Continuous Optimization Exam

04/06/2021
3 hours - documents allowed

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit the results of previous questions. When using the recalls, cite them.

Some usefull recalls

i) If $X \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian vector, then, for any vector u, we have $u^{\top} X \sim \mathcal{N}\left(u^{\top} \mu, u^{\top} \Sigma u\right)$.
ii) The Fenchel transform of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is given by $f^{\star}(x)=\sup _{y \in \mathbb{R}^{n}} x^{\top} y-f(y)$.
iii) Assume that f is a convex proper lsc function. f is μ-strongly convex, iff f^{\star} is differentiable with $\frac{1}{\mu}$-Lipschitz gradient.
iv) Assume that f is a convex proper lsc function. Then $\lambda \in \partial f(x)$ iff $x \in \partial f^{\star}(\lambda)$.
v) Assume that f is a convex proper lsc function. Then $\lambda \in \partial f(x)$ iff $x \in \arg \max _{y} \lambda^{\top} y-f(y)$

Exercice 1: Warm-up

5 points
(a) (1 point) On what conditions on the set C is \mathbb{I}_{C} a proper lower semicontinuous, convex function ?
(b) (2 points) Write the KKT conditions for the following problem.

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \ln \left(\sum_{i=1}^{n} e^{x_{i}}\right) \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=0 \\
& \sum_{i=1}^{n} x_{i}^{2} \leq 1
\end{aligned}
$$

Are they necessary and/or sufficient conditions of optimality for this problem ?
(c) (2 points) We consider the following problem

$$
\begin{array}{rl}
(P) \min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & A x=b, \quad x \leq 0
\end{array}
$$

with value v and the following penalized versions

$$
\begin{array}{rlrl}
\left(P_{t}^{i n}\right) & \min _{x \in \mathbb{R}^{n}} & f(x)-t \sum_{i=1}^{n} \ln \left(-x_{i}\right) & \text { and } \quad\left(P_{t}^{o u t}\right) \\
\min _{x \in \mathbb{R}^{n}} & f(x)+t \sum_{i=1}^{n}\left(x_{i}\right)^{+} \\
\text {s.t. } & A x=b, \quad x<0 & \text { s.t. } & A x=b
\end{array}
$$

with associated value $v_{t}^{\text {in }}$ and $v_{t}^{\text {out }}$, and an optimal solution $x_{t}^{\text {in }}$ and $x_{t}^{\text {out }}$.
Intuitively, assuming that f is "well behaved", for t going to which value does $\left(P_{t}^{i n}\right)$ tends to the original problem (P) ? In which sense ? What can you say about $x_{t}^{i n}$? Can you compare $v_{t}^{i n}$ and v ? Same questions for $\left(P_{t}^{o u t}\right)$

Solution:

1. If C is closed convex, then so is epi $\left(\mathbb{I}_{C}\right)=C \times \mathbb{R}_{+}$, implying that \mathbb{I}_{C} is convex lsc.(0.75 pts$)$ It is proper if C is non-empty. $(0.25 \mathrm{pts})$
2. The KKT conditions reads, there exists $\lambda \in \mathbb{R}^{n}$ and $\mu \in \mathbb{R}^{+}$such that (1 pts)

$$
\left\{\begin{array}{l}
\frac{e^{x_{i}}}{\sum_{i=1}^{n} e^{x_{i}}}+\lambda_{i}+2 \mu x_{i}=0 \\
\mu_{i} \geq 0 \\
\sum_{i} x_{i}=0, \quad \sum_{i} x_{i}^{2} \leq 1 \\
\mu=0 \text { or } \sum_{i} x_{i}^{2}=1
\end{array}\right.
$$

The problem is convex, (0.25 pts) and qualified (0 is a Slater's point) (0.25 pts), thus conditions are necessary and sufficient.(0.5 pts)
3. For t going to $0(0.25 \mathrm{pts})$ we have that $\left(P_{t}^{i n}\right)$ tends toward (P) : in the sense that $v_{t}^{(i n)} \rightarrow v$ and x_{t} goes toward an optimal solution (0.25 pts). For t small enough we have $v_{t}^{i n} \geq v .(0.25$ $\mathrm{pts})$ In any case $x_{t}^{i n}$ is admissible. (0.25 pts)
For t going to $+\infty(0.25 \mathrm{pts})$, we have that $\left(P_{t}^{\text {out }}\right)$ tends toward (P) in the sense that $v_{t}^{(\text {out })} \rightarrow v$ and $x_{t}^{\text {out }}$ goes toward an optimal solution (0.25 pts). For t large enough, $x_{t}^{\text {out }}$ is optimal for $(P) \cdot(0.25 \mathrm{pts})$ We always have $v_{t}^{(\text {out })} \leq v \cdot(0.25 \mathrm{pts})$

