Trajectory Following Dynamic Programming algorithms

(a.k.a SDDP \& friends)

Vincent Leclère
CERMICS
École des Ponts

July 22nd, 2023
École des Ponts
ParisTech

Motivations

- An hydroelectric stock

$$
\boldsymbol{s}_{t}=\boldsymbol{s}_{t-1}-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}
$$

where, at time t :

- \boldsymbol{s}_{t} is the amount of water
- \boldsymbol{u}_{t} is the water turbined
- ξ_{t} is the inflow

- \boldsymbol{p}_{t} is the price
$\operatorname{Min}_{\left(\boldsymbol{u}_{t}\right)_{t=1: T}} \mathbb{E}\left[\sum_{t=1}^{T}-\boldsymbol{p}_{t} \boldsymbol{u}_{t}+K\left(\boldsymbol{s}_{T}\right)\right]$
s.t.

$$
\begin{aligned}
& \boldsymbol{s}_{0}=\boldsymbol{s}_{\text {init }} \\
& \boldsymbol{s}_{t}=\boldsymbol{s}_{t-1}-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t} \\
& 0 \leq \boldsymbol{s}_{t} \leq \bar{s}_{t} \\
& \sigma\left(\boldsymbol{u}_{t}\right) \subset \sigma\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{t}\right)
\end{aligned}
$$

(initial stock)
(dynamic)
(state constraints)
(information constraints)

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\xi_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
for $s \in S$ do
$\|$for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
$\mathbf{5}^{\mathbf{3}} \|$for $s \in S$ do for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
$\mathbf{5}^{\mathbf{3}}\left[\begin{array}{l}\text { for } s \in S \text { do } \\ \mid \text { for } \xi \in \equiv \text { do } \\ \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi) \\ V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}\end{array}\right.$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
for $s \in S$ do
$\|$for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
$\mathbf{5}^{\mathbf{3}}\left[\begin{array}{l}\text { for } s \in S \text { do } \\ \mid \text { for } \xi \in \equiv \text { do } \\ \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi) \\ V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}\end{array}\right.$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
for $s \in S$ do
$\|$for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
$\mathbf{5}^{\mathbf{3}}\left[\begin{array}{l}\text { for } s \in S \text { do } \\ \mid \text { for } \xi \in \equiv \text { do } \\ \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi) \\ V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}\end{array}\right.$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1: Discretized Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
$\mathbf{5}^{\mathbf{3}}\left[\begin{array}{l}\text { for } s \in S \text { do } \\ \mid \text { for } \xi \in \equiv \text { do } \\ \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi) \\ V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}\end{array}\right.$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1: Discretized Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
2 for $t: T-1 \rightarrow 0$ do
${ }_{3}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1: Discretized Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
\|for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}$
${ }^{3}$
:---
for $\xi \in \equiv$ do
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$
$V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
\|for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
\|for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
\|for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)+$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}$
${ }^{3}$
:---
for $\xi \in \equiv$ do
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$
$V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}\left\|\begin{array}{l}\text { for } s \in S \text { do } \\ { }^{5}\end{array}\right\|$for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm		Discretized
Stochastic Dynamic Programming		
$\begin{aligned} & \hline V_{T} \equiv K ; V_{t} \equiv 0 \\ & \text { for } t: T-1 \rightarrow 0 \text { do } \end{aligned}$		
for $s \in S$ do		
for $\xi \in$ 三 do		
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$		
$V_{t}(s)$		

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}$for $s \in S$ do ${ }^{5}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
2 for $t: T-1 \rightarrow 0$ do
${ }^{4}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
2 for $t: T-1 \rightarrow 0$ do
${ }_{3}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
2 for $t: T-1 \rightarrow 0$ do
${ }_{3}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
2 for $t: T-1 \rightarrow 0$ do
${ }_{3}$for $s \in S$ do ${ }_{5}$ ${ }_{6}$$\|$for $\xi \in \equiv$ do $\mid \hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
${ }^{3}$for $s \in S$ do ${ }^{5}$$\|$for $\xi \in \equiv$ do $\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$ $V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

Dynamic Programming

Under a crucial stagewise independence assumption (i.e. $\left(\xi_{t}\right)_{t \in[T]}$ is a sequence of independent random variables), we have the Bellman equation

$$
V_{t}(s)=\mathbb{E}_{\xi_{t}}[\min _{\boldsymbol{u}_{t}}\{\underbrace{-\boldsymbol{p}_{t} \boldsymbol{u}_{t}}_{\text {current cost }}+\underbrace{V_{t+1}\left(s-\boldsymbol{u}_{t}+\boldsymbol{\xi}_{t}\right)}_{\text {cost-to-go }}\}]
$$

Algorithm 1:Discretized Stochastic Dynamic Programming
$V_{T} \equiv K ; V_{t} \equiv 0$
for $t: T-1 \rightarrow 0$ do
for $s \in S$ do
for $\xi \in \equiv$ do
$\hat{v}=\min _{u \in \mathcal{U}}-p_{t} u+V_{t+1}(s-u+\xi)$
$V_{t}(s)+=\mathbb{P}\left(\xi_{t}=\xi\right) \hat{v}$

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
- $T=52$ weeks
- $|S|=100^{7}$ possible states
- $|U|=10^{7}$ possible controls
- $\left|\xi_{t}\right|=10$ (10^{52} scenarios)
$\Rightarrow \approx 2$ days on today's fastest
super-computer
(3.10 ${ }^{6}$ years for 10 dams)

\Rightarrow Can be solved ${ }^{1}$ in ≈ 10 minutes

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
- $T=52$ weeks
- $|S|=100^{7}$ possible states
- $|U|=10^{7}$ possible controls
- $\left|\xi_{t}\right|=10$ (10^{52} scenarios)
$\Leftrightarrow \approx 2$ days on today's fastest super-computer
(3.10^{6} years for 10 dams)

\Leftrightarrow Can be solved ${ }^{1}$ in ≈ 10 minutes

From Dynamic Programming to SDDP

- DP is a flexible tool, hampered by the curses of dimensionality
- Numerical illustration (7 dams):
- $T=52$ weeks
- $|S|=100^{7}$ possible states
- $|U|=10^{7}$ possible controls
- $\left|\xi_{t}\right|=10$ (10^{52} scenarios)
$\Leftrightarrow \approx 2$ days on today's fastest super-computer
(3.10 ${ }^{6}$ years for 10 dams)
\Rightarrow Can be solved ${ }^{1}$ in ≈ 10 minutes

${ }^{1}$ Approximately, depending on the problem and precision required...

How can we be so much faster ?

- Structural assumptions:
- convexity
- continuous state
\Rightarrow duality tools
- Sampling instead of exhaustive computation
- Iteratively refining value function estimation at "the right places" only
- LP solvers
\Rightarrow Stochastic Dual Dynamic Programming (SDDP) which
- has been around for 30 years
- is widely used in the energy community
- has lots of extensions and variants
- some convergence results, mainly asymptotic

Some TFDP algorithms

Algorithm's name	Node selection: Choice $\boldsymbol{\xi}_{t}^{k}$	\mathcal{F}_{t}	\underline{V}_{t}^{k}	\bar{V}_{t}^{k}	Hypothesis	Complexity known
SDDP	Random sampling	Exact	Benders cuts	V_{t}	Convex	\checkmark
EDDP	Explorative	Exact	Benders cuts	V_{t}	Convex	\checkmark
APSDDP	Random sampling	Exact	Adaptive partition	V_{t}	Linear	*
SDDiP	Random sampling	Exact	Lagrangian or integer cuts	V_{t}	Mixed Integer Linear	*
MIDAS	Random sampling	Exact	Step cuts	V_{t}	Monotonic Mixed Integer	*
SLDP	Random sampling	Exact	Reverse norm cuts	V_{t}	Non-Convex	*
BDZ17	Problem child	Exact	Benders cuts	Epigraph as convex hull	Convex	*
BDZ18	Problem child	Exact	Benders \times Epigraph	Hypograph \times Benders	Convex-Concave	*
RDDP	Deterministic	Exact	Benders cuts	Epigraph as convex hull	Robust	*
ISDDP	Random sampling	Inexact	Inexact Lagrangian cuts	V_{t}	Convex	*
TDP	Problem child	Exact	Benders cuts	Min of quadratic	Convex	*
ZS19	Random or Problem	Regularized	Generalized conjugacy cuts	Norm cuts	Mixed Integer Convex	\checkmark
NDDP	Random or Problem	Regularized	Benders cuts	Norm cuts	Distributionally Robust	\checkmark
DSDDP	Random sampling	Exact	Benders cuts	Fenchel transform	Linear	*

Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
(4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Problem setting

- The risk-neutral Multistage Stochastic Program considered reads

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{x}_{t}, \boldsymbol{u}_{t} \preceq \sigma\left(\left\{\boldsymbol{\xi}_{\tau}\right\}_{\tau \in[t]}\right)
\end{array}
$$

- where:
- \boldsymbol{x}_{t} is the state, that convey information from the past,
- \boldsymbol{u}_{t} the control, which only impact stage t,
- ξ_{t} the (exogeneous) noise.
- Note that:
- finite, discrete time
- contraints are stagewise independent
$\Rightarrow x_{t} \preceq \sigma\left(\left\{\xi_{\tau}\right\}_{\tau \in[t]}\right)$ means that x_{t} is measurable w.r.t. $\sigma\left(\left\{\xi_{\tau}\right\}_{\tau \in[t]}\right)$

Problem setting

- The risk-neutral Multistage Stochastic Program considered reads

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{x}_{t}, \boldsymbol{u}_{t} \preceq \sigma\left(\left\{\boldsymbol{\xi}_{\tau}\right\}_{\tau \in[t]}\right)
\end{array}
$$

- where:
- \boldsymbol{x}_{t} is the state, that convey information from the past,
- \boldsymbol{u}_{t} the control, which only impact stage t,
- ξ_{t} the (exogeneous) noise.
- Note that:
- finite, discrete time
- contraints are stagewise independent
- $\boldsymbol{x}_{t} \preceq \sigma\left(\left\{\boldsymbol{\xi}_{\tau}\right\}_{\tau \in[t]}\right)$ means that \boldsymbol{x}_{t} is measurable w.r.t. $\sigma\left(\left\{\xi_{\tau}\right\}_{\tau \in[t]}\right)$

Problem setting

We often encouter MSPs with more compact formulation than:

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{x}_{t}, \boldsymbol{u}_{t} \preceq \sigma\left(\left\{\boldsymbol{\xi}_{\tau}\right\}_{\tau \in[t]}\right)
\end{array}
$$

Here are some examples:

- without u_{t} : use the cheapest control getting you from x_{t-1} to x_{t};
- with explicit dynamic: $x_{t+1}=\operatorname{dyn}_{t}\left(x_{t}, u_{t}, \xi_{t}\right)$;
- with cost depending only on the control u_{t} or the out-state x_{t};
- a linear setting I favor:
- $\ell_{t}\left(\boldsymbol{x}_{t-1} \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right):=\boldsymbol{c}_{t}^{\top} \boldsymbol{u}_{t}$,
- $\mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right):=\left\{\boldsymbol{x}_{t} \in \mathbb{R}_{+}^{n_{t}} \mid \quad \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{T}_{t} \boldsymbol{u}_{t}\right\}=\boldsymbol{d}_{t}$.

Problem setting

We often encouter MSPs with more compact formulation than:

$$
\begin{array}{ll}
\min & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{x}_{t}, \boldsymbol{u}_{t} \preceq \sigma\left(\left\{\xi_{\tau}\right\}_{\tau \in[t]}\right)
\end{array}
$$

Here are some examples:

- without u_{t} : use the cheapest control getting you from x_{t-1} to x_{t};
- with explicit dynamic: $x_{t+1}=\operatorname{dyn}_{t}\left(x_{t}, u_{t}, \xi_{t}\right)$;
- with cost depending only on the control u_{t} or the out-state x_{t};
- a linear setting I favor:
- $\ell_{t}\left(\boldsymbol{x}_{t-1} \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \xi_{t}\right):=\boldsymbol{c}_{t}^{\top} \boldsymbol{u}_{t}$,
- $\mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \xi_{t}\right):=\left\{\boldsymbol{x}_{t} \in \mathbb{R}_{+}^{n_{t}} \mid \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{T}_{t} \boldsymbol{u}_{t}\right\}=\boldsymbol{d}_{t}$.
\Leftrightarrow For DP approaches, it is worth it to keep in mind the difference between state and control variables.

Dynamic Programming principle

The main idea of Dynamic Programming is that, under stagewise independence, we can look for an optimal solution as a function of the state instead of the past noises.

$$
\begin{equation*}
\min _{x_{1: T}, \boldsymbol{u}_{1: T}} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \tag{MSP}
\end{equation*}
$$

s.t. $\quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \xi_{t}\right)$

$$
\boldsymbol{x}_{t}, \boldsymbol{u}_{t} \preceq \sigma\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{t}\right)
$$

$$
\begin{gathered}
\forall t \in[T] \\
\forall t \in[T] .
\end{gathered}
$$

Dynamic Programming principle

The main idea of Dynamic Programming is that, under stagewise independence, we can look for an optimal solution as a function of the state instead of the past noises.

$$
\begin{array}{lll}
\min _{\Phi_{1: T}} & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] & \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Phi_{t}\left(\xi_{1}, \ldots, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] .
\end{array}
$$

Dynamic Programming principle

The main idea of Dynamic Programming is that, under stagewise independence, we can look for an optimal solution as a function of the state instead of the past noises.

$$
\begin{array}{lll}
\min _{\Psi_{1: T}} & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] & \tag{MSP}\\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] .
\end{array}
$$

Dynamic Programming equation

$$
\begin{array}{lll}
\min _{\Psi_{1: T}} & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) & \forall t \in[T]
\end{array}
$$

Dynamic Programming equation

$$
\begin{array}{rll}
\min _{\psi_{1: T}} & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \xi_{t}\right)\right] \\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) & \forall t \in[T] \\
=\min _{\Psi_{1: T}} & \mathbb{E}\left[\ell_{1}\left(x_{0}, \boldsymbol{x}_{1}, \boldsymbol{u}_{1}, \xi_{1}\right)+\mathbb{E}\left[\sum_{t=2}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \xi_{1}\right]\right] \\
\text { s.t. } & \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) & \forall t \in[T]
\end{array}
$$

Dynamic Programming equation

$$
\begin{aligned}
& \min _{\Psi_{1: T}} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \\
& \text { s.t. } \\
& \begin{array}{ll}
\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \in[T] \\
\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) & \forall t \in[T]
\end{array} \\
& =\min _{\Psi_{1: T}} \mathbb{E}\left[\ell_{1}\left(x_{0}, \boldsymbol{x}_{1}, \boldsymbol{u}_{1}, \boldsymbol{\xi}_{1}\right)+\mathbb{E}\left[\sum_{t=2}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \xi_{1}\right]\right] \\
& \text { s.t. } \quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \quad \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) \quad \forall t \in[T] \\
& =\mathbb{E}\left[\min _{\boldsymbol{x}_{1}, \boldsymbol{u}_{1} \in \mathcal{X}_{1}\left(x_{0}, \xi_{1}\right)} \ell_{1}\left(x_{0}, \boldsymbol{x}_{1}, \boldsymbol{u}_{1}, \boldsymbol{\xi}_{1}\right)+\min _{\psi_{2: T}} \mathbb{E}\left[\sum_{t=2}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \xi_{1}\right]\right] \\
& \underbrace{\text { s.t. } \quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(\boldsymbol{x}_{t-1}, \xi_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}\right)}_{:=V_{2}\left(\boldsymbol{x}_{1} ; \xi_{1}\right)}
\end{aligned}
$$

