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Mulstistage Stochastic Optimization: an Example

How to manage a chain of
dam producing electricity from
the turbine water to optimize
the gain?
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Couplings for Stochastic Problems

unit

time

uncertainty

min
∑
ω

∑
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∑
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πωL
i
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i
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s.t. Xi
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i
t) = 0
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Couplings for Stochastic Problems: in Time

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωL
i
t(Xi

t ,U
i
t ,Wt+1)

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,Wt+1)

Ui
t � Ft = σ

(
W1, . . . ,Wt

)
∑
i

Θi
t(Xi

t ,U
i
t) = 0

Vincent Leclère Decomposition Methods in Stochastic Optimization June 25 2014 3 / 42



Time-Consistency: from Optimization to Risk Measures
Spatial Stochastic Decomposition Method

Couplings for Stochastic Problems: in Uncertainty
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Couplings for Stochastic Problems: in Space
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Couplings for Stochastic Problems: a Complex Problem
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Decompositions for Stochastic Problems: in Time
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Dynamic Programming
Bellman (56)
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Decompositions for Stochastic Problems: in Uncertainty
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Progressive Hedging
Rockafellar - Wets (91)
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Decompositions for Stochastic Problems: in Space
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Dynamic Programming
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Thesis Outline

1 Prelimaries

2 Time-Consistency: from Optimization to Risk Measures

3 Stochastic Dual Dynamic Programming Algorithm

4 Constraint Qualification in Stochastic Optimization

5 Constraint Qualification in
(
L∞,L1

)
6 Uzawa Algorithm in L∞

7 Epiconvergence of Relaxed Stochastic Problems

8 Dual Approximate Dynamic Programming Algorithm
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A Framework for Dynamic Programming
Conditions for Time-Consistency
Examples

Classical Discrete Time Stochastic Optimization Problem

min
U

E
[ instantaneous cost︷ ︸︸ ︷
L0(X0,U0,W1) + · · · + LT−1(XT−1,UT−1,WT ) +

final cost︷ ︸︸ ︷
K (XT )

]
s.t. X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) (dynamic)

Ut � σ
(
W1, . . . ,Wt

)
(non-anticipativity)

Xt : state (r.v. with value in Xt),

Ut : control (r.v. with value in Ut),

Wt : uncertainty (r.v. with value in Wt)
 time independence assumption!

Vincent Leclère Decomposition Methods in Stochastic Optimization June 25 2014 6 / 42



Time-Consistency: from Optimization to Risk Measures
Spatial Stochastic Decomposition Method

A Framework for Dynamic Programming
Conditions for Time-Consistency
Examples

Classical Discrete Time Stochastic Optimization Problem

min
π

E
[ instantaneous cost︷ ︸︸ ︷
L0(X0,U0,W1) + · · · + LT−1(XT−1,UT−1,WT ) +

final cost︷ ︸︸ ︷
K (XT )

]
s.t. X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) (dynamic)

Ut = πt
(
Xt

)
(non-anticipativity)

Xt : state (r.v. with value in Xt),

Ut : control (r.v. with value in Ut),

Wt : uncertainty (r.v. with value in Wt)
 time independence assumption!

Vincent Leclère Decomposition Methods in Stochastic Optimization June 25 2014 6 / 42



Time-Consistency: from Optimization to Risk Measures
Spatial Stochastic Decomposition Method

A Framework for Dynamic Programming
Conditions for Time-Consistency
Examples

Risk Measure Formulation
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π

%0,T

{ instantaneous cost︷ ︸︸ ︷
L0(X0,U0,W1) , · · · , LT−1(XT−1,UT−1,WT ) ,

final cost︷ ︸︸ ︷
K (XT )

}
s.t. X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) (dynamic)

Ut = πt
(
Xt

)
(non-anticipativity)

Xt : state (r.v. with value in Xt),

Ut : control (r.v. with value in Ut),

Wt : uncertainty (r.v. with value in Wt)

 time independence assumption!

