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@ We are interested in the
problem of managing a
group of power stations.

L(XL UL W @ We want to find
D! strategies (optimal
feedback control).

@ The problem is of too
high dimension to be
addressed by Dynamic
Programming and thus we
aim at decomposing it.

@ In order to do that we
need to dualize the
coupling constraints.

[ S 170y w)

Leclere, Carpentier Qualification Condition January 2013 2/29



Presentation Outline

Q Constraint Qualification Conditions
@ Abstract Duality Theory
@ Application to Constrained Optimization

© A Stochastic Optimal Control Problem
@ Presentation of the Problem
@ Resolution by Uzawa Algorithm

© Examples
@ First Example: No Dual Multiplier

@ Second Example: Sufficient Condition is not Necessary

@ Some Thoughts on the Subject

Leclere, Carpentier Qualification Condition January 2013



Constraint Qualification Conditions
Abstract Duality Theory
Application to Constrained Optimization

Contents

e Constraint Qualification Conditions
@ Abstract Duality Theory

Leclere, Carpentier Qualification Condition January 2013 3/29



Constraint Qualification Conditions
Abstract Duality Theory
Application to Constrained Optimization

Some Convex Analysis Facts and Notations

o If f: E— R, where E is a Banach space, we note f* the

Fenchel conjugate of f defined on the topological dual of E
noted E* by

(x*) = sgp(x*,x) — f(x).

@ The double conjugate of a function f (noted f**) is the

greatest convex l.s.c function lower than f, in particular
< f.

e For future use we say that © : E — F is C—convex (with
C C F)if for all x,x" € E and all « € [0, 1] whe have
O(ax + (1 — a)x') — (a®(x) + (1 — a)0(x)) € —C.

e If © is C—convex and continuous then
U = {uecU|®(u) € —C} is a closed convex set.
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Dualization by Perturbation

We assume that U,U*, Y, V* are paired spaces (for example
Banach and their topological dual). We consider the family of
perturbed minimization problem, p € ) being the perturbation

(Po)  wlp) =min G(u,p) .

The original problem we are interested in is (Pp). Then the dual
problem is defined as

(Dp) ¥ (p) prp€a§*<p,p> (0,p%)

With those definitions we have the classic duality inequality

inf(Pp) > sup(Dp)
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Regularity of Value Function and Dual Problem

The regularity of the value function ¢ at 0 gives information on
the dual problem (Dy). In a first place we have

©**(0) = sup(Do) ,
arg max(Dp) = d¢™(0) .

Moreover if the value function ¢ is convex (which is the case if
the perturbed cost G is jointly convex in (u, p)) we have

e No duality gap (i.e inf(Py) = sup(Dy)) iff ¢ is |.s.c at 0.

o Existence of dual solution iff ¢ is subdifferentiable at 0, i.e
inf(Po) = max(Dyp) and arg max Dy # (.
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Application to Constrained Optimization

We consider the following problem, with J convex proper and I.s.c,
U?® closed convex, C a closed convex cone and © is C—convex
and continuous.

min  J(u)

ueuU??

O(u)e—C

We choose to embedd it in the following family of perturbed
problem

(o) #lp)= min  J(u) + X(o(w)-pe-c};
G(u,p)

or min ma J(u) + {p*,0(u) — p).
Jmin, max  J(u) (p*,0(u) = p)

The dual problem (D)) reads

D i * —p).
(Dp) p@eag*u@&ng(U)Hp,@(U) p)
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Constraint Qualification Conditions
Abstract Duality
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Sufficient Condition of Qualification

In this framework we have that ¢ is convex and l.s.c, and
consequently there is no duality gap. However we need some
condition to ensure subdifferentiability, and thus existence of
solution of the dual problem Dgy. Those solutions are called
optimal multipliers.

The following sufficient condition (CQC) of qualification is
equivalent to 0 € int dom ¢.

(CQC)  oe int(@(uad M dom(J)) + C)

Note that we could easily choose 2429 C dom(J).
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Some Notations

We note in capital bold letter (e.g U) any random variables.

U < F means that U is a F—measurable random variable :

oU)cC F.
As far as a dynamic system is concerned we will use
o X =(X,)=(X,, -, X;) for the state of a dynamic system,

e W = (W,) is an exogeneous random noise,
e and U = (U,) for the control.

