Take home exam -1

April 4, 2022

Personal work, to be posted on Teams for April 16 23:59 in pdf or handwritten.

Exercise 1. We consider the set of $n \times n$ symmetric real matrices $S_n(\mathbb{R})$.

- 1. Show that $\langle A, B \rangle = \operatorname{tr}(AB)$ is a scalar product on S^n .
- 2. Show that the set of semi-definite positive matrices $K = S_n^+(\mathbb{R})$ is a cone.
- 3. Show that $K = S_n^+(\mathbb{R})$ is self dual (i.e. $K = K^{++}$ for this scalar product).

Solution. 1. It is symmetric and bilinear. $tr(AA) = \sum_{ij} a_{ij}^2 = 0$ implie A = 0.

2. Let A and B be in S_{++}^n , and t > 0 and $t' \ge 0$. Then we have, for all $x \in \mathbb{R}^n$, $x \neq 0$,

$$x^{\top}(tA + t'B)x = tx^{\top}Ax + t'x^{\top}Bx > 0.$$

3. Let $Y \in S_n \setminus S_n^+$. Then there exists $v \in \mathbb{R}^n$, $v^\top Y v < 0$. Moreover, $v^\top Y v = tr(v^\top X v) = tr(v^\top vX) < 0$. Hence we have $X = v^\top v \in S_n^+$ such that $\langle Y, X \rangle < 0$, i.e. $Y \notin (S_n^+)^*$.

On the other hand, consider $Y \in S_n^+$. We have the following decomposition $Y = \sum_{i=1}^n \lambda_i q_i^\top q_i$, where $\lambda_i \geq 0$ are the eigenvalues, and q_i the associated eigenvectors. Thus, for any $X \in S_n^+$, we have

$$\langle Y, X \rangle = \operatorname{tr}(X \sum_{i=1}^{n} \lambda_i q_i^{\top} q_i) = \operatorname{tr}(\sum_{i=1}^{n} \lambda_i q_i^{\top} X q_i) \ge 0$$

hence $Y \in (S_n^+)^*$

Exercise 2. We consider the following problem.

$$\underset{x_1,x_2}{\min} \quad x_1^2 + x_2^2 \tag{1}$$

- $s.t. \quad (x_1 1)^2 + (x_2 1)^2 \le 1 \tag{2}$
 - $(x_1 1)^2 + (x_2 + 1)^2 \le 1 \tag{3}$
- 1. Classify this problem.
- 2. Find the optimal solution and value of this problem.
- 3. Write and solve the KKT equation for this problem.
- 4. Derive and solve the Lagrangian dual of this problem.

5. Do we have strong duality ? If yes, could we have known it from the start ? If not, can you comment on why ?

Solution. 1. This is a convex QCQP

- 2. The only admissible point, and hence the optimal solution is (1,0), with value 1.
- 3. The Lagrangian is

$$\mathcal{L}(x,\lambda) = x_1^2 + x_2^2 + \lambda_1((x_1 - 1)^2 + (x_2 - 1)^2 - 1) + \lambda_2((x_1 - 1)^2 + (x_2 + 1)^2 - 1)$$

KKT condition are

• Gradient of Lagrangian is null :

$$2x_1 + 2\lambda_1(x_1 - 1) + 2\lambda_2(x_1 - 1) = 0$$

$$2x_2 + 2\lambda_1(x_2 - 1) + 2\lambda_2(x_2 + 1) = 0$$

- x is primal feasible : $(x_1 1)^2 + (x_2 1)^2 \le 1$ and $(x_1 1)^2 + (x_2 + 1)^2 \le 1$
- λ is dual feasible $\lambda_1 \ge 0, \ \lambda_2 \ge 0.$
- Complementary slackness:

$$\lambda_1 = 0$$
 or $(x_1 - 1)^2 + (x_2 - 1)^2 = 1$
 $\lambda_2 = 0$ or $(x_1 - 1)^2 + (x_2 + 1)^2 = 1$

x feasible is x = (1,0), which imply 2 = 0 which is impossible. Thus there is no pair (x, λ) satisfying the KKT equations. The KKT equations fails to give the optimal solution because the constraints are not qualified.

4. The Lagrange dual function is

$$g(\lambda_{1},\lambda_{2}) = \inf_{x_{1},x_{2}} \mathcal{L}(x,\lambda)$$

= $\inf_{x_{1},x_{2}} (1 + \lambda_{1} + \lambda_{2})(x_{1}^{2} + x_{2})^{2} - 2(\lambda_{1} + \lambda_{2})x_{1} - 2(\lambda_{1} - \lambda_{2})x_{2} + \lambda_{1} + \lambda_{2}$
= $\lambda_{1} + \lambda_{2} - \frac{(\lambda_{1} + \lambda_{2})^{2} + (\lambda_{1} - \lambda_{2})^{2}}{1 + \lambda_{1} + \lambda_{2}}$ if $1 + \lambda_{1} + \lambda_{2} > 0$

The dual problem reads

$$\begin{array}{ll} \max_{\lambda} & \frac{\lambda_1 + \lambda_2 - (\lambda_1 - \lambda_2)^2}{1 + \lambda_1 + \lambda_2} \\ s.t. & \lambda_1 \ge 0, \lambda_2 \ge 0 \end{array}$$

By symmetry the optimum is attained at $\lambda_1 = \lambda_2$, thus the dual reads

$$\max_{\lambda_1 \ge 0} \qquad \frac{2\lambda_1}{2\lambda_1 + 1}$$

Which has value 1 and no solution.