Vincent Leclère Decomposition Methods in Stochastic Optimization June 25 2014 6 / 42



Time-Consistency: from Optimization to Risk Measures
Spatial Stochastic Decomposition Method

A Framework for Dynamic Programming
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Examples

Example of Conditional Risk Measures

%0,T

{
C0, . . . ,CT

}
= E

[ T∑
t=0

Ct

]
(Classical framework)

%0,T

{
C0, . . . ,CT

}
= E

[ T∑
t=0

r tCt

]
%0,T

{
C0, . . . ,CT

}
= sup

P∈P

{
EP

[ T∑
t=0

Ct

]}

%0,T

{
C0, . . . ,CT

}
= sup

P∈P

{
EP

[ T∏
t=0

Ct

]}
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A Framework for Dynamic Programming
Conditions for Time-Consistency
Examples

Dynamic Programming: Classical Framework

The sequence of Bellman functions (Vt)t∈[[0,T ]] defined by

Vt(x) = min
π∈Π

E
[ T−1∑
τ=t

Lτ (Xτ , πτ (Xτ ),Wτ+1) + K (XT )

]
s.t. Xt = x

Xτ+1 = fτ (Xτ , πτ (Xτ ),Wτ+1)

satisfies the Bellman equation  Time Decomposition!VT (x) = K (x)

Vt(x) = min
u∈Ut

E
[
Lt(x , u,Wt+1) + Vt+1 ◦ ft(x , u,Wt+1)

]
Question: what about other risk measures?
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Uncertainty Aggregators

Global uncertainty aggregator G : L
(
W1 × ...×WT ;R

)
→ R

G
[
f
]

= E
[
f
(
W1, . . . ,WT

)]
G
[
f
]

= max
w∈W1×···×WT

f
(
w1, . . . ,wT

)
Time-step uncertainty aggregator Gt : L

(
Wt ;R

)
→ R

Gt

[
ft
]

= E
[
ft
(
Wt

)]
Gt

[
ft
]

= max
wt∈Wt

ft
(
wt

)
Composition of aggregators: Gt

[
wt 7→ Gt+1

[
f (wt ,wt+1)

]]
max

w∈W1×···×WT

f
(
w1, . . . ,wT

)
= max

w1

[
max
w2

[
· · ·max

wT

[
f
(
w1, . . . ,wT

)]]]
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Time Aggregators

Global time aggregator Φ : RT+1 → R
Φ
{
c0, . . . , cT

}
=
∑T

t=0 ct

Φ
{
c0, . . . , cT

}
=
∏T

t=0 ct

Time-step time aggregator Φt : R2 → R
Φt

{
c1, c2

}
= c1 + c2

Φt

{
c1, c2

}
= c1 × c2

Composition of aggregators Φt

{
ct ,Φt+1

{
ct+1, ct+2

}}
T∑
t=0

ct = c0 +

{
c1 +

{
· · ·+

{
cT−1 + cT

}}}
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Constructing Optimization Problems

Time - then - Uncertainty (TU)

%0,T

(
C0, · · · ,CT

)
= G

[
Φ
{

C0, · · · ,CT

}]
Uncertainty - then - Time (UT)

%0,T

(
C0, · · · ,CT

)
= Φ

{
G0

[
C0

]
, · · · ,GT

[
CT

]}
(TU) examples:

E
[∑T

t=0 Ct

]
E
[∑T

t=0 r
tCt

]
maxP∈P EP

[∑T
t=0 r

tCt

]

(UT) examples:∑T
t=0 E

[
Ct

]
∑T

t=0 r
tE
[
Ct

]
∑T

t=0 r
t maxPt∈Pt EPt

[
Ct

]
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Constructing Optimization Problems

Nested - Time - then - Uncertainty (NTU)

%T ,T

(
CT

)
=G0

[
Φ0

{
C0,G1

[
Φ1

{
· · ·

GT−1

[
ΦT−1

{
CT−1,GT

[
CT

]}]
· · ·
}]}]

Nested - Uncertainty - then - Time (NUT)

%0,T

(
C0, . . . ,CT

)
=Φ0

{
G0

[
C0

]
,Φ1

{
G1

[
C1

]
,G1

[
· · ·

ΦT−1

{
GT−1

[
CT−1

]
,GT−1

[
GT

[
CT

]]}
· · ·
]}}
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Conditions for a Dynamic Programming Principle (NTU)

De Lara - L.