Fe=0(Wy,---,W,) is the o-algebra generated by the noises
up to time t, and consequently (F;).c[o, 77 is a filtration.
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

An Optimization Problem

Let us consider the following dynamic optimization problem

.
min E(Z Le(X,, Uﬁwt))
X, t=0

(dynamic equation) X, ; = f;(X,,U,,W,)

)
(measurability constraints) U, < F;

) U, eu

) ©:(U,)=0

(other constraints

(“coupling constraint’

where (W,) is a noise, (X,) is the state process, (U,) is the
control process, and F; = (W, --- ,W,). U is typically used
to denote bound constraints on the control.

Note that there is no state constraint.
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A Stochastic Optimal Control Problem Presentation of the Problem
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The Large Scale System Version

This problem is inspired from the following problem that we want
to decompose.

Vieln], Xiq=f(X],U,W,)
Vie[l,n], X;=x
Viel[l,n], U,eu
Vie[l,n], UL=<F

(coupling constraint) Z@’t(U’t) =0
i=1

Leclere, Carpentier Qualification Condition January 2013 11 /29



A Stochastic Optimal Control Problem Presentation of the Problem
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The Large Scale System Version: dualized constraint

Under some assumptions we can dualize the coupling constraint.

N T

max I‘)?IS ;;E(L’t(x;, U,,W})) + (A, ©,(U}))
Vieln] Xig= (X, U, W)
Viel,n], Xj=x
Viel[l,n], U,eu
Vie[l,n], UL<F
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

The Large Scale System Version: decomposed problem

Once the constraint dualized the problem is spatially decomposed.

N
max Z min ZE L’ X’ Ul W’))—F()\t,@’;(Ui))
R SRV [ rd
Xlt+1
Ui e u,if-’
U, < 7

f"(X’;, U, W,)
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Back to the General Optimization Problem

In the remaining of the talk we will focus on this version of the
problem

.
min E(Z Le(X,, Ut,Wt)>
X, t=0

(dynamic equation) X, ; = f(X,,U,,W,)
(measurability constraints) U, < F;
(other constraints) U, € U
(“coupling constraint”) ©:(U,) =0
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Dualization

Formally we dualize the coupling constraint ©,(U,) = 0 on the

control U,, with multiplier A; we obtain
T T
min max E(Z Le(X,, Ut,Wt)> + Z (A, ©:(U,)),
XUt A =0 =0
U =Fe = =
xt+1 = ft(xt’ Ut’Wt)

where <)\t, @t(Ut)> is a duality pairing to be precised.
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Stochastic Uzawa Algorithm

We assume that the duality pairing (A¢, ©:(U,)) can be written
<At, @t(Ut)> == E(At@t(Ut)) .

Then under constraint qualification condition we can exchange
min and max and use the following algorithm. At step k we have a
process A% and solve

;
min E(Z Le(X,, U, W,) + Aﬁk)et(Ut)) :
X,Ueu?d P
U, =7 -

xt+1 = ff(xt? Ut’Wt)
Finally we determine A**1) by a gradient step

A =X o, (ul).
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Which spaces 7

@ Until now we have not defined in which spaces lies our
random variables.

@ Depending on the duality choosen there might exist an
optimal multiplier or not.

@ Uzawa is given in Hilbert spaces framework, which would lead
to choose U as well as the constraint function ©(U) to be in
L2 (or Sobolev) spaces. However there might not be an
optimal multiplier in those spaces.

@ In order to assure the existence of multiplier, we could assume
that the state and control variables are essentially bounded (in
L>°).

@ Note that we restrict ourselves to multiplier process A
adapted to (F¢)ecqo, 7]-
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A Stochastic Optimal Control Problem Presentation of the Problem
Resolution by Uzawa Algorithm

Why can we take an adapted multiplier 7

Assume that A is an optimal multiplier process of our problem.
We see that each A; appears in the problem only in E(X,0:(U,)).
And noting that ©;(U,) < F; we have

Eeuu) = (B, | 7))

E (E(At | Fe) et(ut)>

At

Consequently the (F;)-adapted process X defined, for all time-step
t, by Ae = E(A; | F¢) is also an optimal multiplier, and he is
adapted to (F¢).
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Necessary

Why these Examples

@ In a first example (inspired by R. Wets) we show that even on
a simple, strongly convex with almost sure inequality problem
there might not exist a saddle point in L.

