
Continuous Optimization Exam

04/06/2021
3 hours – documents allowed

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit
the results of previous questions. When using the recalls, cite them.

Some usefull recalls

i) If X ∼ N (µ,Σ) is a Gaussian vector, then, for any vector u, we have u>X ∼ N (u>µ, u>Σu).

ii) The Fenchel transform of a function f : Rn → R ∪ {+∞} is given by f?(x) = sup
y∈Rn

x>y − f(y).

iii) Assume that f is a convex proper lsc function. f is µ-strongly convex, iff f? is differentiable with
1
µ−Lipschitz gradient.

iv) Assume that f is a convex proper lsc function. Then λ ∈ ∂f(x) iff x ∈ ∂f?(λ).

v) Assume that f is a convex proper lsc function. Then λ ∈ ∂f(x) iff x ∈ arg maxy λ
>y − f(y)

Exercice 1: Warm-up 5 points

(a) (1 point) On what conditions on the set C is IC a proper lower semicontinuous, convex function ?

(b) (2 points) Write the KKT conditions for the following problem.

min
x∈Rn

ln
( n∑
i=1

exi

)
s.t.

n∑
i=1

xi = 0

n∑
i=1

x2i ≤ 1

Are they necessary and/or sufficient conditions of optimality for this problem ?

(c) (2 points) We consider the following problem

(P ) min
x∈Rn

f(x)

s.t. Ax = b, x ≤ 0

with value v and the following penalized versions

(P int ) min
x∈Rn

f(x)− t
∑n
i=1 ln(−xi) and (P outt ) min

x∈Rn
f(x) + t

∑n
i=1(xi)

+

s.t. Ax = b, x < 0 s.t. Ax = b

with associated value vint and voutt , and an optimal solution xint and xoutt .

Intuitively, assuming that f is ”well behaved”, for t going to which value does (P int ) tends to the
original problem (P ) ? In which sense ? What can you say about xint ? Can you compare vint and
v ? Same questions for (P outt )
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Solution:

1. If C is closed convex, then so is epi(IC) = C ×R+, implying that IC is convex lsc.(0.75 pts) It
is proper if C is non-empty.(0.25 pts)

2. The KKT conditions reads, there exists λ ∈ Rn and µ ∈ R+ such that (1 pts)


exi∑n
i=1 e

xi
+ λi + 2µxi = 0

µi ≥ 0∑
i xi = 0,

∑
i x

2
i ≤ 1

µ = 0 or
∑
i x

2
i = 1

The problem is convex,(0.25 pts) and qualified (0 is a Slater’s point)(0.25 pts), thus conditions
are necessary and sufficient.(0.5 pts)

3. For t going to 0 (0.25 pts) we have that (P int ) tends toward (P ) : in the sense that v
(in)
t → v

and xt goes toward an optimal solution (0.25 pts). For t small enough we have vint ≥ v.(0.25
pts) In any case xint is admissible. (0.25 pts)

For t going to +∞ (0.25 pts) , we have that (P outt ) tends toward (P ) in the sense that v
(out)
t → v

and xoutt goes toward an optimal solution (0.25 pts) . For t large enough, xoutt is optimal for

(P ).(0.25 pts) We always have v
(out)
t ≤ v.(0.25 pts)

Exercice 2: Support function (4 points) 4 points
For any set C ⊂ Rn, we define its support function

σC : x 7→ sup
c∈C

c>x

(a) (2 points) Assume that C and D are closed convex sets. Using a separation theorem, show that
C = D if and only if their support functions are equal.

(b) (2 points) For any set C, recall that the indicator function IC take value 0 on C and +∞ outside.
Show that, for any non empty set C, the Fenchel transform of its indicator function of set C is its
support function, i.e. I?C = σC . Deduce a second proof for the previous question.