Assume that the time-step aggregators Gt and Φt are
monotonous. Define the value functions

VNTU
T (x) = K (x)

VNTU
t (x) = inf

u∈Ut

Gt

[
Φt

{
Lt(x , u, ·),VNTU

t+1 ◦ ft(x , u, ·)
}]

Assume that there exists an admissible strategy π] such that

π]t(x) ∈ arg min
u∈Ut

Gt

[
Φt

{
Lt(x , u, ·),VNTU

t+1 ◦ ft(x , u, ·)
}]

Then, π] is an optimal policy.
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Gt

[
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,Gt

[
VNUT
t+1 ◦ ft(x , u, ·)

]}

Assume that there exists an admissible strategy π] such that

π]t(x) ∈ arg min
u∈Ut

Φt

{
Gt

[
Lt(x , u, ·)

]
,Gt

[
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Commutation

Commutation

Uncertainty aggregator Gt+1 and time-aggregator Φt are said to
be commuting when, for all functions f and g

Gt+1

[
Φt

{
f (Wt), g(Wt+1)

}]
= Φt

{
f (Wt),Gt+1

[
g(Wt+1)

]}

Examples:

EPt+1

[
f (Wt) + g(Wt+1)

]
= f (Wt) + EPt+1

[
g(Wt+1)

]
commutation with sum ⇐⇒ translation equivariance property

EPt+1

[
f (Wt)× g(Wt+1)

]
= f (Wt)× EPt+1

[
g(Wt+1)

]
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Conditions for a Dynamic Programming Principle (TU)

De Lara - L.

Assume that

the global aggregators are a composition of time-step
aggregators,

the time-step aggregators Gt and Φt are monotonous,

the time-step aggregators Gt and Φs (s < t) commute.

Then, the nested and not nested formulations are equivalent, and
we have a DP equation.
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Time-Consistency of a Sequence of Optimization Problems

(Pt) min
π

%t,T

(
Lt(Xt ,Ut ,Wt+1), · · · ,

LT−1(XT−1,UT−1,WT ),K (XT )

)
s.t. Xt = x

Xτ+1 = fτ (Xτ ,Uτ ,Wτ )

Uτ = πτ
(
Xτ

)
The sequence of problems (Pt)t∈[[0,T−1]] is said to be time
consistent if there exists an optimal strategy of Problem (Pt0) such
that its restriction is optimal for (Pt1), (t1 > t0).
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Time-Consistency of a Dynamic Risk Measure

A sequence of conditional risk measures
(
ρ0,T , ρ1,T , . . . , ρT

)
is

time-consistent if for any two sequences of costs
(
C0, . . . ,CT

)(
C′0, . . . ,C

′
T

)
we have(

Ct1
, · · · ,Ct2−1

)
=

(
C′t1

, · · · ,C′t2−1

)
ρt2,T

(
Ct2

, · · · ,CT

)
≤ ρt2,T

(
C′t2

, · · · ,C′T
) }

=⇒ ρt1,T

(
Ct1

, · · · ,Ct2
, · · ·CT

)
≤ ρt1,T

(
C′t1

, · · · ,C′t2
, · · ·C′T

)
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Time-Consistency Result

Nested formulation - De Lara, L.

If the time-step aggregators are monotonous, the induced:

sequence of optimization problems

sequence of conditional risk measures

are time consistent.

Non-Nested Formulation - De Lara, L.