Dynamic Programming equation

$$
\begin{aligned}
& \min _{\Psi_{1: T}} \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right)\right] \\
& \text { s.t. } \quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \quad \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) \quad \forall t \in[T] \\
& =\min _{\psi_{1: T}} \mathbb{E}\left[\ell_{1}\left(x_{0}, \boldsymbol{x}_{1}, \boldsymbol{u}_{1}, \boldsymbol{\xi}_{1}\right)+\mathbb{E}\left[\sum_{t=2}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \xi_{1}\right]\right] \\
& \text { s.t. } \quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \quad \forall t \in[T] \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(x_{t-1}\right) \quad \forall t \in[T] \\
& =\mathbb{E}\left[\min _{\boldsymbol{x}_{1}, \boldsymbol{u}_{1} \in \mathcal{X}_{1}\left(x_{0}, \xi_{1}\right)} \ell_{1}\left(x_{0}, \boldsymbol{x}_{1}, \boldsymbol{u}_{1}, \boldsymbol{\xi}_{1}\right)+\min _{\psi_{2: T}} \mathbb{E}\left[\sum_{t=2}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \xi_{t}\right) \mid \xi_{1}\right]\right] \\
& \underbrace{\text { s.t. } \quad\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right)=\Psi_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}\right)}_{:=V_{2}\left(\boldsymbol{x}_{1} ; \xi_{1}\right)}
\end{aligned}
$$

Backward Bellman operators and Dynamic Programming

Define the cost-to-go, or value function

$$
\begin{array}{rlr}
\dot{V}_{t_{0}}(x, \xi)=\min & \mathbb{E}\left[\sum_{t=t_{0}}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \boldsymbol{\xi}_{t_{0}}=\xi\right] \\
& \boldsymbol{x}_{t_{0}-1}=x & \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) & \forall t \geq t_{0} \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \preceq \sigma\left(\xi_{[t]}\right) & \forall t \geq t_{0}
\end{array}
$$

Backward Bellman operators and Dynamic Programming

Define the cost-to-go, or value function

$$
\begin{aligned}
V_{t_{0}}(x)=\mathbb{E}_{\xi_{t_{0}}}\left[\dot{V}_{t_{0}}\left(x, \boldsymbol{\xi}_{t_{0}}\right)=\min \right. & \left.\mathbb{E}\left[\sum_{t=t_{0}}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \boldsymbol{\xi}_{t_{0}}=\boldsymbol{\xi}_{t_{0}}\right]\right] \\
& \text { s.t. } \\
& \boldsymbol{x}_{t_{0}-1}=x \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \preceq \sigma\left(\boldsymbol{\xi}_{[t]}\right)
\end{aligned} \forall t \geq t_{0} \quad \forall t \geq t_{0}
$$

Backward Bellman operators and Dynamic Programming

Define the cost-to-go, or value function

$$
V_{t_{0}}(x)=\mathbb{E}_{\boldsymbol{\xi}_{t_{0}}}\left[\dot{V}_{t_{0}}\left(x, \boldsymbol{\xi}_{t_{0}}\right)=\min \quad \mathbb{E}\left[\sum_{t=t_{0}}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \boldsymbol{\xi}_{t_{0}}=\boldsymbol{\xi}_{t_{0}}\right]\right]
$$

$$
\text { s.t. } \quad \boldsymbol{x}_{t_{0}-1}=x
$$

$$
\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \quad \forall t \geq t_{0}
$$

$$
\left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \preceq \sigma\left(\xi_{[t]}\right) \quad \forall t \geq t_{0}
$$

Assuming that $\left(\xi_{\tau}\right)_{\tau \in[T]}$ is stagewise independent, we have

$$
\begin{aligned}
\dot{V}_{t} & =\dot{\mathcal{B}}_{t}\left(V_{t+1}\right) \\
V_{t} & =\mathcal{B}_{t}\left(V_{t+1}\right):=\mathbb{E}\left[\dot{V}_{t+1}\left(\cdot, \cdot \xi_{t}\right)\right]
\end{aligned}
$$

Backward Bellman operators and Dynamic Programming

 Define the cost-to-go, or value function$$
\left.\begin{array}{rl}
V_{t_{0}}(x)=\mathbb{E}_{\boldsymbol{\xi}_{t_{0}}}\left[\dot{V}_{t_{0}}\left(x, \boldsymbol{\xi}_{t_{0}}\right)=\min \right. & \left.\mathbb{E}\left[\sum_{t=t_{0}}^{T} \ell_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{u}_{t}, \boldsymbol{\xi}_{t}\right) \mid \boldsymbol{\xi}_{t_{0}}=\boldsymbol{\xi}_{t_{0}}\right]\right] \\
& \text { s.t. } \\
& \boldsymbol{x}_{t_{0}-1}=x \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \in \mathcal{X}_{t}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\xi}_{t}\right) \\
& \left(\boldsymbol{x}_{t}, \boldsymbol{u}_{t}\right) \preceq \sigma\left(\boldsymbol{\xi}_{[t]}\right)
\end{array} \forall t \geq t_{0}\right) \quad \forall t \geq t_{0}
$$

Assuming that $\left(\xi_{\tau}\right)_{\tau \in[T]}$ is stagewise independent, we have

$$
\begin{aligned}
\dot{V}_{t} & =\dot{\mathcal{B}}_{t}\left(V_{t+1}\right) \\
V_{t} & =\mathcal{B}_{t}\left(V_{t+1}\right):=\mathbb{E}\left[\dot{V}_{t+1}\left(\cdot, \xi_{t}\right)\right]
\end{aligned}
$$

where the pointwise Backward Bellman operator $\dot{\mathcal{B}}_{t}$ is defined

$$
\dot{\mathcal{B}}_{t}(\tilde{V}):= \begin{cases}\mathbb{R}^{n_{t}} \times \bar{\Xi}_{t} & \rightarrow \mathbb{R} \cup\{+\infty\} \\ \left(x_{t-1}, \xi_{t}\right) & \mapsto \min _{x_{t}, u_{t} \in \mathcal{X}_{t}\left(x_{t-1}, \xi_{t}\right)}^{\ell_{t+1}\left(x_{t-1}, x_{t}, u_{t}, \xi_{t}\right)}+\underbrace{\tilde{v}\left(x_{t}\right)}_{\text {transition costs }}\end{cases}
$$

Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
(4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{\text {in }}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{x_{i n}}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do
for $\xi \in \bar{\Xi}_{t}$ do

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{\text {in }}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{\text {in }}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$

2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \bar{\Xi}_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

$\tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \Xi_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{v}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Discretized Stochastic Dynamic Programming

The simplest DP algorithm is obtained by discretizing the state set, and then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
$1 \quad \tilde{V}_{t} \equiv 0$
2 for $t: T-1 \rightarrow 1$ do
$3 \quad$ for $x_{i n} \in X_{t-1}^{D}$ do

$$
\text { for } \xi \in \bar{\Xi}_{t} \text { do }
$$

$$
\dot{v}_{\xi}=\underbrace{\min _{x_{\text {out }} \in \mathcal{X}_{t}\left(x_{i n}, \xi\right)} \ell_{t}\left(x_{\text {in }}, x_{\text {out }}, \xi\right)+\tilde{V}_{t+1}\left(x_{\text {out }}\right)}_{:=\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)}
$$

$$
\tilde{V}_{t}\left(x_{i n}\right)+=\underbrace{\pi_{\xi}}_{:=\mathbb{P}\left(\xi_{t}=\xi\right)} \dot{V}_{\xi}
$$

Extend definition of \tilde{V}_{t} to X_{t} by interpolation

Cost-to-go induced policy and Forward Bellman operator

- The point of most DP methods is to produce approximations \tilde{V}_{t} of the true value function ${ }^{2} V_{t}$.
- From any approximation V_{t} of V_{t}, we can define a cost-to-go induced policy ψ_{t} by solving the stage problem $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t}\right)(x, \xi)$

- A Forward Bellman operator \mathcal{F}_{t} take as argument a cost-to-go approximation \tilde{V}_{t} and return an ontimal out-state ${ }^{3} x_{\text {out }}$
- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- More precisely, given a scenario ($\xi_{1}, \ldots \xi_{T}$), we have the following trajectory induced by $\tilde{V}_{[T]}$

