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Motivations

An hydroelectric stock

st = st−1 − ut + ξt

where, at time t:
▶ st is the amount of water
▶ ut is the water turbined
▶ ξt is the inflow
▶ pt is the price

Min
(ut)t=1:T

E

[
T∑
t=1

−ptut + K (sT )

]
s.t. s0 = sinit (initial stock)

st = st−1 − ut + ξt (dynamic)

0 ≤ st ≤ s̄t (state constraints)

σ(ut) ⊂ σ(ξ1, . . . , ξt) (information constraints)
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Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Bellman equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu+Vt+1(s−u+ξ)

6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu+Vt+1(s−u+ξ)

6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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From Dynamic Programming to SDDP

DP is a flexible tool, hampered
by the curses of dimensionality

Numerical illustration (7 dams):
▶ T = 52 weeks
▶ |S | = 1007 possible states
▶ |U| = 107 possible controls
▶ |ξt | = 10 (1052 scenarios)

➥ ≈ 2 days on today’s fastest
super-computer
(3.106 years for 10 dams)

➥ Can be solved1 in ≈ 10 minutes

1Approximately, depending on the problem and precision required...
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How can we be so much faster ?

Structural assumptions:
▶ convexity
▶ continuous state

➥ duality tools

Sampling instead of exhaustive computation

Iteratively refining value function estimation at ”the right places” only

LP solvers

➥ Stochastic Dual Dynamic Programming (SDDP) which
▶ has been around for 30 years
▶ is widely used in the energy community
▶ has lots of extensions and variants
▶ some convergence results, mainly asymptotic
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Some TFDP algorithms
Algorithm’s Node selection: Complexity

name Choice ξkt Ft V k
t V

k
t Hypothesis known

SDDP Random sampling Exact Benders cuts Vt Convex ✔

EDDP Explorative Exact Benders cuts Vt Convex ✔

APSDDP Random sampling Exact Adaptive partition Vt Linear ✖

SDDiP Random sampling Exact Lagrangian or integer cuts Vt Mixed Integer Linear ✖

MIDAS Random sampling Exact Step cuts Vt Monotonic Mixed Integer ✖

SLDP Random sampling Exact Reverse norm cuts Vt Non-Convex ✖

BDZ17 Problem child Exact Benders cuts Epigraph as convex hull Convex ✖

BDZ18 Problem child Exact Benders × Epigraph Hypograph × Benders Convex-Concave ✖

RDDP Deterministic Exact Benders cuts Epigraph as convex hull Robust ✖

ISDDP Random sampling Inexact Inexact Lagrangian cuts Vt Convex ✖

TDP Problem child Exact Benders cuts Min of quadratic Convex ✖

ZS19 Random or Problem Regularized Generalized conjugacy cuts Norm cuts Mixed Integer Convex ✔

NDDP Random or Problem Regularized Benders cuts Norm cuts Distributionally Robust ✔

DSDDP Random sampling Exact Benders cuts Fenchel transform Linear ✖
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Problem setting I

The risk-neutral Multistage Stochastic Program considered reads

min E
[ T∑
t=1

ℓt(x t−1, x t ,ut , ξt)
]

(MSP)

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

x t ,ut ⪯ σ({ξτ}τ∈[t]) ∀t ∈ [T ],

where:
▶ x t is the state, that convey information from the past,
▶ ut the control, which only impact stage t,
▶ ξt the (exogeneous) noise.

Note that:
▶ finite, discrete time
▶ contraints are stagewise independent
▶ x t ⪯ σ({ξτ}τ∈[t]) means that x t is measurable w.r.t. σ({ξτ}τ∈[t])
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Problem setting II
We often encouter MSPs with more compact formulation than:

min E
[ T∑

t=1

ℓt(x t−1, x t ,ut , ξt)
]

(MSP)

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

x t ,ut ⪯ σ({ξτ}τ∈[t]) ∀t ∈ [T ]

Here are some examples:

without ut : use the cheapest control getting you from xt−1 to xt ;

with explicit dynamic: xt+1 = dynt(xt , ut , ξt);

with cost depending only on the control ut or the out-state xt ;

a linear setting I favor:
▶ ℓt(x t−1x t ,ut , ξt) := c t

⊤ut ,
▶ Xt(x t−1, ξt) :=

{
x t ∈ Rnt

+ | Atx t + Btx t−1 + T tut

}
= d t .

