Convex Optimization Exam

03/06/2022

3 hours - documents allowed
Answers in English or French

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit the results of previous questions. When using the recalls, cite them. "Classifying" an optimization problem consists in precising in which of the category presented in chapter 5 it falls (LP, QP, QCQP, SOCP, SDP, unconstrained or not, differentiable or not, continuous or not, convex or not).

Some usefull recalls

i) Recall that a step τ is deemed admissible in the backtracking step rules if $f\left(x_{k}+\tau d_{k}\right) \leq f\left(x_{k}\right)+\alpha \tau g_{k}^{\top} d_{k}$ for some $\alpha \in] 0,1 / 2[$.
ii) For $p, q \in] 1,+\infty\left[, 1 / p+1 / q=1\right.$, we also have $q=\frac{p}{p-1}$ and $\frac{q}{p}+1=q$
iii) Let S_{n} be the set of symmetric real valued matrices. Then all $A \in S_{n}$ is diagonalizable. We denote S_{n}^{+}(resp. S_{n}^{++}) the set of semidefinite (resp. definite) symmetric matrix, i.e. all eigenvalues are non-negative (resp. strictly positive). For $A, B \in S_{n}, A \preceq B$ iff $B-A$ is semidefinite positive (denoted $B-A \succeq 0$.
iv) S_{n} is an euclidean space, whose canonical scalar product is $\langle A, B\rangle=\operatorname{tr}(A B)$.

Exercice 1: Warm-up

?? points
(a) (1 point) In Figure ?? we represent level set of some function. Are there some cases where the function cannot be convex? Briefly justify.

Figure 1: level set of potentially convex function?
(b) (1 point) Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f: x \mapsto x_{1}^{2}+x_{2}^{2}$, and $C=\left\{x_{1}+x_{2} \geq 1\right\}$. Gives, for every $x \in \mathbb{R}_{2}$ the normal cone $N_{C}(x)$. Use this to solve $\min _{x \in C} f(x)$ through the convex optimality condition.

Solution:

(a) A cannot be convex as level set are not convex (0.25 pts), B can be convex (0.25 pts) and C cannot be convex because of the spacing between the level line (0.5 pts).
(b) $N_{C}(x)=0$ if $x_{1}+x_{2}>1, N_{C}(x)=\emptyset$ if $x_{1}+x_{2}<1$ and $N_{C}(x)=\left\{-\lambda(1,1) \mid \lambda \in \mathbb{R}^{+}\right\}$if $x_{1}+x_{2}>1(1 \mathrm{pts})$. We need to solve $-\nabla f(x) \in N_{C}(x)(0.5 \mathrm{pts})$, yielding $x^{\sharp}=(1 / 2,1 / 2)(0.5$ pts).

Exercice 2: Projection over the L_{1} ball

?? points
Let $a \in \mathbb{R}^{n}$. We consider the following optimization problem.

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2}\|x-a\|^{2} \\
\text { s.t. } & \|x\|_{1} \leq 1
\end{aligned}
$$

(a) (1 point) Classify this problem, and justify that we have strong duality. Justify existence and unicity of optimal solution.
(b) (1 point) Write the (Lagrangian) dual problem as

$$
\max _{\lambda \geq 0} g(\lambda):=\sum_{k=1}^{n} g_{k}(\lambda)-\lambda
$$

where g_{k} should be given as analytical formula (i.e. without "min").
(c) (1 point) Show that $g^{\prime}(\lambda)=\sum_{k=1}^{n}\left(\left|a_{k}\right|-\lambda\right)^{+}-1$.
(d) (1 point) Suggest an efficient method to find the optimal multiplier λ^{\sharp}.
(e) (1 point) Explain how to obtain the optimal primal solution x^{\sharp} from λ^{\sharp}.