${ }^{2}$ Sometimes it can be of \dot{V}_{t} instead

Cost-to-go induced policy and Forward Bellman operator

- The point of most DP methods is to produce approximations \tilde{V}_{t} of the true value function ${ }^{2} V_{t}$.
- From any approximation \tilde{V}_{t} of V_{t}, we can define a cost-to-go induced policy ψ_{t} by solving the stage problem $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t}\right)(x, \xi)$:

$$
\min _{x_{\text {out }}, u_{t} \in \mathcal{X}_{t}\left(x_{i n}, \xi_{t}\right)} \underbrace{\ell_{t+1}\left(x_{\text {in }}, x_{t}, u_{t}, \xi_{t}\right)}_{\text {transition costs }}+\underbrace{\tilde{V}\left(x_{\text {out }}\right)}_{\text {cost-to-go }}
$$

approximation \tilde{V}_{t} and return an optimal out-state ${ }^{3} x_{o u t}$

- Thus a (sequence of) value functions annroximations vields a policy, which can be simulated to obtain trajectories and costs.
- More precisely, given a scenario $\left(\check{\xi}_{1}, \ldots, \check{\xi}_{T}\right)$, we have the following trajectory induced by $\tilde{V}_{[T]}$
${ }^{2}$ Sometimes it can be of \dot{V}_{t} instead

Cost-to-go induced policy and Forward Bellman operator

- The point of most DP methods is to produce approximations \tilde{V}_{t} of the true value function ${ }^{2} V_{t}$.
- From any approximation \tilde{V}_{t} of V_{t}, we can define a cost-to-go induced policy ψ_{t} by solving the stage problem $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t}\right)(x, \xi)$:

$$
\min _{x_{\text {out }}, u_{t} \in \mathcal{X}_{t}\left(x_{i n}, \xi_{t}\right)} \underbrace{\ell_{t+1}\left(x_{\text {in }}, x_{t}, u_{t}, \xi_{t}\right)}_{\text {transition costs }}+\underbrace{\tilde{V}\left(x_{\text {out }}\right)}_{\text {cost-to-go }}
$$

- A Forward Bellman operator \mathcal{F}_{t} take as argument a cost-to-go approximation \tilde{V}_{t} and return an optimal out-state ${ }^{3} x_{\text {out }}$.
- More precisely, given a scenario $\left(\xi_{1}, \ldots, \xi_{T}\right)$, we have the following trajectory induced by $V_{[T]}$
${ }^{2}$ Sometimes it can be of \dot{V}_{t} instead
${ }^{3}$ For technical reason, given the same $\tilde{V}, x \in$ and ξ it should return the same $x_{\text {out }}$

Cost-to-go induced policy and Forward Bellman operator

- The point of most DP methods is to produce approximations \tilde{V}_{t} of the true value function ${ }^{2} V_{t}$.
- From any approximation \tilde{V}_{t} of V_{t}, we can define a cost-to-go induced policy ψ_{t} by solving the stage problem $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t}\right)(x, \xi)$:

$$
\min _{x_{\text {out }}, u_{t} \in \mathcal{X}_{t}\left(x_{i n}, \xi_{t}\right)} \underbrace{\ell_{t+1}\left(x_{\text {in }}, x_{t}, u_{t}, \xi_{t}\right)}_{\text {transition costs }}+\underbrace{\tilde{V}\left(x_{\text {out }}\right)}_{\text {cost-to-go }}
$$

- A Forward Bellman operator \mathcal{F}_{t} take as argument a cost-to-go approximation \tilde{V}_{t} and return an optimal out-state ${ }^{3} x_{\text {out }}$.
- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
trajectory induced by $V_{[T]}$

[^0]
Cost-to-go induced policy and Forward Bellman operator

- The point of most DP methods is to produce approximations \tilde{V}_{t} of the true value function ${ }^{2} V_{t}$.
- From any approximation \tilde{V}_{t} of V_{t}, we can define a cost-to-go induced policy ψ_{t} by solving the stage problem $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t}\right)(x, \xi)$:

$$
\min _{x_{\text {out }}, u_{t} \in \mathcal{X}_{t}\left(x_{\text {in }}, \xi_{t}\right)} \underbrace{\ell_{t+1}\left(x_{\text {in }}, x_{t}, u_{t}, \xi_{t}\right)}_{\text {transition costs }}+\underbrace{\tilde{V}\left(x_{\text {out }}\right)}_{\text {cost-to-go }}
$$

- A Forward Bellman operator \mathcal{F}_{t} take as argument a cost-to-go approximation \tilde{V}_{t} and return an optimal out-state ${ }^{3} x_{\text {out }}$.
- Thus a (sequence of) value functions approximations yields a policy, which can be simulated to obtain trajectories and costs.
- More precisely, given a scenario $\left(\check{\xi}_{1}, \ldots, \check{\xi}_{T}\right)$, we have the following trajectory induced by $\tilde{V}_{[T]}$:

$$
\check{x}_{0}=x_{0}, \quad \check{x}_{t}=\mathcal{F}_{t}\left(\tilde{V}_{t}\right)\left(\check{x}_{t-1}, \check{\xi}_{t}\right)
$$

[^1]
Trajectory Following Dynamic Programming algorithms

TFDP algorithms iteratively refine outer-approximations of the cost-to-go functions:
(1) using the current outer-approximation we compute a trajectory (\sim forward phase)
(2) around the computed trajectory we refine the outer-approximations (\sim backward phase)

Trajectory Following Dynamic Programming algorithms

TFDP algorithms iteratively refine outer-approximations of the cost-to-go functions:
(1) using the current outer-approximation we compute a trajectory (\sim forward phase)
(2) around the computed trajectory we refine the outer-approximations (\sim backward phase)

A few comments:

- The forward phase depends on two elements:
- the chosen forward operator \mathcal{F}_{t}
- the node-selection ξ_{t}^{k} method
- Outer approximations are defined as maximum of elementary functions called cuts.

Example of cuts

(1) Affine Benders cut
(2) Affine Lagrangian cuts
(3) Affine integer cuts

Example of cuts

(1) Affine Benders cut
(2) Affine Lagrangian cuts
(3) Affine integer cuts

Example of cuts

(1) Affine Benders cut
(2) Affine Lagrangian cuts
(3) Affine integer cuts
(9) Step cuts

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

And so on...

Algorithm 2: A general framework for TFDP algorithms
$\mathbf{1}{\underline{V_{t}^{0}}}_{0}^{0}-\infty$ and $\bar{V}_{t}^{0} \equiv+\infty$ for $t \in[T]$;
2 for $k \in \mathbb{N}$ do
|/* Forward phase: compute trajectory
Set $x_{0}^{k}=x_{0}$;
4 for $t=1 \rightarrow T-1$ do
$5 \quad$ Choose $\xi_{t}^{k} \in \operatorname{supp}\left(\xi_{t}\right)$;
(node seletion)
$x_{t}^{k}=\mathcal{F}_{t}\left(\underline{V}_{t+1}^{k-1}\right)\left(x_{t-1}^{k}, \xi_{t}^{k}\right)$;
(forward operator)
/* Backward phase: update approximations
Set $\underline{V}_{T}^{k} \equiv \bar{V}_{T}^{k} \equiv 0$;
for $t=T-1 \rightarrow 1$ do
$\mid f_{t}^{k} \leftarrow \underline{L}_{t}$-Lipschitz on X_{t}^{r}, valid and $\underline{\gamma}$-tight cut of $\mathcal{B}_{t}\left(\underline{V}_{t+1}^{k}\right)$ at x_{t-1}^{k};
$\underline{V}_{t}^{k} \leftarrow \max \left(\underline{V}_{t}^{k-1}, f_{t}^{k}\right)$;
Define monotonous, \bar{L}-Lipschitz, valid, $\bar{\gamma}$-tight, \bar{V}_{t}^{k};

TFDP convergence

We assume that:

- we have relatively complete recourse (RCR);
- the state remains in a compact set;
- we can compute Lipschitz cuts with uniformly bounded constant;
- the cuts are exact and tight where they are computed.

```
Then the lower-bound computed are valid and converging toward the true
value, and the induced policy converged to an optimal policy.
We even have some (poor) complexity results.
To be continued
More on that during my talk Tuesday at 14:50-Ballroom C
```


TFDP convergence

We assume that:

- we have relatively complete recourse (RCR);
- the state remains in a compact set;
- we can compute Lipschitz cuts with uniformly bounded constant;
- the cuts are exact and tight where they are computed.