Solution:

(a) If C = D their support function are equals. (0.5 pts) Now assume that σC = σD and C 6= D.
Without loss of generality we assume that there exists x0 ∈ D\C. As C is closed, it can be
strictly separated from {x0}, meaning that there is a vector a such that supx∈C a

>x ≤ b < a>x0.
Thus σC(a) ≤ b < a>x0 ≤ σD(a). (1.5 pts)

(b) I?C(x) = supy∈Rn x>y−IC(x) = supy∈C x
>y = σC(x). (0.5 pts) If C is non-empty closed convex,

then IC is proper convex lsc (0.5 pts), and IC = I??C = σ?C (0.5 pts). If σC = σD, then σ?C = σ?D,
and as C and D are closed convex, IC = ID, hence C = D. (0.5 pts).

Exercice 3: A linear problem with Gaussian cost 4 points
In the following we assume that A ∈ Rn×m, b ∈ Rm are given matrices ; c is a gaussian random variable
with mean c̄ ∈ Rn and variance Σ ∈ Rn2

.
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(a) (2 points) We consider the following optimization problem

(Pγ) min
x∈Rn

E
[
c>x

]
+ γV ar(c>x)

Show that Pγ is a quadratic program. Comment on the complexity of solving Pγ . (Hint : answer
should depend on the value of the parameter γ ∈ R).

(b) (2 points) We now consider the following problem

(P ′α) min
x∈Rn,z∈R

z

s.t. Ax ≤ b

P
[
c>x ≥ z

]
≤ α

Show that, for α ∈]0, 0.5], (P ′α) is equivalent to an SOCP, using φ(t) = 1√
2π

∫ +∞
t

e−u
2/2du (which

is 1 minus the cdf of a centered gaussian), or its inverse φ−1.

What happen if α ∈]0.5, 1] ?

Solution:

(a) V ar(c>x) = E
[
(c>x− c̄>x)2

]
= x>E

[
(c− c̄)>(x− c̄)

]
x = x>Σx (0.25 pts). Thus, (Pγ) reads

min
x∈Rn

c̄>x+ γx>Σx (1pts)

s.t. Ax ≤ b

If γ = 0, the problem is linear, which is simplest (0.25 pts). If γ > 0, the problem is quadratic
convex, which is simple (0.25 pts). If γ < 0, the problem is quadratic non-convex, which is hard
(0.25 pts).

(b) We have,

P(c>x ≥ z) = φ
(β − c̄>x
‖Σ1/2x‖

)
thus (0.5 pts)

P(c>x ≥ z) ≤ α⇔ β − c̄>x
‖Σ1/2x‖

≥ φ−1(α)

φ−1(α)‖Σ1/2x‖2 + c̄>x ≤ z

Thus (P ′α) reads (0.5 pts)

min
x∈Rn

φ−1(α)‖Σ1/2x‖2 + c̄>x

s.t. Ax ≤ b

which is an SOCP (0.5 pts) if φ−1(α) ≥ 0, that is if ]0, 0.5]. If α ∈]0.5, 1], the problem is
non-convex. (0.5 pts)

Exercice 4: Prox operator and Moreau-regularization 10 points
For any f : Rn → R ∪ {+∞} proper convex function we define the proximal operator

proxf : x 7→ arg min
y∈Rn

f(y) +
1

2
‖y − x‖2
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and Moreau regularization of parameter µ > 0

fµ : x 7→ inf
y∈Rn

f(y) +
1

2µ
‖y − x‖2

We want to study the proximal point algorithm given by the following sequence

x(k+1) = proxµf (x(k)).

(a) (1 point) Show that proxf and fµ are well defined. For C closed convex non empty, and f = IC
recognize proxf and fµ.

(b) (1 point) Show that x] is a minimizer of f if and only if it minimizes fµ, if and only if x] = proxf (x]).

(c) (1 point) Show that fµ(x) = 1
2µ‖x‖

2 − 1
µ (µf + 1

2‖ · ‖
2)?(x).

(d) (1 point) Show that proxµf (x) = arg maxy x
>y − µf(y)− 1

2‖y‖
2.

