
Convex Optimization Exam

03/06/2022
3 hours – documents allowed
Answers in English or French

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit
the results of previous questions. When using the recalls, cite them. “Classifying” an optimization problem
consists in precising in which of the category presented in chapter 5 it falls (LP, QP, QCQP, SOCP, SDP,
unconstrained or not, differentiable or not, continuous or not, convex or not).

Some usefull recalls

i) Recall that a step τ is deemed admissible in the backtracking step rules if f(xk+τdk) ≤ f(xk)+ατg⊤k dk
for some α ∈]0, 1/2[.

ii) For p, q ∈]1,+∞[, 1/p+ 1/q = 1, we also have q = p
p−1 and q

p + 1 = q

iii) Let Sn be the set of symmetric real valued matrices. Then all A ∈ Sn is diagonalizable. We denote
S+
n (resp. S++

n ) the set of semidefinite (resp. definite) symmetric matrix, i.e. all eigenvalues are
non-negative (resp. strictly positive). For A,B ∈ Sn, A ⪯ B iff B−A is semidefinite positive ( denoted
B −A ⪰ 0.

iv) Sn is an euclidean space, whose canonical scalar product is ⟨A,B⟩ = tr(AB).

Exercice 1: Warm-up ?? points

(a) (1 point) In Figure ?? we represent level set of some function. Are there some cases where the
function cannot be convex ? Briefly justify.

Figure 1: level set of potentially convex function ?

(b) (1 point) Consider f : R2 → R, f : x 7→ x2
1 + x2

2, and C = {x1 + x2 ≥ 1}. Gives, for every x ∈ R2

the normal cone NC(x). Use this to solve minx∈C f(x) through the convex optimality condition.

Solution:

(a) A cannot be convex as level set are not convex (0.25 pts), B can be convex (0.25 pts) and C
cannot be convex because of the spacing between the level line (0.5 pts).
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(b) NC(x) = 0 if x1 + x2 > 1, NC(x) = ∅ if x1 + x2 < 1 and NC(x) = {−λ(1, 1)|λ ∈ R+} if
x1 + x2 > 1 (1 pts). We need to solve −∇f(x) ∈ NC(x) (0.5 pts), yielding x♯ = (1/2, 1/2) (0.5
pts).

Exercice 2: Projection over the L1 ball ?? points
Let a ∈ Rn. We consider the following optimization problem.

min
x∈Rn

1

2
∥x− a∥2

s.t. ∥x∥1 ≤ 1

(a) (1 point) Classify this problem, and justify that we have strong duality. Justify existence and
unicity of optimal solution.

(b) (1 point) Write the (Lagrangian) dual problem as

max
λ≥0

g(λ) :=

n∑
k=1

gk(λ)− λ

where gk should be given as analytical formula (i.e. without “min”).

(c) (1 point) Show that g′(λ) =
∑n

k=1(|ak| − λ)+ − 1.

(d) (1 point) Suggest an efficient method to find the optimal multiplier λ♯.

(e) (1 point) Explain how to obtain the optimal primal solution x♯ from λ♯.

Solution:

(a) This problem is a convex (0.25 pts) QP (0.25 pts) (quadratic objective and linear constraints).
Constraints are qualified as 0 is a Slater’s point. (0.5 pts).

(b) The Lagrangian reads

L(x, λ) =

n∑
k=1

{1
2
(xk − ak)

2 + λ|xk|
}
− λ

thus the dual problem reads

max
λ≥0

n∑
k=1

gk(λ)− λ

where

gk(λ) = min
xk

1

2
(xk − ak)

2 + λ|xk| =

{
−λ2/2 + λ|ak| if λ < |ak|
a2k/2 if λ > |ak|

(see last question for computational details)

(c) g′k(λ) = (|ak| − λ)1λ<|ak|

(d) g′(0) = ∥a∥1 − 1, and g′(λ) → −1. Thus 0 is optimal if ∥a∥1 ≤ 1, otherwise sorting |ak| and
dichotomy yields the linear part of g′ where it change sign, and then a simple linear equation
provide λ♯ such that g′(λ♯) = 0.

(e) We need to minimize

hk(xk) :=
1

2
(xk − ak)

2 + λ|xk|

For xk ≥ 0, the optimum is either hk(0) = a2k/2 or hk(ak−λ) = 1
2λ

2−λ2+λak, with 0 ≤ λ < ak.
For xk ≤ 0, the optimum is either hk(0) = a2k/2 or hk(ak+λ) = 1

2λ
2−λ2−λak, with 0 ≥ λ > ak.