Then the lower-bound computed are valid and converging toward the true value, and the induced policy converged to an optimal policy.
We even have some (poor) complexity results.
To be continued
More on that during my talk Tuesday at 14:50-Ballroom C

TFDP convergence

We assume that:

- we have relatively complete recourse (RCR);
- the state remains in a compact set;
- we can compute Lipschitz cuts with uniformly bounded constant;
- the cuts are exact and tight where they are computed.

Then the lower-bound computed are valid and converging toward the true value, and the induced policy converged to an optimal policy. We even have some (poor) complexity results.

More on that during my talk Tuesday at 14:50-Ballroom C

TFDP convergence

We assume that:

- we have relatively complete recourse (RCR);
- the state remains in a compact set;
- we can compute Lipschitz cuts with uniformly bounded constant;
- the cuts are exact and tight where they are computed.

Then the lower-bound computed are valid and converging toward the true value, and the induced policy converged to an optimal policy. We even have some (poor) complexity results.

To be continued

More on that during my talk Tuesday at 14:50-Ballroom C

Comparing DP and SDDP

	DP	SDDP
Independence assumption	Yes ${ }^{\text {p }}$	Yes \sim
Finitely supported noise	Yes \%	Yes \%
Structural assumptions	No B^{3}	Yes \%
Discrete control	Yes B^{3}	No p
State discretization	Yes \%	No B^{3}
Progressive results	No \%	Yes B^{3}
Maximum state dimension	≈ 5 \%	≈ 30
Maximum control dimension	≈ 50	≈ 1000

Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
(4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Risk neutral linear setting

$$
\begin{aligned}
\min _{\boldsymbol{x}_{[T]}, \boldsymbol{u}_{[T]}} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{p}_{t}^{\top} \boldsymbol{u}_{t}\right] \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{T}_{t} \boldsymbol{u}_{t}=\boldsymbol{d}_{t} \\
& \underline{x}_{t} \leq \boldsymbol{x}_{t} \leq \bar{x}_{t}, \quad \underline{u}_{t} \leq \boldsymbol{u}_{t} \leq \bar{u}_{t}, \\
& \boldsymbol{u}_{t} \preceq \sigma\left(\xi_{[t]}\right)
\end{aligned}
$$

where $\boldsymbol{\xi}_{t}=\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{T}_{t}, \boldsymbol{d}_{t}\right)$ is a random vector with support $\bar{\Xi}_{t}$.

Risk neutral linear setting

$$
\begin{aligned}
\min _{\boldsymbol{x}_{[T]}, \boldsymbol{u}_{[T]}} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{p}_{t}^{\top} \boldsymbol{u}_{t}\right] \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1}+\boldsymbol{T}_{t} \boldsymbol{u}_{t}=\boldsymbol{d}_{t} \\
& \underline{x}_{t} \leq \boldsymbol{x}_{t} \leq \bar{x}_{t}, \quad \underline{u}_{t} \leq \boldsymbol{u}_{t} \leq \bar{u}_{t}, \\
& \boldsymbol{u}_{t} \preceq \sigma\left(\xi_{[t]}\right)
\end{aligned}
$$

where $\xi_{t}=\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{T}_{t}, \boldsymbol{d}_{t}\right)$ is a random vector with support $\bar{\Xi}_{t}$.

$$
\begin{aligned}
& \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
& \text { s.t. } \quad \\
& A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& \mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}\right):=\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right)
\end{aligned}
$$

LP formulation of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

Assume that \tilde{V}_{t+1} is a polyhedral function defined as:

$$
\tilde{V}_{t+1}: x \mapsto \max _{\kappa \leq K} \alpha_{\kappa}^{\top} x+\beta_{\kappa}
$$

Then, we can write $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ as a linear program:

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+T_{\xi} u=d_{\xi}-B_{\xi} x_{\text {in }} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u}
\end{aligned}
$$

LP formulation of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

Assume that \tilde{V}_{t+1} is a polyhedral function defined as:

$$
\tilde{V}_{t+1}: x \mapsto \max _{\kappa \leq K} \alpha_{\kappa}^{\top} x+\beta_{\kappa}
$$

Then, we can write $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ as a linear program:

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\theta \\
\text { s.t. } & A_{\xi} x_{\text {out }}+T_{\xi} u=d_{\xi}-B_{\xi} x_{\text {in }} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& \alpha_{\kappa}^{\top} x_{\text {out }}+\beta_{\kappa} \leq \theta
\end{aligned}
$$

$$
\forall \kappa \leq K
$$

LP formulation of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

Assume that \tilde{V}_{t+1} is a polyhedral function defined as:

$$
\tilde{V}_{t+1}: x \mapsto \max _{\kappa \leq K} \quad \alpha_{\kappa}^{\top} x+\beta_{\kappa}
$$

Then, we can write $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ as a linear program:

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\theta \\
\text { s.t. } & A_{\xi} x_{\text {out }}+T_{\xi} u=d_{\xi}-B_{\xi} x_{\text {in }} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& \alpha_{\kappa}^{\top} x_{\text {out }}+\beta_{\kappa} \leq \theta
\end{aligned}
$$

$$
\forall \kappa \leq K
$$

\Leftrightarrow Computing $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ consists in solving a LP.

Some properties of $\dot{\mathcal{B}}_{t}$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
& \text { s.t. } \\
& A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u}
\end{aligned}
$$

We have that:

- if $V_{t+1}^{b} \leq \tilde{V}_{t+1}$, then $\dot{\mathcal{B}}_{t}\left(V_{t+1}^{b}\right) \leq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$,
- if \tilde{V}_{t+1} is convex, so is $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$,
- if \tilde{V}_{t+1} is polyhedral, so is $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$.

Same properties ${ }^{4}$ hold true for \mathcal{B}_{t} instead of $\dot{\mathcal{B}}_{t}$.

Some properties of $\dot{\mathcal{B}}_{t}$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u}
\end{aligned}
$$

We have that:

- if $V_{t+1}^{b} \leq \tilde{V}_{t+1}$, then $\dot{\mathcal{B}}_{t}\left(V_{t+1}^{b}\right) \leq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$,
- if \tilde{V}_{t+1} is convex, so is $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$,
- if \tilde{V}_{t+1} is polyhedral, so is $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$.

Same properties ${ }^{4}$ hold true for \mathcal{B}_{t} instead of $\dot{\mathcal{B}}_{t}$.

Convex duality to obtain cut

Consider a proper lowersemicontinuous convex function f of two variables, and g the partial infimum, i.e.

$$
\begin{array}{rl}
g: x_{0} \mapsto \min _{x, y} & f(x, y) \\
\text { s.t. } & x=x_{0}
\end{array}
$$

Then convex duality theory tells us that g is convex and the optimal multiplier $\alpha \in \partial g\left(x_{0}\right)$ is a subgradient ${ }^{5}$ of g at

More precisely, we have:
${ }^{5}$ Beware that the sign of the multiplier for an equality constraint is not clearly
defined, thus depending of the Lagrangian you write / your solver implementation you
might need to consider $-\alpha$

Convex duality to obtain cut

Consider a proper lowersemicontinuous convex function f of two variables, and g the partial infimum, i.e.

$$
\begin{array}{rl}
g: x_{0} \mapsto \min _{x, y} & f(x, y) \\
\text { s.t. } & x=x_{0}
\end{array}
$$

Then convex duality theory tells us that g is convex and the optimal multiplier $\alpha \in \partial g\left(x_{0}\right)$ is a subgradient ${ }^{5}$ of g at x_{0}.

More precisely, we have:

[^2]
Convex duality to obtain cut

Consider a proper lowersemicontinuous convex function f of two variables, and g the partial infimum, i.e.

$$
\begin{array}{rl}
g: x_{0} \mapsto \min _{x, y} & f(x, y) \\
\text { s.t. } & x=x_{0}
\end{array}
$$

Then convex duality theory tells us that g is convex and the optimal multiplier $\alpha \in \partial g\left(x_{0}\right)$ is a subgradient ${ }^{5}$ of g at x_{0}.