(e) (1 point) Show that ∇fµ(x) = 1
µ (x− proxµf (x)).

(f) (1 point) Interpret the proximal point algorithm as a gradient algorithm.

(g) (2 points) Writing

fµ(x) = min
y,z

f(y) +
1

2µ
‖z‖2

s.t. x− y = z

and using duality show that fµ(x) = (f? + µ
2 ‖ · ‖

2)?(x). Deduce that fµ has 1
µ -Lipschitz gradient.

(h) (1 point) Show that, if f is a proper convex lowersemicontinuous function, admitting a minimizer,
the proximal point alogrithm converges toward a minimizer of f .

(i) (1 point) For the following problem

min
x∈Rn

g(x) + h(x)

with g ∈ C1, we introduce the proximal gradient algorithm given as

x(k+1) = proxµh

(
x(k) − µ∇g(x(k))

)
Recognize the proximal gradient algorithm for h = 0 first and then for h = IC , with g proper convex
lowersemicontinuous, and C ⊂ dom(g) closed convex non-empty.

Solution:

(a) For any x ∈ Rn, y 7→ f(y) + 1
2‖y − x‖

2 is proper lsc and strongly convex, thus admits a unique
minimum. (0.5 pts)

proxf (x) = arg miny∈C ‖x − y‖2 is the projection on set C.(0.25 pts) fµ(x) = 1
2µ miny∈C ‖x −

y‖2 = d(x,C)2

2µ

(b) If x] minimizes f , we have,

f(x) + 1/2‖x− x]‖2 ≥ f(x]) = f(x]) + 1/(2µ)‖x] − x]‖2

thus x] minimizes fµ and x] = proxf (x]) (for µ = 1).(0.5 pts)

On the other hand, x̃ = proxf (v) minimizes f1 iff

0 ∈ ∂f(x̃) + (x̃− v)

taking v = x̃ = x] we get 0 ∈ ∂f(x]).(0.5 pts)
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(c) We have

fµ(x) = inf
y
f(y) +

1

2µ
‖x− y‖2

= inf
y

‖x‖2

2µ
− 1

µ
x>y +

1

2µ
‖y‖2

=
‖x‖2

2µ
− 1

µ
sup
y

{
x>y − 1

2
‖y‖2

}
(d) We have

proxµf (x) = arg min
y

f(y) +
1

2
‖x− y‖2

= arg min
y

f(y) +
1

2
‖x‖2 − x>y +

1

2
‖y‖2

= arg max
y

x>y − f(y)− 1

2
‖y‖2

(e) Using the the recalls we have that g = ∇(µf + 1
2‖ · ‖

2)?(x) iff g ∈ arg maxy x
>y− (µf + 1

2‖y‖
2).

Hence the previous questions yields the result.

(f) From the previous question we have proxµf (x) = x − µ∇fµ(x) (0.5 pts). Thus x(k+1) = x −
µ∇fµ(x(k)) and the proximal point algorithm is the gradient with fixed step size µ applied to
fµ. (0.5 pts)

(g) We have the Lagrangian (0.5 pts) L(y, z, λ) = f(y) + 1
2µ‖z‖

2 + λ>(x− y − z) the dual function

is (0.5 pts)

g(λ) = inf
y

{
(f(y)− λ>y)

}
+ inf

z

1

2µ
‖z‖2 − λ>z + λ>x

= −f?(λ)− µ

2
‖λ‖2 + λ>x

Strong duality (0.5 pts) yields

fµ(x) = sup
λ
g(λ) = (f? +

µ

2
‖ · ‖2)(x).

As f? is convex, f? + µ
2 ‖ · ‖

2 is µ-convex and thus (f? + µ
2 ‖ · ‖

2) is 1/µ-smooth.

(h) As fµ is 1/µ-smooth (its gradient is 1/µ-Lipschitz), the fixed step gradient algorithm (equivalent
to the proximal point algorithm) is converging toward the minimum of fµ (0.5 pts), which is
the minimum of f (0.5 pts).
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