Exercice 2: Support function (4 points)

4 points
For any set $C \subset \mathbb{R}^{n}$, we define its support function

$$
\sigma_{C}: x \mapsto \sup _{c \in C} c^{\top} x
$$

(a) (2 points) Assume that C and D are closed convex sets. Using a separation theorem, show that $C=D$ if and only if their support functions are equal.
(b) (2 points) For any set C, recall that the indicator function \mathbb{I}_{C} take value 0 on C and $+\infty$ outside. Show that, for any non empty set C, the Fenchel transform of its indicator function of set C is its support function, i.e. $\mathbb{I}_{C}^{\star}=\sigma_{C}$. Deduce a second proof for the previous question.

Solution:

(a) If $C=D$ their support function are equals. (0.5 pts) Now assume that $\sigma_{C}=\sigma_{D}$ and $C \neq D$. Without loss of generality we assume that there exists $x_{0} \in D \backslash C$. As C is closed, it can be strictly separated from $\left\{x_{0}\right\}$, meaning that there is a vector a such that $\sup _{x \in C} a^{\top} x \leq b<a^{\top} x_{0}$. Thus $\sigma_{C}(a) \leq b<a^{\top} x_{0} \leq \sigma_{D}(a)$. (1.5 pts)
(b) $\mathbb{I}_{C}^{\star}(x)=\sup _{y \in \mathbb{R}^{n}} x^{\top} y-\mathbb{I}_{C}(x)=\sup _{y \in C} x^{\top} y=\sigma_{C}(x) .(0.5 \mathrm{pts})$ If C is non-empty closed convex, then \mathbb{I}_{C} is proper convex lsc (0.5 pts), and $\mathbb{I}_{C}=\mathbb{I}_{C}^{\star \star}=\sigma_{C}^{\star}(0.5 \mathrm{pts})$. If $\sigma_{C}=\sigma_{D}$, then $\sigma_{C}^{\star}=\sigma_{D}^{\star}$, and as C and D are closed convex, $\mathbb{I}_{C}=\mathbb{I}_{D}$, hence $C=D$. (0.5 pts).

Exercice 3: A linear problem with Gaussian cost

In the following we assume that $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{m}$ are given matrices ; c is a gaussian random variable with mean $\bar{c} \in \mathbb{R}^{n}$ and variance $\Sigma \in \mathbb{R}^{n^{2}}$.
(a) (2 points) We consider the following optimization problem

$$
\left(P_{\gamma}\right) \min _{x \in \mathbb{R}^{n}} \quad \mathbb{E}\left[c^{\top} x\right]+\gamma \operatorname{Var}\left(c^{\top} x\right)
$$

Show that P_{γ} is a quadratic program. Comment on the complexity of solving P_{γ}. (Hint : answer should depend on the value of the parameter $\gamma \in \mathbb{R}$).
(b) (2 points) We now consider the following problem

$$
\begin{array}{rl}
\left(P_{\alpha}^{\prime}\right) \min _{x \in \mathbb{R}^{n}, z \in \mathbb{R}} & z \\
\text { s.t. } & A x \leq b \\
& \mathbb{P}\left[c^{\top} x \geq z\right] \leq \alpha
\end{array}
$$

Show that, for $\alpha \in] 0,0.5],\left(P_{\alpha}^{\prime}\right)$ is equivalent to an SOCP, using $\phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{t}^{+\infty} e^{-u^{2} / 2} d u$ (which is 1 minus the cdf of a centered gaussian), or its inverse ϕ^{-1}.
What happen if $\alpha \in] 0.5,1]$?

Solution:

(a) $\operatorname{Var}\left(c^{\top} x\right)=\mathbb{E}\left[\left(c^{\top} x-\bar{c}^{\top} x\right)^{2}\right]=x^{\top} \mathbb{E}\left[(c-\bar{c})^{\top}(x-\bar{c})\right] x=x^{\top} \Sigma x(0.25 \mathrm{pts})$. Thus, (P_{γ}) reads

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \bar{c}^{\top} x+\gamma x^{\top} \Sigma x \quad(1 p t s) \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