➥ For DP approaches, it is worth it to keep in mind the difference
between state and control variables.
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Dynamic Programming principle

The main idea of Dynamic Programming is that, under stagewise
independence, we can look for an optimal solution as a function of the
state instead of the past noises.

min
x1:T ,u1:T

E
[ T∑
t=1

ℓt(x t−1, x t ,ut , ξt)
]

(MSP)

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

x t ,ut ⪯ σ(ξ1, . . . , ξt) ∀t ∈ [T ].
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Dynamic Programming equation

min
Ψ1:T

E
[ T∑

t=1

ℓt(x t−1, x t ,ut , ξt)

]
s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= min
Ψ1:T

E
[
ℓ1(x0, x1,u1, ξ1) + E

[ T∑
t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣ξ1]]

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= E
[

min
x1,u1∈X1(x0,ξ1)

ℓ1(x0, x1,u1, ξ1) + min
Ψ2:T

E
[ T∑

t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣]]

s.t. (x t ,ut) = Ψt(x t−1, ξt) ∈ Xt(x t−1)︸ ︷︷ ︸
:=V2(x1;)

Vincent Leclère TFDP algorithms July 22nd, 2023 10 / 42



Dynamic Programming equation

min
Ψ1:T

E
[ T∑

t=1

ℓt(x t−1, x t ,ut , ξt)

]
s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= min
Ψ1:T

E
[
ℓ1(x0, x1,u1, ξ1) + E

[ T∑
t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣ξ1]]

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= E
[

min
x1,u1∈X1(x0,ξ1)

ℓ1(x0, x1,u1, ξ1) + min
Ψ2:T

E
[ T∑

t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣]]

s.t. (x t ,ut) = Ψt(x t−1, ξt) ∈ Xt(x t−1)︸ ︷︷ ︸
:=V2(x1;)

Vincent Leclère TFDP algorithms July 22nd, 2023 10 / 42



Dynamic Programming equation

min
Ψ1:T

E
[ T∑

t=1

ℓt(x t−1, x t ,ut , ξt)

]
s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= min
Ψ1:T

E
[
ℓ1(x0, x1,u1, ξ1) + E

[ T∑
t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣ξ1]]

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= E
[

min
x1,u1∈X1(x0,ξ1)

ℓ1(x0, x1,u1, ξ1) + min
Ψ2:T

E
[ T∑

t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣ξ1]]

s.t. (x t ,ut) = Ψt(x t−1, ξt) ∈ Xt(x t−1)︸ ︷︷ ︸
:=V2(x1;ξ1)

Vincent Leclère TFDP algorithms July 22nd, 2023 10 / 42



Dynamic Programming equation

min
Ψ1:T

E
[ T∑

t=1

ℓt(x t−1, x t ,ut , ξt)

]
s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= min
Ψ1:T

E
[
ℓ1(x0, x1,u1, ξ1) + E

[ T∑
t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣ξ1]]

s.t. (x t ,ut) ∈ Xt(x t−1, ξt) ∀t ∈ [T ]

(x t ,ut) = Ψt(xt−1) ∀t ∈ [T ]

= E
[

min
x1,u1∈X1(x0,ξ1)

ℓ1(x0, x1,u1, ξ1) + min
Ψ2:T

E
[ T∑

t=2

ℓt(x t−1, x t ,ut , ξt)
∣∣∣��ξ1]]

s.t. (x t ,ut) = Ψt(x t−1, ξt) ∈ Xt(x t−1)︸ ︷︷ ︸
:=V2(x1;�ξ1)

Vincent Leclère TFDP algorithms July 22nd, 2023 10 / 42



Backward Bellman operators and Dynamic Programming
Define the cost-to-go, or value function

Vt0(x) = Eξt0

[

V̇t0(x , ξ ) = min E
[ T∑
t=t0

ℓt(x t−1, x t ,ut , ξt) | ξt0 = ξ
]

]

s.t. x t0−1 = x

(x t ,ut) ∈ Xt(x t−1, ξt) ∀t ≥ t0

(x t ,ut) ⪯ σ(ξ[t]) ∀t ≥ t0

Assuming that (ξτ )τ∈[T ] is stagewise independent, we have

V̇t = Ḃt(Vt+1)

Vt = Bt(Vt+1) := E
[
V̇t+1(·, ξt)

