a unique $y \in K$, called the projection of x on K, and denoted $\operatorname{proj}_{K}(x)$ such that

$$
\|x-y\|_{2}=\inf _{z \in K}\|x-z\|_{2}
$$

2. Show that $y=\operatorname{proj}_{K}(x)$ is the only element of K such that

$$
\langle x-y, z-y\rangle \leq 0, \quad \forall z \in K
$$

3. From now on, assume that K is a closed convex cone. Show that there exists $y \in K$, and $z \in K^{\ominus}$, with $\langle y, z\rangle=0$, such that $x=y+z$.
4. Deduce from the previous point that $K^{\ominus \ominus}=K$.
5. Show that we have $x=y+z$, with $y \in K$, and $z \in K^{\ominus},\langle y, z\rangle=0$, if and only if $y=\operatorname{proj}_{K}(x)$ and $z=\operatorname{proj}_{K} \ominus(x)$.

Solution. 1. $\operatorname{proj}_{K}(x)$ is an optimal solution to the following optimization problem : $\operatorname{Min}_{z \in K} f(z):=$ $\|z-x\|_{2}^{2}$, which is convex with strongly convex objective function, ensuring existence (0.5pts) and unicity (0.5pts).
2. The convex optimality condition reads $-\nabla f(y) \in N_{K}(y)$, which yields $\langle-(y-x), z-y\rangle \leq$ 0.(1pts)
3. (2pts) We set $y=\operatorname{proj}_{K}(x)$, and $z=x-y$. Thus, for all $p \in K,\langle x-y, p-y\rangle \leq 0$. We choose $p=t y$, for $t>0$. It follows, $(t-1)\langle z, y\rangle \leq 0$, thus $\langle z, y\rangle=0$.
Finally, as $0 \geq\langle x-y, p-y\rangle=\langle z, p\rangle-\langle z, y\rangle=\langle z, p\rangle$ we have $z \in K^{\ominus}$.
4. (2pts) Obviously $K \subset K^{\ominus \ominus}$. Consider $x \in K^{\ominus \ominus}$, and $y \in K, z \in K^{\ominus}$ such that $x=y+z$ and $\langle y, z\rangle=0$. Then,

$$
0 \geq\langle x, z\rangle=\langle y, z\rangle+\langle z, z\rangle=\|z\|^{2}
$$

Which means that $z=0$ and $x=y$.
5. (2pts) The only if part is straight from the proof of 3. Now consider y and z satisfying the conditions. Then, for any $p \in K$ we have

$$
\langle z-x, p-x\rangle=\langle y, p-x\rangle=\langle y, p\rangle \leq 0
$$

which characterize the projection on K by question 2. We can do the same for the projection on K^{\ominus}.

Exercise 2 (SOCP). We define the second order cone $K_{n}=\left\{(x, t) \in \mathbb{R}^{n+1} \quad \mid \quad t \geq\|x\|_{2}\right\}$. We say that a constraint is second order cone (SOC) representable if it can be written as $(y, \theta) \in K_{m}$ for adequately chosen y and θ.
We say that an optimization problem is an SOCP in standard form if it is written as

$$
\begin{align*}
\operatorname{Min}_{x \in \mathbb{R}^{n}} & c_{0}^{\top} x \tag{1a}\\
\text { s.t. } & \left\|A_{i}^{\top} x+b_{i}\right\| \leq c_{i}^{\top} x+d_{i} \quad \forall i \in[n] \tag{1b}
\end{align*}
$$

1. Show that $\left\{w^{T} w \leq x y, x \geq 0, y \geq 0\right\}$ is equivalent to $\left\|\binom{2 w}{x-y}\right\| \leq x+y$ where $w \in \mathbb{R}^{n}, x \in$ \mathbb{R}, and $y \in \mathbb{R}$. Deduce that $\left\{w \in \mathbb{R}^{n}, x \geq 0, y \geq 0 \mid w^{T} w \leq x y\right\}$ is SOC representable.
2. Show that, for any matrix and vector of adequate dimension, $\left\{x \in \mathbb{R}^{n} \mid\|A x+b\|_{2} \leq\right.$ $\left.c^{\top} x+d\right\}$ is SOC representable.
3. Show that, for any $Q \in S_{n}^{++}$, the constraint set $\left\{(x, t) \in \mathbb{R}^{n+1} \mid x^{\top} Q x \leq t\right\}$ is SOC representable.
4. Represent the following LP program as an SOCP in standard form.

$$
\begin{aligned}
\underset{x \in \mathbb{R}^{n}}{\operatorname{Min}} & c_{0}^{\top} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

5. Represent the following convex $Q P$ program as an $S O C P$ in standard form.

$$
\begin{aligned}
\operatorname{Min}_{x \in \mathbb{R}^{n}} & x^{\top} Q x+c_{0}^{\top} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