5. The dual problem have the same value as the primal problem, thus we have strong duality. However there does not exist a dual multiplier, which is why there is no solution to the KKT equations.

We could not guarantee the existence of a primal-dual optimal solution through KKT as the constraints were not qualified.

Exercise 3. We are going to prove that, if $f : \mathbb{R}^n \to \mathbb{R}$ is convex, and X a non-empty polytope (bounded polyhedron) then Kelley's cutting plane algorithm is converging. Consider $x_1 \in X$. We consider a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$ such that $x^{(k+1)}$ is an optimal solution to

$$\begin{aligned} (\mathcal{P}^{(k)}) & \underline{v}^{(k+1)} = \underset{x \in X}{\min} & z \\ s.t. & f(x^{(\kappa)}) + \left\langle g^{(\kappa)}, x - x^{(\kappa)} \right\rangle \leq z \qquad \quad \forall \kappa \in [k] \end{aligned}$$

where $g^{(k)} \in \partial f(x^{(k)})$. Denote $v = \min_{x \in X} f(x)$.

- 1. Show that v exists and is finite, and that there exists a sequence $x^{(k)}$.
- 2. Show that there exists L such that, for all k_1 and k_2 , we have $||f(x^{(k_1)}) f(x^{(k_2)})|| \le L||x^{(k_1)} x^{(k_2)}||$, and $||g^{(k)}|| \le L$.
- 3. Let $K_{\varepsilon} = \{k \in \mathbb{N} \mid f(x^{(k)}) > v + \varepsilon\}$ be the set of index such that $x^{(k)}$ is not an ε -optimal solution. Show that $f(x_k) \to v$ if and only if K_{ε} is finite for all $\varepsilon > 0$
- 4. Consider $k_1, k_2 \in K_{\varepsilon}$, such that $k_2 > k_1$. Show that

$$f(x^{(k_1)}) + \langle g^{(k_1)}, x^{(k_2)} - x^{(k_1)} \rangle \le \underline{v}^{(k_2)} \le v$$

- 5. Show that $\varepsilon + f(x^{(k_1)}) + \langle g^{(k_1)}, x^{(k_2)} x^{(k_1)} \rangle < f(x^{(k_2)})$
- 6. Show that $\varepsilon < 2L \|x^{(k_2)} x^{(k_1)}\|$.
- 7. Prove that $f(x^{(k)}) \to v$.
- 8. (Optional hard) Find a complexity bound for the method (that is a number of iteration N_{ε} after which you are sure to have obtained a ε -optimal solution).
- **Solution.** 1. f is finite convex and thus continuous on X which is compact, yielding the existence and finiteness of v.

f is subdifferentiable, thus we have the existence of $g^{(k)}$, and an optimal solution to $\mathcal{P}^{(k)}$ exists as the solution of a bounded linear programm.

2. We have seen that on any compact Kincluded in the domain of a convex function f, f is L-Lipschitz. Here dom $(f) = \mathbb{R}^n$, so on the compact $K = X + B(0, \varepsilon)$ f is L-Lipschitz, and on X any subgradient g is of norm lower than L.

3.
$$f(x_k) \to v \text{ iff } \forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \quad k \ge K \Longrightarrow f(x_k) \le v + \varepsilon. \text{ Hence } K_{\varepsilon} \subset [N_{\varepsilon}].$$

4. By subgradient inequality $f(y) \ge f(x^{(k)}) + \langle g^{(k)}, y - x^{(k)} \rangle$. Thus, for all $k, v \ge v^{(k)}$. Further, note that $v^{(k)} = f(x^{(k)})$, hence using $k = k_1$, and $y = x^{(k_2)}$ we get

$$f(x^{(k_1)}) + \langle g^{(k_1)}, x^{(k_2)} - x^{(k_1)} \rangle \le \underline{v}^{(k_2)} \le v.$$

- 5. As $k_2 \in K_{\varepsilon}$, we have $f(x^{(k_2)}) = v^{(k_2)} > v + \varepsilon \ge f(x^{(k_1)}) + \langle g^{(k_1)}, x^{(k_2)} x^{(k_1)} \rangle + \varepsilon$ by the previous question.
- 6. We have

$$\varepsilon < |f(x^{(k_2)}) - f(x^{(k_1)})| + |\langle g^{(k_1)}, x^{(k_2)} - x^{(k_1)} \rangle| \le 2L ||x^{(k_2)} - x^{(k_1)}||$$

by Cauchy-Schwartz and question 2.

7. If $f(x^{(k)}) \not\rightarrow v$, then there exists $\varepsilon > 0$ such that $(x^{(k)})_{k \in K_{\varepsilon}}$ is not finite. As X is compact we can exciract a converging subsequence, that is $x^{(\sigma(k))}$ such that $x^{(\sigma(k))} \rightarrow x^*$ and $\sigma(k) \in K_{\varepsilon}$, which is in contradiction with the result of 6.