More precisely, we have:

$$
g(x) \geq g\left(x_{0}\right)+\alpha^{\top}\left(x-x_{0}\right) \quad \forall x
$$

[^3]
Computing a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi):=\min _{x_{i n}, x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& x_{\text {in }}=x
\end{aligned}
$$

$$
\left[\dot{\alpha}_{\xi}\right]
$$

- By convexity duality we have that

$$
\dot{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \dot{Q}\right) \geq \dot{B}_{t}\left(\tilde{V}_{t+1}\right)(x, s)+\dot{a}_{\xi}^{\top}\left(x_{i n}-x\right),
$$

- By monotonicity, if $\tilde{V}_{t+1} \leq V_{t+1}$, then

Computing a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi):=\min _{x_{i n}, x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& x_{\text {in }}=x
\end{aligned}
$$

$$
\left[\dot{\alpha}_{\xi}\right]
$$

- By convexity duality we have that

$$
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \geq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)+\dot{\alpha}_{\xi}^{\top}\left(x_{i n}-x\right), \quad \forall x_{i n} .
$$

- By monotonicity, if $V_{t+1} \leq V_{t+1}$, then

Computing a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi):=\min _{x_{\text {in }}, x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& x_{\text {in }}=x
\end{aligned}
$$

$$
\left[\dot{\alpha}_{\xi}\right]
$$

- By convexity duality we have that

$$
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \geq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)+\dot{\alpha}_{\xi}^{\top}\left(x_{i n}-x\right), \quad \forall x_{i n} .
$$

- By monotonicity, if $\tilde{V}_{t+1} \leq V_{t+1}$, then

$$
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right) \quad \leq \dot{\mathcal{B}}_{t}\left(V_{t+1}\right) \quad=\dot{V}_{t}
$$

Computing a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi):=\min _{x_{i n}, x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u} \\
& x_{\text {in }}=x
\end{aligned}
$$

- By convexity duality we have that

$$
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \geq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)+\dot{\alpha}_{\xi}^{\top}\left(x_{i n}-x\right), \quad \forall x_{i n} .
$$

- By monotonicity, if $\tilde{V}_{t+1} \leq V_{t+1}$, then

$$
\begin{aligned}
& \quad \dot{\alpha}_{\xi}^{\top} x_{i n}+\dot{\beta}_{\xi} \leq \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \leq \dot{\mathcal{B}}_{t}\left(V_{t+1}\right)\left(x_{i n}, \xi\right)=\dot{V}_{t}\left(x_{i n}, \xi\right) \\
& \text { with } \dot{\beta}_{\xi}=\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)-\dot{\alpha}_{\xi}^{\top} x .
\end{aligned}
$$

Computing a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$

We saw that, when solving $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$, we can compute a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ at x, i.e.,

$$
\dot{\alpha}_{\xi}^{\top} x_{i n}+\dot{\beta}_{\xi} \leq \dot{V}_{t}\left(x_{i n}, \xi\right), \quad \forall x_{i n}
$$

As

to compute a cut for $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, we have to solve $\left|\bar{\Xi}_{t}\right|$ LPs, each of them giving a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, and average them:

Computing a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$

We saw that, when solving $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$, we can compute a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ at x, i.e.,

$$
\dot{\alpha}_{\xi}^{\top} x_{i n}+\dot{\beta}_{\xi} \leq \dot{V}_{t}\left(x_{i n}, \xi\right), \quad \forall x_{i n}
$$

As

$$
\begin{aligned}
\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}\right) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \\
V_{t}(\cdot) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{V}_{t}(\cdot, \xi)
\end{aligned}
$$

to compute a cut for $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, we have to solve $\left|\overline{\bar{Z}}_{t}\right|$ LPs, each of them giving a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, and average them:

Computing a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$

We saw that, when solving $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$, we can compute a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ at x, i.e.,

$$
\dot{\alpha}_{\xi}^{\top} x_{i n}+\dot{\beta}_{\xi} \leq \dot{V}_{t}\left(x_{i n}, \xi\right), \quad \forall x_{i n}
$$

As

$$
\begin{aligned}
\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}\right) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \\
V_{t}(\cdot) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{V}_{t}(\cdot, \xi)
\end{aligned}
$$

to compute a cut for $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, we have to solve $\left|\bar{\Xi}_{t}\right|$ LPs, each of them giving a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, and average them:

$$
\alpha:=\sum_{\xi \in \bar{\Xi}_{t}} p_{\xi} \dot{\alpha}_{\xi} \quad \beta:=\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\beta}_{\xi}
$$

Computing a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$

We saw that, when solving $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$, we can compute a cut of $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)$ at x, i.e.,

$$
\dot{\alpha}_{\xi}^{\top} x_{i n}+\dot{\beta}_{\xi} \leq \dot{V}_{t}\left(x_{i n}, \xi\right), \quad \forall x_{i n}
$$

As

$$
\begin{aligned}
\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}\right) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right) \\
V_{t}(\cdot) & =\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{V}_{t}(\cdot, \xi)
\end{aligned}
$$

to compute a cut for $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, we have to solve $\left|\bar{\Xi}_{t}\right|$ LPs, each of them giving a cut of $\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)$ at x, and average them:

$$
\alpha:=\sum_{\xi \in \bar{\Xi}_{t}} p_{\xi} \dot{\alpha}_{\xi} \quad \beta:=\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\beta}_{\xi}
$$

yielding

$$
\alpha^{\top} x_{i n}+\beta \leq V_{t}\left(x_{i n}\right), \quad \forall x_{i n} .
$$

Forward Bellman operator

Note that, in order to compute $\mathcal{F}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$, we need to solve the same stage problem as $\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)(x, \xi)$ i.e.

$$
\begin{aligned}
\dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{\text {in }}, \xi\right):=\min _{x_{\text {out }}, u} & p_{\xi}^{\top} u+\tilde{V}_{t+1}\left(x_{\text {out }}\right) \\
\text { s.t. } & A_{\xi} x_{\text {out }}+B_{\xi} x_{\text {in }}+T_{\xi} u=d_{\xi} \\
& \underline{x} \leq x_{\text {out }} \leq \bar{x}, \quad \underline{u} \leq u \leq \bar{u}
\end{aligned}
$$

and return $x_{\text {out }}$.

SDDP

$$
\mathrm{t=0} \mathrm{t=1}
$$

Final Cost $V_{2}=K$

SDDP

$$
\mathrm{t}^{\mathrm{t}=0}
$$

Real Bellman function $V_{1}=\mathcal{B}_{1}\left(V_{2}\right)$

SDDP

Real Bellman function $V_{0}=\mathcal{B}_{0}\left(V_{1}\right)$

SDDP

Lower polyhedral approximation \underline{K} of K

SDDP

Lower polyhedral approximation $\underline{V}_{1}=\mathcal{B}_{t}(\underline{K})$ of V_{1}

SDDP

Lower polyhedral approximation $\underline{V}_{0}=\mathcal{B}_{t}\left(\underline{V}_{1}\right)$ of V_{0}

SDDP

Assume that we have lower polyhedral approximations of V_{t}

SDDP

Obtain a lower bound on the value of our problem

SDDP

Apply $\mathcal{F}_{0}\left(\underline{V}_{1}^{(2)}\right)\left(x_{0}\right)$ and obtain $\boldsymbol{X}_{1}^{(2)}$

SDDP

Apply $\mathcal{F}_{0}\left(\underline{V}_{1}^{(2)}\right)\left(x_{0}\right)$ and obtain $\boldsymbol{X}_{1}^{(2)}$

SDDP

Draw a random realisation $x_{1}^{(2)}$ of $\boldsymbol{X}_{1}^{(2)}$

SDDP

We apply $\mathcal{F}_{1}\left(\underline{V}_{1}^{(2)}\right)\left(x_{1}^{(2)}\right)$ and obtain $\boldsymbol{X}_{2}^{(2)}$