6. Compute, for $v \in \mathbb{R}^{n}$ and $\lambda>0$, $\sup \left\{u^{\top} v \mid\|u\|_{2} \leq \lambda\right\}$.
7. Show that the SOCP problem in standard form (11) admit the following dual formulation [hint: you can use the results of the previous question]

$$
\begin{array}{rll}
\operatorname{Max}_{\left(u_{i}, \mu_{i}\right)_{i \in[m]} \in\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)^{m}} & \sum_{i=1}^{m} u_{i}^{\top} b_{i}-\mu_{i} d_{i} & \\
\text { s.t. } & \sum_{i=1}^{m}\left(A_{i}^{\top} u_{i}-\mu_{i} c_{i}\right)=c_{0} & \\
& \left\|u_{i}\right\|_{2} \leq \mu_{i} & i \in[m]
\end{array}
$$

Is it an SOCP ? Give a simple condition to have strong duality.
8. Represent the following square root lasso problem

$$
\operatorname{Min}_{w \in \mathbb{R}^{n}}\|A w-b\|+r\|w\|_{1}
$$

as an SOCP, and give a dual formulation. Is there a duality gap?
Solution. 1. (1pts) Taking the square of the norm (possible by non-negativity) we get $4 w^{\top} w+$ $2(x-y)^{2} \leq(x+y)^{2}$ developing and checking sign yields the result.
2. (0.5pts) $y=A x+b$ and $\theta=c^{\top} x+d$.
3. (1pts) $w=Q^{1 / 2} x, \theta=t$, we then have $w^{\top} w \leq t 1$ and the previous reformulation yields

$$
\left\|\binom{2 Q^{1 / 2} x}{t-1}\right\| \leq t+1
$$

4. (0.5pts) $C_{i} \leftarrow 0, b_{i} \leftarrow 0, c_{i} \leftarrow-a_{i}$ and $d_{i} \leftarrow b_{i}$
5. (0.5pts)

$$
\begin{array}{rl}
\operatorname{Min}_{x \in \mathbb{R}^{n}, t \geq 0} & t+c_{0}^{\top} x \\
\text { s.t. } & A x \leq b \\
& \left\|\binom{2 Q^{1 / 2} x}{t-1}\right\| \leq t+1
\end{array}
$$

6. (0.5pts) $\sup \left\{u^{\top} v \mid\|u\|_{2} \leq \lambda\right\}=\lambda\|v\|_{2}$
7. (3pts) We have

$$
\begin{aligned}
p^{\sharp}= & \operatorname{Min}_{x \in \mathbb{R}^{n}} \quad c_{0}^{\top} x+\sum_{i=1}^{m} \sup _{\mu_{i} \geq 0} \mu_{i}\left[\left\|A_{i} x+b_{i}\right\|_{2}-\left(c_{i}^{\top} x+d_{i}\right)\right] \\
& =\operatorname{Min}_{x \in \mathbb{R}^{n}} c_{0}^{\top} x+\sum_{i=1}^{m} \sup _{\mu_{i} \geq 0}\left(\sup _{u_{i}:\left\|u_{i}\right\| \leq \mu_{i}} u_{i}^{\top}\left(A_{i} x+b_{i}\right)-\mu_{i}\left(c_{i}^{\top} x+d_{i}\right)\right)
\end{aligned}
$$

And the dual reads

$$
\begin{aligned}
& d^{\sharp}= \operatorname{Max}_{\left.\left.\left(u_{i}, \mu_{i}\right)\right)_{i \in[m]} \in \mathbb{R}^{n} \times \mathbb{R}_{+}\right)^{m}} \\
& \text { s.t. } \inf _{x \in \mathbb{R}^{n}} c_{0}^{\top} x+\sum_{i=1}^{m}\left(u_{i}^{\top}\left(A_{i} x+b_{i}\right)-\mu_{i}\left(c_{i}^{\top} x+d_{i}\right)\right) \\
&=\operatorname{Max}_{\left(u_{i}, \mu_{i}\right)} \operatorname{Max}_{i \in[m]} \in\left(\mathbb{R}^{n} \times \mathbb{R}_{+}\right)^{m} \\
& \sum_{i=1}^{m} u_{i}^{\top} b_{i}-\mu_{i}^{\top} d_{i}+\inf _{x \in \mathbb{R}^{n}} x^{\top}\left(c+\sum_{i=1}^{m} A_{i}^{\top} u_{i}-\mu_{i} c_{i}\right) \\
& \text { s.t. } \quad\left\|u_{i}\right\| \leq \mu_{i}
\end{aligned}
$$

8. (2pts)
