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What is this about 7

@ We want to treat constraints in a stochastic optimization
problem, by duality methods.

@ Uzawa algorithm is a simple dual method: it is a gradient
algorithm for the dual problem.
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Problem Statement and Hilbert Case
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Problem Statement

We consider the following (primal) problem:

(P) min  J(u),

ueyad

s.t. O(u)e —C.

Where U and V are two Hausdorff spaces, and
o J:U — R is an objective function ,
@ ©:U — Vis a constraint function (to be dualized),
@ C C V is a cone of constraints,

o U* C U is a constraint set (not to be dualized).
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Problem Statement and Hilbert Case

[eJe] le]

Dual Problem

The primal problem can be written

(P)  min, max S+ (A OW)yy

where C* C V* is given by

Cr={ eV |vxeC, <A,X>V*VZO}.

The dual problem of Problem (P) reads

©) pomn 000,
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Problem Statement and Hilbert Case
ocooe

Equivalence of (73) and (D) Saddle-Point and Multiplier.

We introduce the Lagrangian associated to Problem (77)

L(u, A) == J(u) + (A ,@(u)>v*7v :

Proposition

The primal problem (77) and the dual problem (D) are equivalent
(same value and same set of solutions), i.e,

min max L(u, )\) = max  min L(u,)\) ,
uelad  AeC* A€C*  yeyad

iff the Lagrangian L admits a saddle point on /2 x C*, or
equivalently if the constraint ©(u) € —C is qualified.
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Problem Statement and Hilbert Case
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Gradient of the Dual

Assume that U/ = U*, and V = V* are Hilbert spaces.
Recall the dual problem (D) as

max  min {J(u) + (X, @(u)>V*,V} .

AeC*  yeyad
=p ()\)

Under some regularity conditions, if uf(\) is a minimizer of the
above problem, then

O(u*(\) = Ve(N) .

u(k) € argmin ,c4ad {J(U) + <)\(k) 7@(U)>V*,V}
AED — proe. (A9 1 p ©(o9)
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Problem Statement and Hilbert Case
00®00

Uzawa Algorithm

Data: Initial multiplier A\(©) € V, step p > 0 ;
Result: Optimal solution v and multiplier A\ ;
repeat

uk) € arg min {J(u) + <)\(k) ,@(u)>} )

uelad

AR+ — projes ()\(k) +p @(u(k))) .

until ©(u¥) e —C ;
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Problem Statement and Hilbert Case
0000

Convergence of Uzawa Algorithm in Hilbert Spaces

Assume that,

@ the function J : U/ — R is strongly convex of modulus a, and
Gateaux-differentiable;

@ the function © : i/ — V is C-convex, and k-Lipschitz;

© U™ () is a closed convex subset of the Hilbert space I/;

@Q C is a non empty, closed convex cone of the Hilbert space V;
@ the Lagrangian L admits a saddle-point (u?, \*) on 2424 x C*;
O the step size is small enough (0 < p < 2a/x?).

Then, the Uzawa algorithm is well defined and, the
sequence {u(¥)} cry converges toward uf in norm.
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Problem Statement and Hilbert Case
oeo

Stochastic Optimization Setting

In a stochastic optimization setting the most natural Hilbert space
is L2 (Q,}", ]P). A natural optimization problem is thus

=J(u)
o Bp)] = [ e,
st. ©(U) e -C

where j : R” x Q — R is a convex normal integrand (for example a
Carathéodory integrand, that is continuous in u for almost all w,
and measurable in w for all u).
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Problem Statement and Hilbert Case
ooe

Sufficient Condition of Qualification

Under the following assumption
0€ri (@(uad N dom(J)) + c) ,

The primal problem admits an optimal solution and constraint
©(U) € —C is qualified.

| A

Proposition

If the o-algebra F is not finite, then for any set Uad C R", that is
not a linear space, the set

u={uerr(@FPR)|UeU™ P-as],

has an empty (relative) interior in LP, for p < 4o0.
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L°° setting

From now on we consider that

U= LDO(Q,]-',IP’;R”) ,

V= LOO(Q,}',IP’;R"’) ,

C ={0}.
Where the o-algebra is not finite (modulo P). Hence, & and V are
non-reflexive, non-separable, Banach spaces.

If the o-algebra is finite modulo P, &/ and V are finite dimensional
spaces, and the usual result applies.
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Perks of an Hilbert Space

In an Hilbert space H we know that
i) the weak and weak* topologies are identical,

ii) the space H and its topological dual can be identified.

Point /) allows to formulate existence of minimizer results:
@ weakly closed bounded = weakly compact;
@ for a convex set : weakly closed <= closed;
@ for a convex function: weakly |.s.c <= I.s.c.

