Continuous Optimization Exam

04/06/2021
3 hours — documents allowed

The exam is made of 4 independent exercises, in roughly increasing difficulty. If necessary, you can admit
the results of previous questions. When using the recalls, cite them.

Some

usefull recalls

i) If X ~ N (i, ) is a Gaussian vector, then, for any vector u, we have u' X ~ N (u' p, v’ Su).

ii) The Fenchel transform of a function f : R” — R U {+o0} is given by f*(z) = sup ="y — f(y).

yeR™

iii) Assume that f is a convex proper Isc function. f is u-strongly convex, iff f* is differentiable with
%—Lipschitz gradient.

iv) Assume that f is a convex proper lsc function. Then A € df(z) iff x € 9f*(N).

v) Assume that f is a convex proper Isc function. Then A € 0f () iff z € argmax, Ay — f(y)

Exercice 1: Warm-up 5 points

(a) (1 point) On what conditions on the set C is I a proper lower semicontinuous, convex function ?
(b) (2 points) Write the KKT conditions for the following problem.
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Are they necessary and/or sufficient conditions of optimality for this problem ?
(2 points) We consider the following problem

(P)  min  f(x)

reR™
s.t. Ar=b, <0

with value v and the following penalized versions

(Ff) min f(@)—tS n(-w)  and (B min f() 6 ()t
TER™ zeR™
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with associated value v;" and v{“!, and an optimal solution x}" and z§“.

Intuitively, assuming that f is ”"well behaved”, for ¢ going to which value does (P™) tends to the
original problem (P) ? In which sense ? What can you say about ™ ? Can you compare v;" and
v ? Same questions for (P7*")



Solution:

1. If C is closed convex, then so is epi(lg) = C' x Ry, implying that I¢ is convex 1sc.(0.75 pts) It
is proper if C' is non-empty.(0.25 pts)

2. The KKT conditions reads, there exists A € R™ and p € RT such that (1 pts)
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The problem is convex,(0.25 pts) and qualified (0 is a Slater’s point)(0.25 pts), thus conditions
are necessary and sufficient.(0.5 pts)

3. For t going to 0 (0.25 pts) we have that (P/™) tends toward (P) : in the sense that U,Sm) — v
and z; goes toward an optimal solution (0.25 pts). For ¢t small enough we have vi" > v.(0.25
pts) In any case z}™ is admissible. (0.25 pts)

For t going to 400 (0.25 pts) , we have that (P2“!) tends toward (P) in the sense that vt(f’“t) —v

and z¢*" goes toward an optimal solution (0.25 pts) . For ¢ large enough, x¢*! is optimal for

(P).(0.25 pts) We always have vtom) < 0.(0.25 pts)

Exercice 2: Support function (4 points) 4 points
For any set C' C R™, we define its support function

oC . T sup CTQI
ceC

(a) (2 points) Assume that C and D are closed convex sets. Using a separation theorem, show that
C = D if and only if their support functions are equal.

(b) (2 points) For any set C, recall that the indicator function I take value 0 on C' and 400 outside.
Show that, for any non empty set C, the Fenchel transform of its indicator function of set C' is its
support function, i.e. If; = o¢. Deduce a second proof for the previous question.

Solution:

(a) If C = D their support function are equals. (0.5 pts) Now assume that oo = op and C # D.
Without loss of generality we assume that there exists ©g € D\C. As C is closed, it can be
strictly separated from {z,}, meaning that there is a vector a such that sup,c-a'2 < b < a' .
Thus oc(a) <b < a'zg <op(a). (1.5 pts)

(b) I () = supyegn 2" y—Io(z) = supy e 'y = oc(x). (0.5 pts) If C is non-empty closed convex,
then I is proper convex lIsc (0.5 pts), and Ic = I = o (0.5 pts). If o = op, then o} = o7,
and as C and D are closed convex, I = Ip, hence C = D. (0.5 pts).

Exercice 3: A linear problem with Gaussian cost 4 points
In the following we assume that A € R”:m, b € R™ are given matrices ; c is a gaussian random variable
with mean ¢ € R” and variance ¥ € R™ .



(a) (2 points) We consider the following optimization problem

(Py) nel]iRr}L Elc'z] +Var(c'z)

Show that P, is a quadratic program. Comment on the complexity of solving P,. (Hint : answer
should depend on the value of the parameter v € R).

(b) (2 points) We now consider the following problem

P min z
(Pa) omin_,
s.t. Ax <D

P[CT.’L‘ > z} <«

Show that, for a €]0,0.5], (PL) is equivalent to an SOCP, using ¢(t) = \/% ft+°° e="*/2dy (which

is 1 minus the cdf of a centered gaussian), or its inverse ¢1.
What happen if a €]0.5,1] ?