]
where the pointwise Backward Bellman operator Ḃt is defined

Ḃt(Ṽ ) :=


Rnt × Ξt → R ∪ {+∞}
(xt−1, ξt) 7→ min

xt ,ut∈Xt(xt−1,ξt)
ℓt+1(xt−1, xt , ut , ξt)︸ ︷︷ ︸

transition costs

+ Ṽ (xt)︸ ︷︷ ︸
cost-to-go
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Ḃt(Ṽ ) :=


Rnt × Ξt → R ∪ {+∞}
(xt−1, ξt) 7→ min

xt ,ut∈Xt(xt−1,ξt)
ℓt+1(xt−1, xt , ut , ξt)︸ ︷︷ ︸

transition costs
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Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state set, and
then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP

1 Ṽt ≡ 0
2 for t : T − 1 → 1 do
3 for xin ∈ XD

t−1 do
4 for ξ ∈ Ξt do

5 v̇ξ = min
xout∈Xt (xin,ξ)

ℓt(xin, xout , ξ) + Ṽt+1(xout)︸ ︷︷ ︸
:=Ḃt (Ṽt+1)(xin,ξ)

6 Ṽt(xin) += πξ︸︷︷︸
:=P(ξt=ξ)

v̇ξ

7 Extend definition of Ṽt to Xt by interpolation time

x1

x2

Number of single stage problems to solve: (T − 1)× |XD
t−1| × |Ξt |.
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7 Extend definition of Ṽt to Xt by interpolation time

x1

x2

Number of single stage problems to solve: (T − 1)× |XD
t−1| × |Ξt |.

Vincent Leclère TFDP algorithms July 22nd, 2023 12 / 42



Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state set, and
then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
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6 Ṽt(xin) += πξ︸︷︷︸
:=P(ξt=ξ)

v̇ξ
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7 Extend definition of Ṽt to Xt by interpolation time

x1

x2

Number of single stage problems to solve: (T − 1)× |XD
t−1| × |Ξt |.

Vincent Leclère TFDP algorithms July 22nd, 2023 12 / 42



Discretized Stochastic Dynamic Programming
The simplest DP algorithm is obtained by discretizing the state set, and
then doing a single backward pass over the grid.

Algorithm 1: Discretized SDP
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:=Ḃt (Ṽt+1)(xin,ξ)

6 Ṽt(xin) += πξ︸︷︷︸
:=P(ξt=ξ)

v̇ξ
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Cost-to-go induced policy and Forward Bellman operator
The point of most DP methods is to produce approximations Ṽt of
the true value function2 Vt .

From any approximation Ṽt of Vt , we can define a cost-to-go induced
policy ψt by solving the stage problem Ḃt(Ṽt)(x , ξ):

min
xout ,ut∈Xt(xin,ξt)

ℓt+1(xin, xt , ut , ξt)︸ ︷︷ ︸
transition costs

+ Ṽ (xout)︸ ︷︷ ︸
cost-to-go

A Forward Bellman operator Ft take as argument a cost-to-go
approximation Ṽt and return an optimal out-state3 xout .

Thus a (sequence of) value functions approximations yields a policy,
which can be simulated to obtain trajectories and costs.

More precisely, given a scenario (ξ̌1, . . . , ξ̌T ), we have the following
trajectory induced by Ṽ[T ]:

x̌0 = x0, x̌t = Ft(Ṽt)(x̌t−1, ξ̌t)

2Sometimes it can be of V̇t instead
3For technical reason, given the same Ṽ , x∈ and ξ it should return the same xout

Vincent Leclère TFDP algorithms July 22nd, 2023 13 / 42



Cost-to-go induced policy and Forward Bellman operator
The point of most DP methods is to produce approximations Ṽt of
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transition costs

+ Ṽ (xout)︸ ︷︷ ︸
cost-to-go

A Forward Bellman operator Ft take as argument a cost-to-go
approximation Ṽt and return an optimal out-state3 xout .

Thus a (sequence of) value functions approximations yields a policy,
which can be simulated to obtain trajectories and costs.