Solution:

(a) This problem is a convex (0.25 pts) $\mathrm{QP}(0.25 \mathrm{pts})$ (quadratic objective and linear constraints). Constraints are qualified as 0 is a Slater's point. (0.5 pts).
(b) The Lagrangian reads

$$
L(x, \lambda)=\sum_{k=1}^{n}\left\{\frac{1}{2}\left(x_{k}-a_{k}\right)^{2}+\lambda\left|x_{k}\right|\right\}-\lambda
$$

thus the dual problem reads

$$
\max _{\lambda \geq 0} \sum_{k=1}^{n} g_{k}(\lambda)-\lambda
$$

where

$$
g_{k}(\lambda)=\min _{x_{k}} \frac{1}{2}\left(x_{k}-a_{k}\right)^{2}+\lambda\left|x_{k}\right|= \begin{cases}-\lambda^{2} / 2+\lambda\left|a_{k}\right| & \text { if } \lambda<\left|a_{k}\right| \\ a_{k}^{2} / 2 & \text { if } \lambda>\left|a_{k}\right|\end{cases}
$$

(see last question for computational details)
(c) $g_{k}^{\prime}(\lambda)=\left(\left|a_{k}\right|-\lambda\right) \mathbb{1}_{\lambda<\left|a_{k}\right|}$
(d) $g^{\prime}(0)=\|a\|_{1}-1$, and $g^{\prime}(\lambda) \rightarrow-1$. Thus 0 is optimal if $\|a\|_{1} \leq 1$, otherwise sorting $\left|a_{k}\right|$ and dichotomy yields the linear part of g^{\prime} where it change sign, and then a simple linear equation provide λ^{\sharp} such that $g^{\prime}\left(\lambda^{\sharp}\right)=0$.
(e) We need to minimize

$$
h_{k}\left(x_{k}\right):=\frac{1}{2}\left(x_{k}-a_{k}\right)^{2}+\lambda\left|x_{k}\right|
$$

For $x_{k} \geq 0$, the optimum is either $h_{k}(0)=a_{k}^{2} / 2$ or $h_{k}\left(a_{k}-\lambda\right)=\frac{1}{2} \lambda^{2}-\lambda^{2}+\lambda a_{k}$, with $0 \leq \lambda<a_{k}$. For $x_{k} \leq 0$, the optimum is either $h_{k}(0)=a_{k}^{2} / 2$ or $h_{k}\left(a_{k}+\lambda\right)=\frac{1}{2} \lambda^{2}-\lambda^{2}-\lambda a_{k}$, with $0 \geq \lambda>a_{k}$. Collecting, we have

$$
x_{k}^{\sharp}(\lambda)=\left[a_{k}-\operatorname{sgn}\left(a_{k}\right) \lambda\right] \mathbb{1}_{\left|a_{k}\right| \leq \lambda}
$$

Exercice 3: Unit step in Quasi Newton's Method
?? points
We consider a C^{2} strongly-convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and the following algorithm, for given x_{0}, $x_{k+1}=x_{k}+t_{k} d_{k}$ where, for all $k \in \mathbb{N}, d_{k}=-M_{k}^{-1} g_{k}, g_{k}:=\nabla f\left(x_{k}\right)$ and M_{k} is a symmetric definite positive matrix such that

$$
d^{\top} M_{k} d \geq d^{\top} \nabla^{2} f\left(x_{k}\right) d+o\left(\|d\|^{2}\right)
$$

(a) (1 point) Show that this algorithm is a descent algorithm.
(b) (2 points) Assume that x_{k} converges toward the minimizer of f. Show that there exists K such that, for all $k \geq K, t_{k}=1$ is admissible for backtracking step rule.