Solution:
(a) Var(c'z) =E [(CT.’E - ETx)Q} =2k [(c —&)(z— E)}x =z Sz (0.25 pts). Thus, (P,) reads

min e +yz S (1pts)
zER™

s.t. Ax <b

If v = 0, the problem is linear, which is simplest (0.25 pts). If v > 0, the problem is quadratic
convex, which is simple (0.25 pts). If v < 0, the problem is quadratic non-convex, which is hard
(0.25 pts).

(b) We have,

B“'_T

thus (0.5 pts)
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Thus (P,) reads (0.5 pts)

min o ) |2V 2z + "
IGR’”
s.t. Ax <b

which is an SOCP (0.5 pts) if ¢~(a) > 0, that is if ]0,0.5]. If a €]0.5,1], the problem is
non-convex. (0.5 pts)

Exercice 4: Prox operator and Moreau-regularization 10 points
For any f:R™ — RU {+oco} proper convex function we define the prozimal operator

. 1
prox; : x + argmin f(y) + = |ly — x|
yERN 2



and Moreau regularization of parameter p > 0
1
.o inf + —|ly — z|]?
i Jnf, f(y) o ly — |l
We want to study the prozimal point algorithm given by the following sequence
kD) = proxuf(x(k)).

(a) (1 point) Show that prox, and f,, are well defined. For C' closed convex non empty, and f = ¢
recognize prox; and f,.

b) (1 point) Show that z* is a minimizer of f if and only if it minimizes f,, if and only if z# = prox ;(z¥).
Iz f

(c) (1 point) Show that f,(z) = g, [l2|* — 5 (uf + 31 - [*)*(2).

(d) (1 point) Show that prox,,;(z) = argmax, 2"y — uf(y) — Lyl

(e) (1 point) Show that Vf,(z) = %(x — prox,, ¢ (z)).

(f) (1 point) Interpret the proximal point algorithm as a gradient algorithm.

(g) (2 points) Writing

fule) =min £0) + 5]l

s.t. r—Yy=2z
and using duality show that f,(z) = (f* + 4| - [|*)*(z). Deduce that f, has i-LipSChitZ gradient.

(h) (1 point) Show that, if f is a proper convex lowersemicontinuous function, admitting a minimizer,
the proximal point alogrithm converges toward a minimizer of f.

(i) (1 point) For the following problem

min - g(z) + h(z)

with g € C!, we introduce the proximal gradient algorithm given as
l'(k+1) — proxuh (x(k) — MVg(x(k)))

Recognize the proximal gradient algorithm for h = 0 first and then for h = [, with g proper convex
lowersemicontinuous, and C' C dom(g) closed convex non-empty.

Solution:
(a) For any z € R, y — f(y) + %Hy — x||? is proper Isc and strongly convex, thus admits a unique
minimum. (0.5 pts)

prox;(z) = argmin,cc ||z — y||* is the projection on set C.(0.25 pts) f,(x) = 2% mingee ||z —
_ d(z,0)*
yll?

2p

(b) If 2¥ minimizes f, we have,
F(o) +1/20w — o2 > f(a) = £(F) + 1/ @p)llat — 25

thus #* minimizes f, and 2* = prox,(z*) (for p = 1).(0.5 pts)

On the other hand, ¥ = prox;(v) minimizes f; iff
0€df(z)+ (z—v)

taking v = & = 2* we get 0 € df(z*).(0.5 pts)




(c) We have

(@) = inf £(3) + -l =
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(d) We have
. 1 )
prox,, ¢ (z) = arg min Fy) +5lle =yl
. 1 1
= argmin f(y) + g lal]? — 2y + 7l
Y

1
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(e) Using the the recalls we have that g = V(uf + |- |2)*(z) iff g € argmax, z "y — (uf + 5[|y/?).-
Hence the previous questions yields the result.

(f) From the previous question we have prox,,;(z) = x — uVf,(x) (0.5 pts). Thus e+ = g —

uV fﬂ(x(k)) and the proximal point algorithm is the gradient with fixed step size p applied to
fu- (0.5 pts)

(g) We have the Lagrangian (0.5 pts) L(y,z,\) = f(y) + ﬁ”z”2 + AT (2 —y — 2) the dual function
is (0.5 pts)

1
9(\) = inf {(f(y) = A"y)} +inf EH'ZHQ — Az AT
=~ = SN +2Tx
Strong duality (0.5 pts) yields
— — * K 2
fulz) =supg(A) = (f*+ 51 - 1)(@).

As f* is convex, f* + 4| - ||? is p-convex and thus (f* + 4| - [|?) is 1/p-smooth.

(h) As f, is 1/p-smooth (its gradient is 1/u-Lipschitz), the fixed step gradient algorithm (equivalent
to the proximal point algorithm) is converging toward the minimum of f, (0.5 pts), which is
the minimum of f (0.5 pts).