Hence, a strongly-convex, lower semicontinuous function J admits
an infimum.

Point i) allows to write gradient-like algorithm: at any iteration k,
we have a point u(%) € H, and the gradient g(k) = Vf(u(k)) eH.
Hence, linear combination of A(K) and g(¥) make sense.
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Difficulties Appearing in a Banach Space

@ In a reflexive Banach space E, i) still holds true, and thus the
existence of a minimizer remains easy to show. However i/)
does not hold anymore. Indeed g now belongs to the
topological dual of E. Thus a combination of u(k) € E and
g¥) € E* does not have any sense.

@ In a non-reflexive Banach space E, neither i) nor ii) holds
true.

@ However if E is the topological dual of a Banach space, then
a weakly* closed bounded subset of E is weak* compact.
Thus, weak™ lower semicontinuity and coercivity of a function
J gives the existence of minimizers of J.
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Specificities of L™ (Q, F,P; R”)

e L™ (Q,]—",IP’; R”) is the topological dual of the Banach space
LY (Q,F,P;R"). Hence, if J is weak* |.s.c and coercive, then
J admits a minimizer.

@ L can be identified with a subset of its topological dual
*
<L°°> . Thus, the update step

AKFD = XK 4 @(U(k)) ’

*
make sense: it is a linear combination of elements of (Loo) )

@ Moreover, if A(®) is chosen in 1.°°, then the sequence
{AK) ) en remains in L
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Uzawa Algorithm

Data: Initial multiplier A©) € L™, step p > 0 ;
Result: Optimal solution U* and multiplier A* ;
repeat

U™ & arg min {J(U) + (AW ,@(U)>} ,
Uelfad

AL — A\ (k) p @(U(k)) )

until 9(UK) =0 ;

Remark: numerically, other update rules (e.g. quasi-Newton) can
be used, convergence being proven when we find a multiplier A(¥)
such that ©(UK) = 0.
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Existence of Solution

Theorem

Assume that:
@ the constraint set U/ is weakly* closed;
Q@ O :U — Vs affine, weakly* continuous;

© the objective function J : U — R is weak* lower
semicontinuous and coercive on /24;

© there exists an admissible control.

Then the primal problem admits at least one solution.
Moreover for any A € L (Q, F,P;R™)

arg min {J(U) + (A ,@(U)>} #0.

Uecyad
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Convergence Result

Assume that:

@ J:U — R is a proper, weak* lower semicontinuous,
Gateaux-differentiable, a-convex function;

Q@ ©:U — Vs affine, weak* continuous and k-Lipschitz;

© there exists an admissible control;

Q 12! is weak* closed convex;

@ there is an optimal L'-multiplier to the constraint ©(U) = 0;
O the step p is such that 0 < p < 2—;

Then, Uzawa algorithm is well defined and there exists a
subsequence (U(”k))kGN converging in L> toward the optimal

solution U* of the primal problem.
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Some Topologies on L*>°

@ The topology 7| is the norm topology of L>.

@ The weak topology a(L"C, (LOO)*> is the coarsest topology

such that all norm-continuous linear form on L remains
continuous.
@ The weak* topology O’(LOO, L1> is the coarsest topology such

that all the L!-linear form are continuous.
@ The Mackey-topology T(LOO, Ll) is the finest topology such

that the only continuous linear form are the L-linear form.
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@ The weak topology a(L"C, (LOO)*> is the coarsest topology

such that all norm-continuous linear form on L remains
continuous.
@ The weak* topology O’(LOO, L1> is the coarsest topology such

that all the L!-linear form are continuous.
@ The Mackey-topology T(LOO, Ll) is the finest topology such

that the only continuous linear form are the L-linear form.
We have

o (L, (L>®)*) ¢ r(L*,L') C o (L™, LY) C 7y -

o Coarser topology = more compact.
@ Finer topology = more continuous real valued function.
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A Theoretical Condition

Assume that:

o j:RYx Q — Ris a convex normal integrand, such that

Je>0, 3U,elU*, VueR”,
lullge <e = j(Ug+u,-)<+oo P—as.
o J=E[j(:)] is 7(L>°,L")-(upper-semi)continuous at some
point U, € &2 N dom(J);
o U™ is a weak* closed linear subspace of L>(Q, F,P;RY);

Then, the constraint ©(U) = 0 admit a multiplier in L.

Remark : J is weak* |.s.c.
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A Practical Condition

Proposition

Assume that j is a convex integrand and that and that J is finite
everywhere on L™ (Q, F,IP; R?). Then, J is 7(L>°, L')-continuous.
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A Practical Condition

Assume that j is a convex integrand and that and that J is finite
everywhere on L™ (Q, F,IP; R?). Then, J is 7(L>°, L')-continuous.