SDDP

We apply $\mathcal{F}_{1}\left(\underline{V}_{1}^{(2)}\right)\left(x_{1}^{(2)}\right)$ and obtain $\boldsymbol{X}_{2}^{(2)}$

SDDP

Draw a random realisation $x_{2}^{(2)}$ of $\boldsymbol{X}_{2}^{(2)}$

SDDP

Compute a cut for K at $x_{2}^{(2)}$

SDDP

Add the cut to $\underline{V}_{2}^{(2)}$ which gives $\underline{V}_{2}^{(3)^{x}}$

SDDP

A new lower approximation of V_{1} is $\mathcal{B}_{1}\left(\underline{V}_{2}^{(3)}\right)$

SDDP

Compute the face active at $x_{1}^{(2)}$

SDDP

Add the cut to $\underline{V}_{1}^{(2)}$ which gives $\underline{V}_{1}^{(3)}$

SDDP

A new lower approximation of V_{0} is $\mathcal{B}_{0}\left(\underline{V}_{1}^{(3)}\right)$

SDDP

Compute the face active at x_{0}

SDDP

Compute the face active at x_{0}

SDDP

Obtain a new lower bound

Algorithm 3: SDDP algorithm
$1 \underline{V}_{t}^{0} \equiv-\infty$ and $\bar{V}_{t}^{0} \equiv+\infty$ for $t \in[T]$;
2 for $k \in \mathbb{N}$ do
|/* Forward phase: compute trajectory */
Set $x_{0}^{k}=x_{0}$;
for $t=1 \rightarrow T-1$ do
Randomly draw $\xi_{t}^{k} \in \operatorname{supp}\left(\xi_{t}\right)$;
$x_{t}^{k}=\mathcal{F}_{t}\left(\underline{V}_{t+1}^{k-1}\right)\left(x_{t-1}^{k}, \xi_{t}^{k}\right)$;
(node selection)
(forward operator)
/* Backward phase: update approximations */
Set $\underline{V}_{T}^{k} \equiv 0$;
for $t=T-1 \rightarrow 1$ do
for $\xi \in \bar{E}_{t}$ do
Solve $\dot{\mathcal{B}}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t-1}^{k}, \xi\right)$ for $\dot{\alpha}_{\xi}$ and $\dot{\beta}_{\xi}$;
Compute $\alpha_{t}^{k}:=\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\alpha}_{t, \xi}^{k} \quad$ and, $\quad \beta_{t}^{k}:=\sum_{\xi \in \Xi_{t}} p_{\xi} \dot{\beta}_{t, \xi}^{k}$;
Update $\underline{V}_{t}^{k}:=\max \left(\underline{V}_{t}^{k-1},\left\langle\alpha_{t}^{k}, \cdot\right\rangle+\beta_{t}^{k}\right)$;

Various numerical comments

- You need to use the same solver for training and simulating, otherwise you can go into unexplored territory.
- The forward pass requires solving T one-stage LPs; the backward pass require $T \times\left|\bar{\Xi}_{t}\right|$ one-stage LPs.
- Most SDDP implementation ask for a lower-bound. This is not necessary if the first forward pass can be replaced by an admissible trajectory.
- Standard SDDP implementation compute $N \approx 200$ trajectories in the forward pass, and then add N cuts in the backward pass.
- An easy alternative consists in keeping the $\left|\bar{\Xi}_{t}\right|$ per- ξ cuts of \dot{V}_{t} instead of averaging them \leadsto multicut version of SDDP.

Various numerical comments

- You need to use the same solver for training and simulating, otherwise you can go into unexplored territory.
- The forward pass requires solving T one-stage LPs; the backward pass require $T \times\left|\bar{Z}_{t}\right|$ one-stage LPs.
- Most SDDP implementation ask for a lower-bound. This is not necessary if the first forward pass can be replaced by an admissible trajectory.
- Standard SDDP implementation compute $N \approx 200$ trajectories in the forward pass, and then add N cuts in the backward pass.
- An easy alternative consists in keeping the $\left|\bar{\Xi}_{t}\right|$ per- ξ cuts of \dot{V}_{t} instead of averaging them \leadsto multicut version of SDDP.

Various numerical comments

- You need to use the same solver for training and simulating, otherwise you can go into unexplored territory.
- The forward pass requires solving T one-stage LPs; the backward pass require $T \times\left|\bar{\Xi}_{t}\right|$ one-stage LPs.
- Most SDDP implementation ask for a lower-bound. This is not necessary if the first forward pass can be replaced by an admissible trajectory.
- Standard SDDP implementation compute $N \approx 200$ trajectories in the forward pass, and then add N cuts in the backward pass.
- An easy alternative consists in keeping the $\left|\bar{\Xi}_{t}\right|$ per- ξ cuts of V_{t} instead of averaging them \leadsto multicut version of SDDP.

Various numerical comments

- You need to use the same solver for training and simulating, otherwise you can go into unexplored territory.
- The forward pass requires solving T one-stage LPs; the backward pass require $T \times\left|\bar{\Xi}_{t}\right|$ one-stage LPs.
- Most SDDP implementation ask for a lower-bound. This is not necessary if the first forward pass can be replaced by an admissible trajectory.
- Standard SDDP implementation compute $N \approx 200$ trajectories in the forward pass, and then add N cuts in the backward pass.
- An easy alternative consists in keeping the $\left|\bar{\Xi}_{t}\right|$ per- ξ cuts of \dot{V}_{t} instead of averaging them \leadsto multicut version of SDDP.

Various numerical comments

- You need to use the same solver for training and simulating, otherwise you can go into unexplored territory.
- The forward pass requires solving T one-stage LPs; the backward pass require $T \times\left|\bar{\Xi}_{t}\right|$ one-stage LPs.
- Most SDDP implementation ask for a lower-bound. This is not necessary if the first forward pass can be replaced by an admissible trajectory.
- Standard SDDP implementation compute $N \approx 200$ trajectories in the forward pass, and then add N cuts in the backward pass.
- An easy alternative consists in keeping the $\left|\bar{\Xi}_{t}\right|$ per- ξ cuts of \dot{V}_{t} instead of averaging them \leadsto multicut version of SDDP.

Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Stopping tests

There are various ways of deciding to stop SDDP

- Statistical stopping test:
- Estimate the cost associated to the current policy (an upper bound) by Monte Carlo and compare it to the lower bound. ${ }^{6}$
- Statistically test if the lower-bound is no longer increasing
- Exact stopping test:
- Maintain an exact upper bound and stop when the gap is small enough.
- Computing exact upper bounds can be done using convexity or duality.
\Rightarrow More on that in Bernardo da Costa talk (Tuesday 12:40-14:30 Meeting B).
- Pragmatic criterion:
- Number of iterations
- Time limit

[^4]
Cut selection

- With each iteration, we add new cuts to the approximations of the value functions.
- Some of these cuts become useless as the algorithm progresses, and just burden the LP solver
- Cut selection are here to prune some of these constraints, usually in a heuristic way.
- Level-1 selection might be the most common:
- Keep in memory all trial trajectories
- Every $K \approx 50$ iterations, mark, for each of the past trial points, which of the cuts are active
- Delete all inactive cuts

Node selection

For a given in-state x_{t-1}^{k}, and there are $\left|\bar{\Xi}_{t}\right|$ possible out-state $x_{t-1, \xi}^{k}$. Choosing which one is kept is the node selection procedure:
(1) random node selection: the noise ξ_{t}^{k} used to obtain x_{t}^{k} in the forward pass is selected randomly, independently of other node selection.
(2) problem-child node selection: we choose the ξ_{t}^{k} that lead to a x_{t}^{k} maximizing the current gap estimate.
(3) importance sampling node selection: the noise is selected randomly according to a specific probability measure.

Node selection

For a given in-state x_{t-1}^{k}, and there are $\left|\bar{\Xi}_{t}\right|$ possible out-state $x_{t-1, \xi}^{k}$. Choosing which one is kept is the node selection procedure:
(1) random node selection: the noise ξ_{t}^{k} used to obtain x_{t}^{k} in the forward pass is selected randomly, independently of other node selection.
\Leftrightarrow the most common, but hardest to study.
(2) problem-child node selection: we choose the ξ_{t}^{k} that lead to a x_{t}^{k} maximizing the current gap estimate.
(3) importance sampling node selection: the noise is selected randomly according to a specific probability measure.

