
Convex Optimization Exam

16/06/2023
3 hours – documents allowed
Answers in English or French

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit
the results of previous questions. When using the recalls, cite them. “Classifying” an optimization problem
consists in precising in which of the category presented in chapter 5 it falls (LP, QP, QCQP, SOCP, SDP,
unconstrained or not, differentiable or not, continuous or not, convex or not).

Some usefull recalls

i) The infimal convolution of f and g is defined as f□g(x) = infy∈Rn f(y) + g(x− y).

ii) The Fenchel transform of a function f is defined as f⋆ : x⋆ 7→ supx∈Rn⟨x⋆, x⟩ − f(x).

Exercice 1: Breakfast 4 points
We consider the following problem

Min
x∈R

(x− 1)2

s.t. x ≤ 0

In this exercise, x+ denotes the positive part of x, i.e. x+ = max(x, 0).

(a) (1 point) Solve the problem using the KKT conditions. What is the optimal primal and dual
solution?

(b) (1 point) We now consider the penalized problem

(P2
t ) Min

x∈R
(x− 1)2 + t(x+)

2.

Find the optimal solution x
(2)
t for t > 0. What can we observe about t 7→ x

(2)
t ?

(c) (1 point) We now consider the penalized problem

(P1
t ) Min

x∈R
(x− 1)2 + t(x+).

Find the optimal solution x
(1)
t for t > 0. What can we observe about t 7→ x

(1)
t ?

(d) (1 point) We now consider the penalized problem

(P log
s ) Min

x∈R
(x− 1)2 − s log(−x).

Find the optimal solution x
(log)
s for s > 0. What can we observe about s 7→ x

(log)
s ?

Solution:
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(a) TODO

(b) x
(2)
t =

1

1 + t
, we see that x

(2)
t → x♯ when t → +∞, and x

(2)
t > 0 for all t > 0.

(c) x
(1)
t = (1− t/2)+, we see that x

(1)
t = x♯ when t ≥ 2.

(d) x
(log)
s = 1−

√
1+2s
2 , we see that x

(log)
s → x♯ when s → 0, and x

(log)
s < 0 for all s > 0.
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Exercice 2: Warm-up 4 points

(a) (2 points) We consider the following optimization problem

Min
x∈Rn

c⊤x

s.t. x⊤Ax ≤ 1

for some symmetric matrix A and some vector c ∈ Rn.

i) Classify this problem.

ii) Solve the problem assuming that A ≻ 0.

iii) Solve it assuming that A ̸⪰ 0.

(b) (2 points) Let f and g be convex function of Rn to R.
i) Show that f□g is convex.

ii) Show that (f□g)⋆ = f⋆ + g⋆

Solution:

(a) i) It is a QCQP, convex iff Q ⪰ 0.
ii) If A ≻ 0, then we set y = Q1/2x and the problem is equivalent to

Min
y∈Rn

(Q−1/2c)⊤y

s.t. ∥y∥2 ≤ 1

with optimal solution −c̃/∥c̃∥2 for c̃ = Q−1/2c.
iii) If A ̸⪰ 0, then the problem is unbounded below.

(b) i) partial infimum of convex functions is convex.
ii)

(f□g)⋆(x⋆) = sup
x∈Rn

⟨x⋆, x⟩ − f□g(x)

= sup
x∈Rn

⟨x⋆, x⟩ − inf
y∈Rn

f(y) + g(x− y)

= sup
x∈Rn

sup
y∈Rn

⟨x⋆, x⟩ − f(y)− g(x− y)

= sup
x∈Rn

sup
y∈Rn

⟨x⋆, y⟩+ ⟨x⋆, x− y⟩ − f(y)− g(x− y)

= sup
x∈Rn

⟨x⋆, y⟩ − f(y) + sup
z∈Rn

⟨x⋆, z⟩ − g(z) z = x− y

= f⋆(x⋆) + g⋆(x⋆)

Exercice 3: Bifurcation de solution 4 points
We consider, for ε ∈ R, the problem

(Pε) Min
x∈R2

x2
2 − x2

1 (1a)

s.t. x2 ≥ 2|x1| − ε (1b)

(a) (1 point) Classify the problem. Reformulate the problem’s constraint as two linear constraints.

(b) (1 point) Show the existence of optimal solutions for all ε.

(c) (2 points) For all ε find the stationary points (i.e. the points satisfying the KKT conditions) of
(Pε). Plot them in the (x1, ε) and (x2, ε) plane (two plots).
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Exercice 4: Logistic regression and exponential cone 8 points
We recall the logistic regression problem:

min
θ∈Rn

L(θ) with L(θ) :=
1

m

m∑
i=1

log
(
1 + exp(−yi · θ⊤xi)

)
. (2)

We define the exponential cone as

Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0} , (3)

with cl the closure operator. We admit that Kexp is closed convex cone.

(a) (1 point) Let x, t ∈ R. The constraint exp(x) ≤ t is equivalent to the conic representation (t, 1, x) ∈
Kexp. Similarly, find the conic representation of

i) the log constraint log(x) ≥ t,

ii) the entropic constraint −x log(x) ≥ t.

As we have seen, the exponential cone is a powerful tool to find a conic representation for constraints
involving exponential and logarithm terms, both presents in the logistic regression problem (2).
Using variable lifting, the logistic regression problem (2) is equivalent to

min
θ∈Rn,t∈Rm

m∑
i=1

ti (4a)

s.t. ti ≥ log(1 + exp(−yi · θ⊤xi)) ∀i ∈ [m] . (4b)

(b) (2 points) Let us consider the softplus constraint log(1 + exp(x)) ≤ t, for x, t ∈ R. Show that it is
equivalent to 

exp(x− t) ≤ u ,

exp(−t) ≤ v ,

u+ v ≤ 1 .

(5)

Find a conic representation of (5) with one affine constraint and two conic constraints involving the
exponential cone Kexp.

(c) (1 point) Use the previous question to find a conic representation for the logistic regression prob-
lem (4). Discuss (i) the number of variables, and (ii) the number of constraints.

(d) (1 point) Solving a conic optimization problem requires an efficient projection operator onto the
given convex cone K. Let x ∈ R3. Shows there is a unique y ∈ Kexp (and denoted by projKexp

(x))
such that

y ∈ argmin
z∈Kexp

∥x− z∥2 . (6)

(e) (1 point) Show that y = projKexp
(x) if and only if ⟨x− y, z − y⟩ ≤ 0 for all z ∈ Kexp.

(f) (2 points) The Moreau decomposition theorem (admitted) shows that every x ∈ R3 can be decom-
posed as

x = y + z , y ∈ Kexp , z ∈ K−
exp , y⊤z = 0 , (7)

where K−
exp is the polar form of the exponential cone Kexp. Shows that (7) are exactly the KKT

conditions of the projection problem (6).
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