Collecting, we have
x♯
k(λ) = [ak − sgn(ak)λ]1|ak|≤λ
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Exercice 3: Unit step in Quasi Newton’s Method ?? points
We consider a C2 strongly-convex function f : Rn → R, and the following algorithm, for given x0,
xk+1 = xk + tkdk where, for all k ∈ N,dk = −M−1

k gk, gk := ∇f(xk) and Mk is a symmetric definite
positive matrix such that

d⊤Mkd ≥ d⊤∇2f(xk)d+ o(∥d∥2)

(a) (1 point) Show that this algorithm is a descent algorithm.

(b) (2 points) Assume that xk converges toward the minimizer of f . Show that there exists K such
that, for all k ≥ K, tk = 1 is admissible for backtracking step rule.

Solution:

(a) d⊤k gk = −g⊤k M
−1
k gk ≤ 0(0.5 pts) as Mk and thus M−1

k is definite positive (0.5 pts).

(b) We have

f(xk + dk) = f(xk) + d⊤k gk +
1

2
d⊤k ∇2f(xk)dk + o(∥dk∥2)

≤ f(xk) + d⊤k gk +
1

2
d⊤k Mkdk + o(∥dk∥2)

Thus,(1 pts)

f(xk + dk)− f(xk)− αd⊤k gk ≤ (1− α)d⊤k gk +
1

2
d⊤k Mkdk + o(∥dk∥2)

= −(1− α)d⊤k Mkdk +
1

2
d⊤k Mkdk + o(∥dk∥2) (gk = −Mkdk)

= −(
1

2
− α)d⊤k Mkdk + o(∥dk∥2)

We end by noting that d⊤k Mkdk ≥ λ1∥dk∥2(0.5 pts) by strong convexity, and dk → 0(0.5 pts)
by convergence assumption.

Exercice 4: Minimizing linear functions on a ball ?? points
For c ∈ Rn we are interested in finding the solution of

min
x∈Rn

{
c⊤x | ∥x∥p ≤ 1

}
to prove Hölder inequality, i.e.,, |x⊤y| ≤ ∥x∥p∥y∥q for p, q ∈]1,+∞[ such that 1/p+ 1/q = 1.

(a) (1 point) Reformulate the problem as a differentiable problem, and write the KKT conditions.

(b) (1 point) Find the optimal solution for 1 < p < +∞.

(c) (1 point) Show that min
∥x∥p≤1

c⊤x = −∥x∥q.

(d) (1 point) Deduce Hölder inequality from the previous question.

Solution:

(a) The problem Lagrangian is

L(x, λ) = c⊤x+ λ

n∑
i=1

(|xi|p − 1)
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First order conditions reads

ci + pλxi|xi|p−2 = 0

λ = 0 OR ∥x∥p = 1

λ ≥ 0

∥x∥p ≤ 1

(b) We can assume that c ̸= 0, thus λ ̸= 0, and ∥x∥p = 1. We have

pλ|xi|p−1 = |ci|
(pλ)p/(p−1)|xi|p = |ci|p/(p−1)

(pλ)q =

n∑
i=1

|ci|q

pλ =

(
n∑

i=1

|ci|q
)1/q

= ∥c∥q

And

x♯
i = −sgn(ci)

(
ci

∥c∥q

)q/p

(c)

v♯ = −
n∑

i=1

cisgn(ci)

(
ci

∥c∥q

)q/p

= −
∑n

i=1 |ci|
q
p+1

∥c∥q/pq

= −
∥c∥qq
∥c∥q/pq

= −∥c∥q

(d) We have c⊤ x
∥x∥p

≥ −∥c∥q. Multiplying by ∥x∥q and replacing c by −c we get the result.

Exercice 5: Sum of largest eigenvalues ?? points
We consider the function f : Sn → R given as the sum of the r ≤ n largest eigenvalues, that is

f(A) =

r∑
k=1

λr(A)

where λ1 ≥ λ2 ≥ . . . λn are the eigenvalues of A.

(a) (2 points) Show that

f(A) = max
X∈Sn

⟨A,X⟩

s.t. tr(X) = r

0 ⪯ X ⪯ I

Classify this problem.

(b) (1 point) Show that f is convex

(c) (3 points) Consider A(x) :=
∑K

i=1 xiAi where Ai ∈ Sn, and the problem

min
x∈RK

f(A(x))

Using duality, reformulate this problem as an SDP.
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Solution:

(a) We reformulate the given problem with A = P⊤DP where P is an orthonormal matrix and D
a diagonal matrix. We set Y = PXP⊤ to obtain

max
Y ∈Sn

⟨D,Y ⟩

s.t. tr(Y ) = r

0 ⪯ Y ⪯ I

Without loss of generality Y can be chosen diagonal. The semidefinite constraint ensures that
its (diagonal) coefficient are between 0 and 1. The trace constraint ensures that the sum is
one, thus the optimal solution charges to 1 the highest coefficient of D, that is, the highest
eigenvalues.

(b) Maximum of affine functions.
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