If $\gamma=0$, the problem is linear, which is simplest (0.25 pts). If $\gamma>0$, the problem is quadratic convex, which is simple (0.25 pts). If $\gamma<0$, the problem is quadratic non-convex, which is hard (0.25 pts).
(b) We have,

$$
\mathbb{P}\left(c^{\top} x \geq z\right)=\phi\left(\frac{\beta-\bar{c}^{\top} x}{\left\|\Sigma^{1 / 2} x\right\|}\right)
$$

thus (0.5 pts)

$$
\begin{aligned}
& \mathbb{P}\left(c^{\top} x \geq z\right) \leq \alpha \Leftrightarrow \frac{\beta-\bar{c}^{\top} x}{\left\|\Sigma^{1 / 2} x\right\|} \geq \phi^{-1}(\alpha) \\
& \quad \phi^{-1}(\alpha)\left\|\Sigma^{1 / 2} x\right\|_{2}+\bar{c}^{\top} x \leq z
\end{aligned}
$$

Thus $\left(P_{\alpha}^{\prime}\right)$ reads (0.5 pts)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \phi^{-1}(\alpha)\left\|\Sigma^{1 / 2} x\right\|_{2}+\bar{c}^{\top} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

which is an $\operatorname{SOCP}(0.5 \mathrm{pts})$ if $\phi^{-1}(\alpha) \geq 0$, that is if $\left.] 0,0.5\right]$. If $\left.\left.\alpha \in\right] 0.5,1\right]$, the problem is non-convex. (0.5 pts)

Exercice 4: Prox operator and Moreau-regularization
For any $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ proper convex function we define the proximal operator

$$
\operatorname{prox}_{f}: x \mapsto \underset{y \in \mathbb{R}^{n}}{\arg \min } f(y)+\frac{1}{2}\|y-x\|^{2}
$$

and Moreau regularization of parameter $\mu>0$

$$
f_{\mu}: x \mapsto \inf _{y \in \mathbb{R}^{n}} f(y)+\frac{1}{2 \mu}\|y-x\|^{2}
$$

We want to study the proximal point algorithm given by the following sequence

$$
x^{(k+1)}=\operatorname{prox}_{\mu f}\left(x^{(k)}\right)
$$

(a) (1 point) Show that prox_{f} and f_{μ} are well defined. For C closed convex non empty, and $f=\mathbb{I}_{C}$ recognize prox_{f} and f_{μ}.
(b) (1 point) Show that x^{\sharp} is a minimizer of f if and only if it minimizes f_{μ}, if and only if $x^{\sharp}=\operatorname{prox}_{f}\left(x^{\sharp}\right)$.
(c) (1 point) Show that $f_{\mu}(x)=\frac{1}{2 \mu}\|x\|^{2}-\frac{1}{\mu}\left(\mu f+\frac{1}{2}\|\cdot\|^{2}\right)^{\star}(x)$.
(d) (1 point) Show that $\operatorname{prox}_{\mu f}(x)=\arg \max _{y} x^{\top} y-\mu f(y)-\frac{1}{2}\|y\|^{2}$.
(e) (1 point) Show that $\nabla f_{\mu}(x)=\frac{1}{\mu}\left(x-\operatorname{prox}_{\mu f}(x)\right)$.
(f) (1 point) Interpret the proximal point algorithm as a gradient algorithm.
(g) (2 points) Writing

$$
\begin{array}{rll}
f_{\mu}(x)=\min _{y, z} & & f(y)+\frac{1}{2 \mu}\|z\|^{2} \\
\text { s.t. } & x-y=z
\end{array}
$$

and using duality show that $f_{\mu}(x)=\left(f^{\star}+\frac{\mu}{2}\|\cdot\|^{2}\right)^{\star}(x)$. Deduce that f_{μ} has $\frac{1}{\mu}$-Lipschitz gradient.
(h) (1 point) Show that, if f is a proper convex lowersemicontinuous function, admitting a minimizer, the proximal point alogrithm converges toward a minimizer of f.
(i) (1 point) For the following problem

$$
\min _{x \in \mathbb{R}^{n}} \quad g(x)+h(x)
$$

with $g \in \mathcal{C}^{1}$, we introduce the proximal gradient algorithm given as

$$
x^{(k+1)}=\operatorname{prox}_{\mu h}\left(x^{(k)}-\mu \nabla g\left(x^{(k)}\right)\right)
$$

Recognize the proximal gradient algorithm for $h=0$ first and then for $h=\mathbb{I}_{C}$, with g proper convex lowersemicontinuous, and $C \subset \operatorname{dom}(g)$ closed convex non-empty.