Solution:

(a) $d_{k}^{\top} g_{k}=-g_{k}^{\top} M_{k}^{-1} g_{k} \leq 0(0.5 \mathrm{pts})$ as M_{k} and thus M_{k}^{-1} is definite positive (0.5 pts).
(b) We have

$$
\begin{aligned}
f\left(x_{k}+d_{k}\right) & =f\left(x_{k}\right)+d_{k}^{\top} g_{k}+\frac{1}{2} d_{k}^{\top} \nabla^{2} f\left(x_{k}\right) d_{k}+o\left(\left\|d_{k}\right\|^{2}\right) \\
& \leq f\left(x_{k}\right)+d_{k}^{\top} g_{k}+\frac{1}{2} d_{k}^{\top} M_{k} d_{k}+o\left(\left\|d_{k}\right\|^{2}\right)
\end{aligned}
$$

Thus,(1 pts)

$$
\begin{aligned}
f\left(x_{k}+d_{k}\right)-f\left(x_{k}\right)-\alpha d_{k}^{\top} g_{k} & \leq(1-\alpha) d_{k}^{\top} g_{k}+\frac{1}{2} d_{k}^{\top} M_{k} d_{k}+o\left(\left\|d_{k}\right\|^{2}\right) \\
& =-(1-\alpha) d_{k}^{\top} M_{k} d_{k}+\frac{1}{2} d_{k}^{\top} M_{k} d_{k}+o\left(\left\|d_{k}\right\|^{2}\right) \quad\left(g_{k}=-M_{k} d_{k}\right) \\
& =-\left(\frac{1}{2}-\alpha\right) d_{k}^{\top} M_{k} d_{k}+o\left(\left\|d_{k}\right\|^{2}\right)
\end{aligned}
$$

We end by noting that $d_{k}^{\top} M_{k} d_{k} \geq \lambda_{1}\left\|d_{k}\right\|^{2}(0.5 \mathrm{pts})$ by strong convexity, and $d_{k} \rightarrow 0(0.5 \mathrm{pts})$ by convergence assumption.

Exercice 4: Minimizing linear functions on a ball
?? points
For $c \in \mathbb{R}^{n}$ we are interested in finding the solution of

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x \quad \mid \quad\|x\|_{p} \leq 1\right\}
$$

to prove Hölder inequality, i.e.,, $\left|x^{\top} y\right| \leq\|x\|_{p}\|y\|_{q}$ for $\left.p, q \in\right] 1,+\infty[$ such that $1 / p+1 / q=1$.
(a) (1 point) Reformulate the problem as a differentiable problem, and write the KKT conditions.
(b) (1 point) Find the optimal solution for $1<p<+\infty$.
(c) (1 point) Show that $\min _{\|x\|_{p} \leq 1} c^{\top} x=-\|x\|_{q}$.
(d) (1 point) Deduce Hölder inequality from the previous question.

Solution:

(a) The problem Lagrangian is

$$
L(x, \lambda)=c^{\top} x+\lambda \sum_{i=1}^{n}\left(\left|x_{i}\right|^{p}-1\right)
$$

First order conditions reads

$$
\begin{aligned}
c_{i}+p \lambda x_{i}\left|x_{i}\right|^{p-2} & =0 \\
\lambda=0 \text { OR }\|x\|^{p} & =1 \\
\lambda & \geq 0 \\
\|x\|_{p} & \leq 1
\end{aligned}
$$

(b) We can assume that $c \neq 0$, thus $\lambda \neq 0$, and $\|x\|^{p}=1$. We have

$$
\begin{aligned}
p \lambda\left|x_{i}\right|^{p-1} & =\left|c_{i}\right| \\
(p \lambda)^{p /(p-1)}\left|x_{i}\right|^{p} & =\left|c_{i}\right|^{p /(p-1)} \\
(p \lambda)^{q} & =\sum_{i=1}^{n}\left|c_{i}\right|^{q} \\
p \lambda & =\left(\sum_{i=1}^{n}\left|c_{i}\right|^{q}\right)^{1 / q}=\|c\|_{q}
\end{aligned}
$$

And

$$
x_{i}^{\sharp}=-\operatorname{sgn}\left(c_{i}\right)\left(\frac{c_{i}}{\|c\|_{q}}\right)^{q / p}
$$

(c)

$$
v^{\sharp}=-\sum_{i=1}^{n} c_{i} \operatorname{sgn}\left(c_{i}\right)\left(\frac{c_{i}}{\|c\|_{q}}\right)^{q / p}=-\frac{\sum_{i=1}^{n}\left|c_{i}\right|^{\frac{q}{p}+1}}{\|c\|_{q}^{q / p}}=-\frac{\|c\|_{q}^{q}}{\|c\|_{q}^{q / p}}=-\|c\|_{q}
$$

(d) We have $c^{\top} \frac{x}{\|x\|_{p}} \geq-\|c\|_{q}$. Multiplying by $\|x\|_{q}$ and replacing c by $-c$ we get the result.