@ In a second example we show that it might exist a saddle
point even if the sufficient qualification condition (CQC) is
not satisfied.

Recall that we have

(CQC)  0e int(@ (U N dom(J)) + c)
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Necessary

A first example derived from the Rockafellar-Wets example

Let &€ be a random variable uniform on [1,2], x is a deterministic
variable and Y a random variable measurable with respect to £.

: X2 Y —a)?

y ;+EC )
X > a
(x-=Y)>¢
Y >0

We consider the associated perturbed problem (in L?)

x? (Y —a)?
P) = mi oA
¢(P) min >t 5
xZa+P1
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Necessary

Solutions of the problem

We can compute the optimal solution

¢(P) = [max{a+Pr, essup(§+P,—max(P;, a))}]2+E((P3_20‘)+)2

Assume that a < 2.
@ We can show that ¢ is convex and |.s.c at 0.
e However ¢ is not subdifferentiable at 0: dp(0) = (.
o Consequently there is no duality gap between the primal and
dual problem, but the dual problem has no solution in L2.

More precisely a maximizing sequence of the dual problem is
of total mass 2 concentrating on the event {£ = 2}.

@ In fact a multiplier exist in the strong topological dual of L*°.
Moreover L2 is a dense subset of this dual.
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Nec:

In a nutshell

JEINES
Optimal multiplier | No | Yes
Uzawa Yes | No?
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Necessary

A toy Example

Let us consider in L?(Q, F,P;R) the following problem
1
E(U?)

cc

I I/\§-

o3
N |

the unique admissible solution is U = 0, and the optimal value is
accordingly 0. We dualize the constraint U = 0 to obtain the dual
problem

U2 A2
sup minE(— +)\U) = sup —E(—) =0.
AeL2 U=l 2 AelL? 2

Thus there is no duality gap, and an optimal multiplier exist,
namely A* = 0.
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First Example: No Dual Multiplier
Examples Second Example: Sufficient Condition is not Necessary

With perturbation theory

We choose 1?9 = {U € [?|U < 1}, © =1d, and C = {0}.
Thus we embed our former problem in the following family of

problem
#(P) = min %IEU2 ,
u=p
and easily see that
P13

¢(P) = 5 + x¢p<13(P)

And as VP € L2, ¢(P) > ©(0) we have by definition that ¢ is
l.s.c at 0 and that 0 € dp(0) thus ¢ is subdifferentiable at 0.
However as ©(U?9) + C = U3 is of empty (relative) interior this
example does not verify the sufficient qualification condition
(CQC).
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Some Thoughts on the Subject

Uzawa with no saddle point ?

As far as we know Uzawa's convergence proof assume the
existence of a saddle-point, however :

o As L™ (Q,f, P) C (L"o (Q,f, ]P’)>* the update step of the
Uzawa algorithm, i.e AK+1) — A(k) 4 p@(u(k)), have a sense.
o Moreover L™ (Q,]—', IP’) is dense in (L°° (Q,]—', IP’))*
o Finally the proof of convergence of Uzawa's algorithm does
not show the convergence of the multiplier.
Consequently we might hope that we can prove the convergence of

the algorithm in the duality (L"o, (Loo)*> with only a non-duality
gap assumption 7 Relation with e—resolution 7
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Some Thoughts on the Subject

Multistage duality (LOC, Ll)

T.Rockafellar and R.Wets have worked in a series of four papers on
the duality (LOO, Ll). The main idea was that measure multiplier

came from dynamic induced constraints. In our framework
dynamic induced constraints are produced by state constraints.
Consequently without state constraints (for example if we choose
to penalize those constraints and consider the penalized problem)
we are in the (relatively) complete recourse case, and the multiplier
should be in L.

However the papers were written for a two-stage problem, has it
been extended to the multistage case 7 Is it worth it 7 Is there a
way to guarantee that the multiplier will be in L? instead of L! ?
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Some Thoughts on the Subject

Comparison with the Optimal Control

In deterministic continuous time optimal control the same problem
of existence of multiplier appears in the case of state constraint.
They are used to ask for more regularity (Sobolev Spaces), maybe
it is worth a look in this direction ?7
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Some Thoughts on the Subject
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Some Thoughts on the Subject

Thank you for your attention !
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