Node selection

For a given in-state x_{t-1}^{k}, and there are $\left|\Xi_{t}\right|$ possible out-state $x_{t-1, \xi}^{k}$. Choosing which one is kept is the node selection procedure:
(1) random node selection: the noise ξ_{t}^{k} used to obtain x_{t}^{k} in the forward pass is selected randomly, independently of other node selection.
\Leftrightarrow the most common, but hardest to study.
(2) problem-child node selection: we choose the ξ_{t}^{k} that lead to a x_{t}^{k} maximizing the current gap estimate.
\Leftrightarrow some numerical advantages, and good theoretical guarantees.
(3) importance sampling node selection: the noise is selected randomly according to a specific probability measure.

Node selection

For a given in-state x_{t-1}^{k}, and there are $\left|\Xi_{t}\right|$ possible out-state $x_{t-1, \xi}^{k}$. Choosing which one is kept is the node selection procedure:
(1) random node selection: the noise ξ_{t}^{k} used to obtain x_{t}^{k} in the forward pass is selected randomly, independently of other node selection.
\Leftrightarrow the most common, but hardest to study.
(2) problem-child node selection: we choose the ξ_{t}^{k} that lead to a x_{t}^{k} maximizing the current gap estimate.
\Leftrightarrow some numerical advantages, and good theoretical guarantees.
(3) importance sampling node selection: the noise is selected randomly according to a specific probability measure.
\Leftrightarrow Can be numerically efficient, especially in the risk averse case.

Regularization

- Cutting plane algorithm are known to be unstable, and greatly benefit from regularization.
- Multiple approaches have been proposed to regularize SDDP:
- add a quadratic penalty term to the last iterate
\Rightarrow quite surprising as the state depend on the scenario
- use a level-regularization approach
\Rightarrow require upper-bounds and some parameter tweaking
\Leftrightarrow Still an active research area

Dual SDDP

Dual SDDP leverage Fenchel / Lagrangian duality to compute exact upper-bound.

- The basic idea is the following (MSLP case): if $V_{t}=\mathcal{B}_{t}\left(V_{t+1}\right)$, then $V_{t}^{\star}=\mathcal{B}_{t}^{\ddagger}\left(V_{t+1}^{\star}\right)$, where $\mathcal{B}_{t}^{\ddagger}$ is an explicit Bellman operator ${ }^{7}$
- We can thus use SDDP on the $V_{t}^{\star}=\mathcal{B}_{t}^{\ddagger}\left(V_{t+1}^{\star}\right)$ recursion, which yields an exact lower bound of V_{t}^{\star}.
- Taking again the transform, the lower bound in the dual become an upper bound in the primal

[^5]
Contents

(1) Dynamic Programming and Bellman Operators
(2) Discretized and Trajectory Following Dynamic Programming
(3) Stochastic Dual Dynamic Programming
4) Extensions and variations of SDDP

- Numerical considerations
- Other frameworks

Without Relatively Complete Recourse: Feasibility cuts

- Relatively Complete Recourse is required for SDDP to work in practice and in theory.
- Without RCR we can use feasibility cut (see standard introduction on Bender's decomposition)
- However, to ensure convergence we need to stop the forward pass as soon as we encounter a feasability cut and propagate it backward, which is time consuming (we can never reach the horizon)
\Leftrightarrow In practice it seems that using slack variable with high / increasing cost work best (and we can still use feasibility cuts in the end).

Non stagewise independent setting

Various ways to extend SDDP to non-stagewise independent setting:
(sampled) Nested-Benders In a fully dependent tree we associate a value function per node of the tree and iteratively add cuts.
Autoregressive Processes : for uncertainty in the right-hand side we can consider an Autoregressive process $d_{t}=\varepsilon_{t}+\beta_{t}+\sum_{\tau=1}^{k} \alpha_{k} d_{t-\tau}$, then we can consider an extended state $\left(\boldsymbol{x}_{t}, d_{t-1}, \ldots d_{t-k}\right)$, with linear dynamics and apply SDDP.
Markov Chain If the noise is a Markov Chain, or has a law which depends on a Markov Chain, we can also use a variant of SDDP. See David Wozabal talk for that.

Risk averse setting

- We consider a nested risk-averse problem, where the Bellman operator is defined as

$$
\mathcal{B}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}\right)=\sup _{q \in \mathbb{Q}} \sum_{\xi \in \Xi_{t}} q_{\xi} \dot{\mathcal{B}}_{t}\left(\tilde{V}_{t+1}\right)\left(x_{i n}, \xi\right)
$$

where \mathbb{Q} is a set of vectors representing probability measures.

- Then the DP equations holds, by construction of nested-risk measures, and we can run the SDDP algorithm almost straightforwardly.
- The only tricky point is that the averaging of cut coefficient should be done with respect to the maximazing q.

Rectangular robustness

- Consider a robust approach, and assume that the robust set is a Cartesian product $\bar{\Xi}_{1} \times \cdots \times \bar{\Xi}_{T}$.
- It is equivalent to a nested risk-averse approach, where the set \mathbb{Q} contains all diracs.
- The reference algorithm is the Robust Dual Dynamic Programming (RDDP) algorithm, which use a problem-child node selection approach

Infinite horizon

- There have been multiple proposition to extend SDDP to an infinite horizon framework, where we solve

$$
V=\mathcal{B}(V)
$$

- The core idea is to have forward pass going further and further
- An important extension is the periodic setting, which is relevant for long-term energy applications for example.

Conclusion

- TFDP algorithm are Dynamic Programming methods that iteratively refine approximations of the value functions
- They are less subject to the curse of dimensionality as:
- they leverages structure of the problem to have global approximation
- they smartly determine where to refine approximations along iterations
- Among them SDDP, for convex problem, is the most well-known and used algorithm
- It has numerous usefull extensions:
- to risk-averse or distributionally robust model
- to Markov Chain noises
- to integer variables
- to stochastic or infinite horizon
- ...

Very short and partial bibliography

围 Pereira M．，and Pinto，L．
Multi－stage stochastic optimization applied to energy planning．
Mathematical programming， 1991
囯 Shapiro．A．
Analysis of stochastic dual dynamic programming method．
European Journal of Operational Research 2011.
Rou，J．，Ahmed，S．，and Sun，X．A．
Stochastic dual dynamic integer programming．
Mathematical Programming， 2019.
E－Georghiou，A．，Tsoukalas，A．，and Wiesemann，W．
Robust dual dynamic programming．
Operations Research， 2019.
雷 Dowson，O．，and Kapelevich，L．
SDDP．jl：a Julia package for stochastic dual dynamic programming．
INFORMS Journal on Computing， 2021.
Forcier，M．，and Leclere，V．
Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions．
Journal of Convex Analysis， 2023 （to appear）．

[^0]: ${ }^{2}$ Sometimes it can be of \dot{V}_{t} instead
 ${ }^{3}$ For technical reason, given the same $\tilde{V}, x \in$ and ξ it should return the same $x_{\text {out }}$

[^1]: ${ }^{2}$ Sometimes it can be of \dot{V}_{t} instead
 ${ }^{3}$ For technical reason, given the same $\tilde{V}, x \in$ and ξ it should return the same $x_{\text {out }}$

[^2]: ${ }^{5}$ Beware that the sign of the multiplier for an equality constraint is not clearly defined, thus depending of the Lagrangian you write / your solver implementation you might need to consider $-\alpha$

[^3]: ${ }^{5}$ Beware that the sign of the multiplier for an equality constraint is not clearly defined, thus depending of the Lagrangian you write / your solver implementation you might need to consider $-\alpha$

[^4]: ${ }^{6}$ The correct way to do say is to set an a-priori gap ε and compare the upper end of a Monte-Carlo confidence interval of the current policy, to the (exact) lower bound.

[^5]: ${ }^{7}$ There are some technical tricks I'm glossing over...