Exercice 5: Sum of largest eigenvalues
?? points
We consider the function $f: S_{n} \rightarrow \mathbb{R}$ given as the sum of the $r \leq n$ largest eigenvalues, that is

$$
f(A)=\sum_{k=1}^{r} \lambda_{r}(A)
$$

where $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n}$ are the eigenvalues of A.
(a) (2 points) Show that

$$
\begin{aligned}
f(A)=\max _{X \in S_{n}} & \langle A, X\rangle \\
\text { s.t. } & \operatorname{tr}(X)=r \\
& 0 \preceq X \preceq I
\end{aligned}
$$

Classify this problem.
(b) (1 point) Show that f is convex
(c) (3 points) Consider $A(x):=\sum_{i=1}^{K} x_{i} A_{i}$ where $A_{i} \in S_{n}$, and the problem

$$
\min _{x \in \mathbb{R}^{K}} f(A(x))
$$

Using duality, reformulate this problem as an SDP.

Solution:

(a) We reformulate the given problem with $A=P^{\top} D P$ where P is an orthonormal matrix and D a diagonal matrix. We set $Y=P X P^{\top}$ to obtain

$$
\begin{aligned}
\max _{Y \in S_{n}} & \langle D, Y\rangle \\
\text { s.t. } & \operatorname{tr}(Y)=r \\
& 0 \preceq Y \preceq I
\end{aligned}
$$

Without loss of generality Y can be chosen diagonal. The semidefinite constraint ensures that its (diagonal) coefficient are between 0 and 1 . The trace constraint ensures that the sum is one, thus the optimal solution charges to 1 the highest coefficient of D, that is, the highest eigenvalues.
(b) Maximum of affine functions.
(c) To derive the dual of the problem in part (a), we first write it as a minimization

$$
\begin{array}{ll}
\operatorname{minimize} & -\operatorname{tr}(A X) \\
\text { subject to } & \operatorname{tr} X=r \\
& 0 \preceq X \preceq I .
\end{array}
$$

The Lagrangian is

$$
\begin{aligned}
L(X, \nu, U, V) & =-\operatorname{tr}(A X)+\nu(\operatorname{tr} X-r)-\operatorname{tr}(U X)+\operatorname{tr}(V(X-I)) \\
& =\operatorname{tr}((-A+\nu I-U+V) X)-r \nu-\operatorname{tr} V
\end{aligned}
$$

By minimizing over X we obtain the dual function

$$
g(\nu, U, V)= \begin{cases}-r \nu-\operatorname{tr} V & -A+\nu I-U+V=0 \\ -\infty & \text { otherwise }\end{cases}
$$

The dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & -r \nu-\operatorname{tr} V \\
\text { subject to } & A-\nu I=V-U \\
& U \succeq 0, \quad V \succeq 0
\end{array}
$$

If we change the dual problem to a minimization and eliminate the variable U, we obtain a dual problem for the SDP in part (a) of the assignment:

$$
\begin{array}{ll}
\operatorname{minimize} & r \nu+\operatorname{tr} V \\
\text { subject to } & A-\nu I \preceq V \\
& V \succeq 0 .
\end{array}
$$

By strong duality, the optimal value of this problem is equal to $f(A)$. We can therefore minimize $f(A(x))$ over x by solving the

$$
\begin{array}{ll}
\text { minimize } & r \nu+\operatorname{tr} V \\
\text { subject to } & A(x)-\nu I \preceq V \\
& V \succeq 0
\end{array}
$$

which is an SDP in the variables $\nu \in \mathbf{R}, V \in \mathbf{S}^{n}, x \in \mathbf{R}^{m}$.