Solution:

(a) For any $x \in \mathbb{R}^{n}, y \mapsto f(y)+\frac{1}{2}\|y-x\|^{2}$ is proper lsc and strongly convex, thus admits a unique minimum. (0.5 pts)
$\operatorname{prox}_{f}(x)=\arg \min _{y \in C}\|x-y\|^{2}$ is the projection on set C. (0.25 pts) $f_{\mu}(x)=\frac{1}{2 \mu} \min _{y \in C} \| x-$ $y \|^{2}=\frac{d(x, C)^{2}}{2 \mu}$
(b) If x^{\sharp} minimizes f, we have,

$$
f(x)+1 / 2\left\|x-x^{\sharp}\right\|^{2} \geq f\left(x^{\sharp}\right)=f\left(x^{\sharp}\right)+1 /(2 \mu)\left\|x^{\sharp}-x^{\sharp}\right\|^{2}
$$

thus x^{\sharp} minimizes f_{μ} and $x^{\sharp}=\operatorname{prox}_{f}\left(x^{\sharp}\right)($ for $\mu=1) .(0.5 \mathrm{pts})$
On the other hand, $\tilde{x}=\operatorname{prox}_{f}(v)$ minimizes f_{1} iff

$$
0 \in \partial f(\tilde{x})+(\tilde{x}-v)
$$

taking $v=\tilde{x}=x^{\sharp}$ we get $0 \in \partial f\left(x^{\sharp}\right) .(0.5 \mathrm{pts})$
(c) We have

$$
\begin{aligned}
f_{\mu}(x) & =\inf _{y} f(y)+\frac{1}{2 \mu}\|x-y\|^{2} \\
& =\inf _{y} \frac{\|x\|^{2}}{2 \mu}-\frac{1}{\mu} x^{\top} y+\frac{1}{2 \mu}\|y\|^{2} \\
& =\frac{\|x\|^{2}}{2 \mu}-\frac{1}{\mu} \sup _{y}\left\{x^{\top} y-\frac{1}{2}\|y\|^{2}\right\}
\end{aligned}
$$

(d) We have

$$
\begin{aligned}
\operatorname{prox}_{\mu f}(x) & =\underset{y}{\arg \min } f(y)+\frac{1}{2}\|x-y\|^{2} \\
& =\underset{y}{\arg \min } f(y)+\frac{1}{2}\|x\|^{2}-x^{\top} y+\frac{1}{2}\|y\|^{2} \\
& =\underset{y}{\arg \max } x^{\top} y-f(y)-\frac{1}{2}\|y\|^{2}
\end{aligned}
$$

(e) Using the the recalls we have that $g=\nabla\left(\mu f+\frac{1}{2}\|\cdot\|^{2}\right)^{\star}(x)$ iff $g \in \arg \max _{y} x^{\top} y-\left(\mu f+\frac{1}{2}\|y\|^{2}\right)$. Hence the previous questions yields the result.
(f) From the previous question we have $\operatorname{prox}_{\mu f}(x)=x-\mu \nabla f_{\mu}(x)$ (0.5 pts). Thus $x^{(k+1)}=x-$ $\mu \nabla f_{\mu}\left(x^{(k)}\right)$ and the proximal point algorithm is the gradient with fixed step size μ applied to f_{μ}. (0.5 pts)
(g) We have the Lagrangian (0.5 pts) $\mathcal{L}(y, z, \lambda)=f(y)+\frac{1}{2 \mu}\|z\|^{2}+\lambda^{\top}(x-y-z)$ the dual function is (0.5 pts)

$$
\begin{aligned}
g(\lambda) & =\inf _{y}\left\{\left(f(y)-\lambda^{\top} y\right)\right\}+\inf _{z} \frac{1}{2 \mu}\|z\|^{2}-\lambda^{\top} z+\lambda^{\top} x \\
& =-f^{\star}(\lambda)-\frac{\mu}{2}\|\lambda\|^{2}+\lambda^{\top} x
\end{aligned}
$$

Strong duality (0.5 pts) yields

$$
f_{\mu}(x)=\sup _{\lambda} g(\lambda)=\left(f^{\star}+\frac{\mu}{2}\|\cdot\|^{2}\right)(x) .
$$

As f^{\star} is convex, $f^{\star}+\frac{\mu}{2}\|\cdot\|^{2}$ is μ-convex and thus $\left(f^{\star}+\frac{\mu}{2}\|\cdot\|^{2}\right)$ is $1 / \mu$-smooth.
(h) As f_{μ} is $1 / \mu$-smooth (its gradient is $1 / \mu$-Lipschitz), the fixed step gradient algorithm (equivalent to the proximal point algorithm) is converging toward the minimum of f_{μ} (0.5 pts), which is the minimum of $f(0.5 \mathrm{pts})$.