More precisely, given a scenario (ξ̌1, . . . , ξ̌T ), we have the following
trajectory induced by Ṽ[T ]:

x̌0 = x0, x̌t = Ft(Ṽt)(x̌t−1, ξ̌t)

2Sometimes it can be of V̇t instead
3For technical reason, given the same Ṽ , x∈ and ξ it should return the same xout
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2Sometimes it can be of V̇t instead
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Trajectory Following Dynamic Programming algorithms

TFDP algorithms iteratively refine outer-approximations of the cost-to-go
functions:

1 using the current outer-approximation we compute a trajectory
(; forward phase)

2 around the computed trajectory we refine the outer-approximations
(; backward phase)

A few comments:

The forward phase depends on two elements:
▶ the chosen forward operator Ft

▶ the node-selection ξkt method

Outer approximations are defined as maximum of elementary
functions called cuts.
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Example of cuts

1 Affine Benders cut

2 Affine Lagrangian cuts

3 Affine integer cuts

4 Step cuts

5 Lipschitz-cuts

V (x)

V (x)

V (x)
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Trajectory Following Dynamic Programming

time

x1

x2

First forward pass : computing trajectory
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Trajectory Following Dynamic Programming

time

x1

x2

First backward pass : refining approximation (adding cuts)
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Trajectory Following Dynamic Programming
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Trajectory Following Dynamic Programming
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Trajectory Following Dynamic Programming

time

x1

x2

third forward pass : computing trajectory
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Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
Vincent Leclère TFDP algorithms July 22nd, 2023 16 / 42



Trajectory Following Dynamic Programming

time

x1

x2

And so on...
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Algorithm 2: A general framework for TFDP algorithms

1 V 0
t ≡ −∞ and V

0
t ≡ +∞ for t ∈ [T ];

2 for k ∈ N do
/* Forward phase: compute trajectory */

3 Set xk0 = x0;
4 for t = 1→ T − 1 do
5 Choose ξkt ∈ supp(ξt) ; (node seletion)

6 xkt = Ft(V
k−1
t+1 )(x

k
t−1, ξ

k
t ) ; (forward operator)

/* Backward phase: update approximations */

7 Set V k
T ≡ V

k
T ≡ 0;

8 for t = T − 1→ 1 do
9 f kt ← Lt-Lipschitz on X r

t , valid and γ-tight cut of Bt(V k
t+1) at x

k
t−1;

10 V k
t ← max(V k−1

t , f kt );

11 Define monotonous, L̄-Lipschitz, valid, γ̄-tight, V
k

t ;
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TFDP convergence

We assume that:

we have relatively complete recourse (RCR);

the state remains in a compact set;

we can compute Lipschitz cuts with uniformly bounded constant;

the cuts are exact and tight where they are computed.

Then the lower-bound computed are valid and converging toward the true
value, and the induced policy converged to an optimal policy.
We even have some (poor) complexity results.

To be continued

More on that during my talk Tuesday at 14:50 - Ballroom C
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Comparing DP and SDDP

DP SDDP

Independence assumption Yes  Yes
Finitely supported noise Yes  Yes
Structural assumptions No  Yes

Discrete control Yes  No
State discretization Yes  No
Progressive results No  Yes

Maximum state dimension ≈ 5  ≈ 30
Maximum control dimension ≈ 5 ≈ 1000
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Contents

1 Dynamic Programming and Bellman Operators

2 Discretized and Trajectory Following Dynamic Programming

3 Stochastic Dual Dynamic Programming

4 Extensions and variations of SDDP
Numerical considerations
Other frameworks
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Risk neutral linear setting

min
x [T ],u[T ]

E
[ T∑
t=1

pt
⊤ut

]
(MSLP)

s.t. Atx t + Btx t−1 + T tut = d t ∀t ∈ [T ]

x t ≤ x t ≤ x t , ut ≤ ut ≤ ut , ∀t ∈ [T ]

ut ⪯ σ(ξ[t]) ∀t ∈ [T ]

where ξt = (At ,Bt ,T t ,d t) is a random vector with support Ξt .