If the global aggregators are composition of monotonous and
commuting time-step aggregators, the induced

sequence of optimization problems

sequence of conditional risk measures

are time consistent.
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Markovian Case

We have extended the framework to allow for Markovian
aggregators:

Gt  Gx
t Φt  Φx

t

Examples:

Conditional expectation: Gx
t = E

[
·
∣∣ Xt = x

]
,

Markov risk measure (Ruszczynski 2010).
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Classical Extension: Multiplicative Case

A stochastic viability problem can be written

max
π∈Π

P
({

Xt ∈ Xt , ∀t ∈ [[0,T ]]
})

s.t Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
Ut = πt(Xt)

With the following DP equation

VT (x) = E
[
1{x∈XT }

]
Vt(x) = max

u∈Ut

E
[
1{x∈Xt} · Vt+1 ◦ ft(x , u,Wt+1)

]
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Coherent Risk Measure

Consider the following sequence of conditional risk measures.

%t,T (C) = sup
Pt∈Pt

EPt

[
· · · sup

PT∈PT

EPT

[ T∑
s=t

(
αs

(
Cs

) s−1∏
r=t

βr
(
Cr

))]
· · ·
]

The associated optimization problem is solved by the following DP
equation (if βt ≥ 0)VT (x) = K (x)

Vt(x) = inf
u

sup
Pt∈Pt

{
EPt

[
αt

(
Lt(x , u, ·)

)
+ βt

(
Lt(x , u, ·)

)
Vt+1 ◦ ft(x , u, ·)

]}
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Elements of proof

The problem is of (TU) form where the global aggregators are
composition of the following time-step aggregators:Gt

[
·
]

= sup
Pt∈Pt

EPt

[
·
]

Φt

{
c , c ′

}
= αt(c) + βt(c)c ′

The time-step aggregators are monotonous.
The time-step aggregators commute:

Gt

[
Φs

{
Cs ,Ct

}]
= sup

Pt∈Pt

(
EPt

[
αs

(
Cs

)
+ βs

(
Cs

)
Ct

])
= sup

Pt∈Pt

(
αs

(
Cs

)
+ βs(Cs)EPt

[
Ct

])
Translation-equiv.

= αs

(
Cs

)
+ βs(Cs) sup

Pt∈Pt

(
EPt

[
Ct

])
Pos. Homogeneity

= Φs

{
Cs ,Gt

[
Ct

]}
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Conclusion of Part I

We have presented a generic framework for stochastic
optimization problem and conditions to write a chained time
decomposition through a DP equation. We extended it to a
Markovian framework.

We show that our conditions lead to time-consistency of

the sequence of induced optimization problems,
and the induced dynamic risk measure.

This part was concerned with formulation of problem in a
time-consistent way, and time decomposition. However, it is
still affected by the so-called “curse of dimensionality”.
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Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning

U
(i)
t ,

the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator
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Primal Problem

min
X,U

N∑
i=1

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+ K i

(
Xi

T

)]
∀ i , Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

∀ i , Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

Solvable by DP with state (X1, . . . ,XN) (under noise
independence assumption)
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Xi

t ,U
i
t ,Wt+1

)
+ K i

(
Xi

T

)]
∀ i , Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

∀ i , Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0  λt multiplier

Solvable by DP with state (X1, . . . ,XN) (under noise
independence assumption)
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Primal Problem with Dualized Constraint

min
X,U

max
λ

N∑
i=1

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+
〈
λt , θ

i
t(Ui

t)
〉

+ K i (Xi
T )

]
∀ i , Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

∀ i , Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

Coupling constraint dualized =⇒ remaining constraints are i by i
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Dual Problem

max
λ

min
X,U

N∑
i=1

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+
〈
λt , θ

i
t(Ui

t)
〉

+ K i (Xi
T )

]
∀ i , Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

∀ i , Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

Exchange operator min and max to obtain a new problem
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Decomposed Dual Problem

max
λ

N∑
i=1

min
Xi ,Ui

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+
〈
λt , θ

i
t(Ui

t)
〉

+ K i (Xi
T )

]
Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

For a given λ, minimum of sum is sum of minima
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Inner Minimization Problem

min
Xi ,Ui

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+
〈
λt , θ

i
t(Ui

t)
〉

+ K i (Xi
T )