Proposition

| \

Consider a convex normal integrand j : R” x Q — R, Consider a
set U* C R™ and define the set of random variable

Us = {U eL®(Q,F,P;RY) | Ue ™ IP’—a.s.} .

Then, N
J: U — J(U) +XU€ua.s. 9

is not Mackey continuous on its domain.
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Other Conditions with Relatively Complete Recourse

Assumptions

@ This Mackey-continuity assumption forbid the use of almost
sure bounds.

@ In order to deal with almost sure bounds, we can turn towards
the work of R.T.Rockafellar and R.J-B.Wets. In a first series
of 4 papers (stochastic convex programming) they detailed
the duality on a two stage problem; which was extended to
multistage problems in 3 other papers (with a specific focus
on non-anticipativity constraints).

@ These papers require:

@ a strict feasability assumption,
e a relatively complete recourse assumption.
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Application to a Multistage Problem
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Problem Statement

E[Tz_l Le(X,,D,,W,) + K(xT)]
t=0

X.0

s.t. Xy = Xo
X, 1= ft(Xt, Dt,Wt), dynamic
D, = o(WO, . 7Wt), non-anticipativity
D, € D, P—as. bound constraint
X, € X2, P—as. bound constraint
6:(X,,D,) =B, P—as. affine constraint
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Uzawa algorithm

Data: Initial multiplier process A(9) € L, step p > 0 ;
Result: Optimal solution D and multiplier process A? ;
repeat

T-1
(D(k),X(k)> € argmin {E[Z Lt<Xt7Dt’Wt)
DX -

+ 20X, Dr)] }
}\gk—i_l) = }\Ek) + pt (91& (ng)a D(k)) - Bt) :

where (D, X) satisfies all constraint except the dualized one.
until Ve € [0, T],  6,(X{™) D)) = B, ;
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Application to a Multistage Problem
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Convergence Result

Assume that,

© the cost functions L; are Gateaux-differentiable (in (x, v)),
strongly-convex (in (x, u)) functions and continuous in w;

the constraint functions 6; : R™ 17 — R are affine;
the evolution functions f; : Rt 7a+mw _y R are affine;

(2]
o
@ the constraint sets Xtad and L{{?‘d are weak* closed, convex;
© there exist a process (X, D) satisfying all constraints;

o

there exist an optimal multiplier process in L to the almost
sure affine constraint.

Then Uzawa algorithm is well defined, and there exists a
subsequence (D(”k))keN converging in L toward the optimal
control of the multistage problem.
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Application to a Multistage Problem
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Remarks

@ If there is no bound constraint, then there exist a
L-multiplier.

o A multiplier X = {\;,..., A} is a stochastic process that
can be chosen adapted with respect to § = {Fo,...,Fr}
where F; = O’(WO, . ,Wt) .

@ However, if we want to use this algorithm as the master
programm of a decomposition algorithm (by price) we have to
solve, for a given adapted process A(K)

T-1
; (k)
IS,IQ {E[ tz—; Lt(xt’ Dt’Wt> + A 0 (X, Dt):| } ’
where (D, X) satisfies all constraint except the dualized one.
o If we approximate the multiplier process A by E[A, | Y,],
where Y, is a Markov chain, then we can solve this
minimization problem by DP (with the state (Xt7Yt)'
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Conclusion

In a nutshell

@ Uzawa algorithm is a gradient algorithm for the dual problem,
that naturally take place in Hilbert space, like L.

@ Convergence result of Uzawa algorithm require the existence
of an optimal multiplier of the dualized constraint.

e Sufficient conditions of existence of an optimal multiplier in
L2 are not adapted to almost sure constraint. L™ is better
suited to this purpose.

@ Consequently we have seen that Uzawa algorithm make sense
in L> and given a result of convergence (of a subsequence)
that require a L' multiplier...

@ and we have given conditions of existence of a L' multiplier.
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Conclusion

The next steps

@ Finally we have applied this algorithm to a multistage
problem, and given conditions of convergence.

@ However, there is two difficulties:
e solving the minimization problem for a given A(¥) is difficult;
o the space of stochastic process in which we apply the gradient
algorithm is very large.

@ Hence, we propose to search the multiplier A(¥) in a smaller
space: A, is assumed to be measurable with respect to an
information process Y,.

@ Thus this algorithm can be used as the master problem of a
(spatial) decomposition method in stochastic optimization.

@ This is the Dual Approximate Dynamique Programming
(DADP) algorithm. More ar SPO on 15th of April by
P.Carpentier.
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Conclusion

The end

Thank you for your attention !
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