Ḃt(Ṽt+1)(xin, ξ) := min
xout ,u

pξ
⊤u + Ṽt+1(xout)

s.t. Aξxout + Bξxin + Tξu = dξ

x ≤ xout ≤ x , u ≤ u ≤ u

Bt(Ṽt+1)(xin) :=
∑
ξ∈Ξt

pξḂt(Ṽt+1)(xin, ξ)
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LP formulation of Ḃt(Ṽt+1)

Assume that Ṽt+1 is a polyhedral function defined as:

Ṽt+1 : x 7→ max
κ≤K

ακ
⊤x + βκ

Then, we can write Ḃt(Ṽt+1) as a linear program:

Ḃt(Ṽt+1)(xin, ξ) := min
xout ,u

pξ
⊤u + Ṽt+1(xout)

s.t. Aξxout + Tξu = dξ − Bξxin

x ≤ xout ≤ x , u ≤ u ≤ u

ακ
⊤xout + βκ ≤ θ ∀κ ≤ K

➥ Computing Ḃt(Ṽt+1) consists in solving a LP.
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Some properties of Ḃt

Ḃt(Ṽt+1)(xin, ξ) := min
xout ,u

pξ
⊤u + Ṽt+1(xout)

s.t. Aξxout + Bξxin + Tξu = dξ

x ≤ xout ≤ x , u ≤ u ≤ u

We have that:

if V ♭
t+1 ≤ Ṽt+1, then Ḃt(V ♭

t+1) ≤ Ḃt(Ṽt+1),

if Ṽt+1 is convex, so is Ḃt(Ṽt+1),

if Ṽt+1 is polyhedral, so is Ḃt(Ṽt+1).

Same properties4 hold true for Bt instead of Ḃt .

4finite support assumption required for polyhedrality
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Convex duality to obtain cut

Consider a proper lowersemicontinuous convex function f of two variables,
and g the partial infimum, i.e.

g : x0 7→ min
x ,y

f (x , y)

s.t. x = x0 [α]

Then convex duality theory tells us that g is convex and the optimal
multiplier α ∈ ∂g(x0) is a subgradient5 of g at x0.

More precisely, we have:

g(x) ≥ g(x0) + α⊤(x − x0) ∀x

5Beware that the sign of the multiplier for an equality constraint is not clearly
defined, thus depending of the Lagrangian you write / your solver implementation you
might need to consider −α
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Computing a cut of Ḃt(Ṽt+1)

Ḃt(Ṽt+1)(x , ξ) := min
xin,xout ,u

pξ
⊤u + Ṽt+1(xout)

s.t. Aξxout + Bξxin + Tξu = dξ

x ≤ xout ≤ x , u ≤ u ≤ u

xin = x [α̇ξ]

By convexity duality we have that

Ḃt(Ṽt+1)(xin, ξ) ≥ Ḃt(Ṽt+1)(x , ξ) + α̇ξ
⊤(xin − x), ∀xin.

By monotonicity, if Ṽt+1 ≤ Vt+1, then

α̇ξ
⊤xin + β̇ξ ≤

Ḃt(Ṽt+1)

(xin, ξ)

≤ Ḃt(Vt+1)

(xin, ξ)

= V̇t

(xin, ξ)

with β̇ξ = Bt(Ṽt+1)(x , ξ)− α̇ξ
⊤x .
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Computing a cut of Bt(Ṽt+1)
We saw that, when solving Ḃt(Ṽt+1)(x , ξ), we can compute a cut of
Ḃt(Ṽt+1) at x , i.e.,

α̇ξ
⊤xin + β̇ξ ≤V̇t(xin, ξ), ∀xin

As

Bt(Ṽt+1)(xin) =
∑
ξ∈Ξt

pξḂt(Ṽt+1)(xin, ξ)

Vt(·) =
∑
ξ∈Ξt

pξV̇t(·, ξ)

to compute a cut for Bt(Ṽt+1) at x , we have to solve |Ξt | LPs, each of
them giving a cut of Bt(Ṽt+1) at x , and average them:

α :=
∑
ξ∈Ξt

pξα̇ξ β :=
∑
ξ∈Ξt

pξβ̇ξ

yielding
α⊤xin + β ≤Vt(xin), ∀xin.
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Forward Bellman operator

Note that, in order to compute Ft(Ṽt+1)(x , ξ), we need to solve the same
stage problem as Ḃt(Ṽt+1)(x , ξ) i.e.