]
Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

We have N smaller subproblems. Can they be solved by DP?
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Inner Minimization Problem

min
Xi ,Ui

E
[ T∑

t=0

Lit
(
Xi

t ,U
i
t ,Wt+1

)
+
〈
λt , θ

i
t(Ui

t)
〉

+ K i (Xi
T )

]
Xi

t+1 = f it (Xi
t ,U

i
t ,Wt+1), Xi

0 = x i0,

Ui
t ∈ U

ad
t,i , Ui

t � Ft ,

N∑
i=1

θit(Ui
t) = 0

No: λ is a time-dependent noise  Xi
t is not a proper state, but

rather
(
W1, . . . ,Wt

)
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A Few Questions

What is the duality scheme ? In which space lives the
multiplier process λ?

L2

L1(
L∞
)?

What are the relations between the primal and dual problem?

Can we solve the subproblems by Dynamic Programming?
 No! (with small enough state)

How to update the multiplier process?
 “gradient step”:

λ
(k+1)
t = λ

(k)
t + ρ

N∑
i=1

θit
(
Ui ,k

t

)
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Multiplier

Process λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θit
(
Ui

t

)
︸ ︷︷ ︸

∆
(k)
t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆

(k)
t

θit
(
U

i ,(k)
t

)

Information Process
Yt+1 = f̃ (Yt ,Wt+1)

Stochastic spatial
decomposition scheme
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Multiplier

Process λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θit
(
Ui

t

)
︸ ︷︷ ︸

∆
(k)
t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆

(k)
t

θit
(
U

i ,(k)
t

)

Information Process
Yt+1 = f̃ (Yt ,Wt+1)

Main idea of DADP:
λt  µt := E

(
λt

∣∣Yt

)
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Main idea of DADP: λt  µt := E
(
λt

∣∣Yt

)
Multiplier

Process λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N
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θit
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∆
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Main problems:

Subproblems not easily
solvable by DP

λ(k) live in a huge space
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· · ·Solving
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Solving
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∆
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)

Advantages:

Subproblems solvable by DP
with state

(
Xi

t ,Yt

)
µ(k) live in a smaller space
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Three Interpretations of DADP

DADP as an approximation of the optimal multiplier

λt  E
(
λt

∣∣Yt

)
.

DADP as a decision-rule approach in the dual

max
λ

min
U

L
(
λ,U

)
 max

λt�Yt

min
U

L
(
λ,U

)
.

DADP as a constraint relaxation in the primal

n∑
i=1

θit
(
Ui

t

)
= 0  E

( n∑
i=1

θit
(
Ui

t

)∣∣∣∣Yt

)
= 0 .
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Consistence of the Approximation Scheme

The DADP algorithm solves a relaxation
(
PY

)
of the original

problem
(
P
)

where

n∑
i=1

θit
(
Ui

t

)
= 0  E

( n∑
i=1

θit
(
Ui

t

)∣∣∣∣Yt

)
= 0

Question: if we consider a sequence of information processes{
Y(n)

}
n∈N, such that the information converges

σ
(
Y

(n)
t

)
→ σ

(
W0, · · · ,Wt

)
does the associated sequence

(
UY(n))

of optimal control
converges toward an optimal control of

(
P
)
?
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Epiconvergence of Approximation

Epiconvergence result -L.

Assume that

the cost functions Lit , dynamic functions f it and constraint
functions θit are continuous;

the noise variables Wt are essentially bounded;

the constraint sets Uad
i ,t are bounded.

Consider a sequence of information process
{

Y(n)
}
n∈N such that

σ
(
Y(n)

)
→ F∞. Let U(n) be an εn-optimal solution to the relaxed

problem
(
PY(n)

)
.

Then, every cluster pointa of
{

U(n)
}
n∈N is an optimal solution of

the relaxation corresponding to F∞.

afor the topology of the convergence in probability
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Convergence of Coordination Method

We consider a given information process Y.