Ḃt(Ṽt+1)(xin, ξ) := min
xout ,u

pξ
⊤u + Ṽt+1(xout)

s.t. Aξxout + Bξxin + Tξu = dξ

x ≤ xout ≤ x , u ≤ u ≤ u

and return xout .
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SDDP
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SDDP

V0

x
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x

t=1
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Lower polyhedral approximation V 0 = Bt(V 1) of V0
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SDDP

V0

x
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V1

x

t=1

K

x

t=2

Assume that we have lower polyhedral approximations of Vt
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SDDP
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SDDP
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Algorithm 3: SDDP algorithm

1 V 0
t ≡ −∞ and V

0
t ≡ +∞ for t ∈ [T ];

2 for k ∈ N do
/* Forward phase: compute trajectory */

3 Set xk0 = x0;
4 for t = 1→ T − 1 do
5 Randomly draw ξkt ∈ supp(ξt) ; (node seletion)

6 xkt = Ft(V
k−1
t+1 )(x

k
t−1, ξ

k
t ) ; (forward operator)

/* Backward phase: update approximations */

7 Set V k
T ≡ 0;

8 for t = T − 1→ 1 do
9 for ξ ∈ Ξt do

10 Solve Ḃt(V k
t+1)(x

k
t−1, ξ) for α̇ξ and β̇ξ;

11 Compute αk
t :=

∑
ξ∈Ξt

pξα̇
k
t,ξ and, βkt :=

∑
ξ∈Ξt

pξβ̇
k
t,ξ;

12 Update V k
t := max

(
V k−1

t , ⟨αk
t , ·⟩+ βkt

)
;
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Various numerical comments

You need to use the same solver for training and simulating,
otherwise you can go into unexplored territory.

The forward pass requires solving T one-stage LPs; the backward
pass require T × |Ξt | one-stage LPs.

Most SDDP implementation ask for a lower-bound. This is not
necessary if the first forward pass can be replaced by an admissible
trajectory.

Standard SDDP implementation compute N ≈ 200 trajectories in the
forward pass, and then add N cuts in the backward pass.

An easy alternative consists in keeping the |Ξt | per-ξ cuts of V̇t

instead of averaging them ; multicut version of SDDP.
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Stopping tests

There are various ways of deciding to stop SDDP

Statistical stopping test:
▶ Estimate the cost associated to the current policy (an upper bound) by

Monte Carlo and compare it to the lower bound.6

▶ Statistically test if the lower-bound is no longer increasing

Exact stopping test:
▶ Maintain an exact upper bound and stop when the gap is small enough.
▶ Computing exact upper bounds can be done using convexity or duality.

➥ More on that in Bernardo da Costa talk (Tuesday 12:40-14:30 Meeting
B).

Pragmatic criterion:
▶ Number of iterations
▶ Time limit

6The correct way to do say is to set an a-priori gap ε and compare the upper end of
a Monte-Carlo confidence interval of the current policy, to the (exact) lower bound.
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Cut selection

With each iteration, we add new cuts to the approximations of the
value functions.

Some of these cuts become useless as the algorithm progresses, and
just burden the LP solver

Cut selection are here to prune some of these constraints, usually in a
heuristic way.

Level-1 selection might be the most common:
▶ Keep in memory all trial trajectories
▶ Every K ≈ 50 iterations, mark, for each of the past trial points, which

of the cuts are active
▶ Delete all inactive cuts
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Node selection

For a given in-state xkt−1, and there are |Ξt | possible out-state xkt−1,ξ.
Choosing which one is kept is the node selection procedure:

1 random node selection: the noise ξkt used to obtain xkt in the forward
pass is selected randomly, independently of other node selection.

➥ the most common, but hardest to study.

2 problem-child node selection: we choose the ξkt that lead to a xkt
maximizing the current gap estimate.

➥ some numerical advantages, and good theoretical guarantees.

3 importance sampling node selection: the noise is selected randomly
according to a specific probability measure.

➥ Can be numerically efficient, especially in the risk averse case.

Vincent Leclère TFDP algorithms July 22nd, 2023 32 / 42



Node selection

For a given in-state xkt−1, and there are |Ξt | possible out-state xkt−1,ξ.
Choosing which one is kept is the node selection procedure:

1 random node selection: the noise ξkt used to obtain xkt in the forward
pass is selected randomly, independently of other node selection.

➥ the most common, but hardest to study.

2 problem-child node selection: we choose the ξkt that lead to a xkt
maximizing the current gap estimate.

➥ some numerical advantages, and good theoretical guarantees.

3 importance sampling node selection: the noise is selected randomly
according to a specific probability measure.

➥ Can be numerically efficient, especially in the risk averse case.