Question: does the algorithm
1 solve the N subproblems
2 update the multiplier by a gradient-step

yield a converging sequence of controls U(k) ?

It is an application of the so-called Uzawa algorithm. This
algorithm take naturally place in an Hilbert space, here L2 is
the natural choice. However, existence of saddle-point in L2 is
difficult to prove. Hence we adapt the algorithm to a
non-reflexive Banach space: L∞.
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Coordination-Convergence Result

Convergence result - Carpentier,L.

Assume that,

the set of uncertainties is finite;

the local cost Lit are Gâteaux-differentiable functions, strongly
convex (in (x , u)) and continuous (in w);

the evolution functions ft are affine (in (x , u,w));

the coupling functions θit are affine;

the admissible set Uad
i ,t 6= ∅ is a weak? closed, convex set;

there exists an admissible control;

the coupling constraint admits an optimal multiplier in L2 .

For a step ρ > 0 small enough, the sequence of control generated
by DADP converges in L∞ toward the optimal control of the
relaxed problem.
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Convergence result - Carpentier,L.

Assume that,

the set of uncertainties is finite;

the local cost Lit are Gâteaux-differentiable functions, strongly
convex (in (x , u)) and continuous (in w);

the evolution functions ft are affine (in (x , u,w));

the coupling functions θit are affine;

the admissible set Uad
i ,t 6= ∅ is a weak? closed, convex set;

there exists an admissible control;

the coupling constraint admits an optimal multiplier in L1 .

For a step ρ > 0 small enough, there exists a subsequence of the
sequence of control generated by DADP converging in L∞ toward
the optimal control of the relaxed problem.
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Existence of Multiplier

Existence of multiplier -L.

Assume that

the random noises Wt are essentially bounded;

the local cost functions Lit are finite and convex in (xi , ui ),
continuous in w ;

the dynamic functions f it are affine in (xi , ui ), continuous in w ;

the constraint functions θit are affine;

there is no bound constraints on Ui
t and Xi

t .

Then, the coupling constraint admits a multiplier in L1, hence the
relaxed coupling constraint admits a multiplier in L1.
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Bounds over the Original Problem

Upper and lower bounds

Lower Bound : For a given µ(k) we have a lower bound of the dual
of the relaxed problem

(
PY
)
, hence a lower bound of

the original problem
(
P
)
.

Upper bound : Through an heuristic (using the DP equation) we
can construct an admissible (for the original problem(
P
)
) solution and hence obtain an upper bound (by

Monte Carlo).

In practice, on a simple problem:

around 3% gap with minimal information (Yt ≡ 0),

around 2% gap with dynamic information.
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Validity a posteriori

Validity

If we obtain a multiplier µ] leading to a solution U
(
µ]
)

satisfying
the (relaxed) constraint:

E
[ N∑

i=1

θt
(
Ui

t

(
µ]
)) ∣∣∣ Yt

]
= 0

then the solution U
(
µ]
)

is optimal (for the relaxed problem(
PY

)
).

Consequences:

A Posteriori conclusion even if abstract conditions not verified,

use of improved multiplier update step.
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Conclusion of Part II

Summing up DADP:

Choose an information process Y following

Yt+1 = f̃t
(
Yt ,Wt+1

)
.

We relax the almost sure coupling constraint into a conditional
expectation one and apply a price decomposition scheme to
the relaxed problem.
The subproblems can be solved by dynamic programming with
the state

(
Xi

t ,Yt

)
.

We give:

a consistency result (family of information process),
a convergence result (fixed information process),
an existence of multiplier condition.
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Conclusion: the next steps

2 Dynamic Programming

extension of state
more generic links

3 SDDP

noise with compact support
convergence estimation

4 L1 multiplier

bounds on control via
Relatively Complete Recourse
conditions for L2 multiplier

6 Uzawa in L∞

reflexions around the
strong-convexity
use ε-convergence theory

7 Epiconvergence

obtain a non-asymptotical
bound

8 DADP

Numerical test on big scale
Method to construct Y
Interactions with SDDP
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The end

Thank you for your attention!
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