Vincent Leclère TFDP algorithms July 22nd, 2023 32 / 42



Node selection

For a given in-state xkt−1, and there are |Ξt | possible out-state xkt−1,ξ.
Choosing which one is kept is the node selection procedure:

1 random node selection: the noise ξkt used to obtain xkt in the forward
pass is selected randomly, independently of other node selection.

➥ the most common, but hardest to study.

2 problem-child node selection: we choose the ξkt that lead to a xkt
maximizing the current gap estimate.

➥ some numerical advantages, and good theoretical guarantees.

3 importance sampling node selection: the noise is selected randomly
according to a specific probability measure.

➥ Can be numerically efficient, especially in the risk averse case.

Vincent Leclère TFDP algorithms July 22nd, 2023 32 / 42



Node selection

For a given in-state xkt−1, and there are |Ξt | possible out-state xkt−1,ξ.
Choosing which one is kept is the node selection procedure:

1 random node selection: the noise ξkt used to obtain xkt in the forward
pass is selected randomly, independently of other node selection.

➥ the most common, but hardest to study.

2 problem-child node selection: we choose the ξkt that lead to a xkt
maximizing the current gap estimate.

➥ some numerical advantages, and good theoretical guarantees.

3 importance sampling node selection: the noise is selected randomly
according to a specific probability measure.

➥ Can be numerically efficient, especially in the risk averse case.

Vincent Leclère TFDP algorithms July 22nd, 2023 32 / 42



Regularization

Cutting plane algorithm are known to be unstable, and greatly benefit
from regularization.

Multiple approaches have been proposed to regularize SDDP:
▶ add a quadratic penalty term to the last iterate

➥ quite surprising as the state depend on the scenario
▶ use a level-regularization approach

➥ require upper-bounds and some parameter tweaking

➥ Still an active research area
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Dual SDDP

Dual SDDP leverage Fenchel / Lagrangian duality to compute exact
upper-bound.

The basic idea is the following (MSLP case): if Vt = Bt(Vt+1), then

V ⋆
t = B‡t (V ⋆

t+1), where B
‡
t is an explicit Bellman operator7

We can thus use SDDP on the V ⋆
t = B‡t (V ⋆

t+1) recursion, which yields
an exact lower bound of V ⋆

t .

Taking again the transform, the lower bound in the dual become an
upper bound in the primal

7There are some technical tricks I’m glossing over...
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Without Relatively Complete Recourse: Feasibility cuts

Relatively Complete Recourse is required for SDDP to work in
practice and in theory.

Without RCR we can use feasibility cut (see standard introduction on
Bender’s decomposition)

However, to ensure convergence we need to stop the forward pass as
soon as we encounter a feasability cut and propagate it backward,
which is time consuming (we can never reach the horizon)

➥ In practice it seems that using slack variable with high / increasing
cost work best (and we can still use feasibility cuts in the end).
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Non stagewise independent setting

Various ways to extend SDDP to non-stagewise independent setting:

(sampled) Nested-Benders In a fully dependent tree we associate a value
function per node of the tree and iteratively add cuts.

Autoregressive Processes : for uncertainty in the right-hand side we can
consider an Autoregressive process
dt = εt + βt +

∑k
τ=1 αkdt−τ , then we can consider an

extended state (x t , dt−1, . . . dt−k), with linear dynamics and
apply SDDP.

Markov Chain If the noise is a Markov Chain, or has a law which depends
on a Markov Chain, we can also use a variant of SDDP. See
David Wozabal talk for that.
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Risk averse setting

We consider a nested risk-averse problem, where the Bellman
operator is defined as

Bt(Ṽt+1)(xin) = sup
q∈Q

∑
ξ∈Ξt

qξḂt(Ṽt+1)(xin, ξ)

where Q is a set of vectors representing probability measures.

Then the DP equations holds, by construction of nested-risk
measures, and we can run the SDDP algorithm almost
straightforwardly.

The only tricky point is that the averaging of cut coefficient should
be done with respect to the maximazing q.
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Rectangular robustness

Consider a robust approach, and assume that the robust set is a
Cartesian product Ξ1 × · · · × ΞT .

It is equivalent to a nested risk-averse approach, where the set Q
contains all diracs.

The reference algorithm is the Robust Dual Dynamic Programming
(RDDP) algorithm, which use a problem-child node selection
approach
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Infinite horizon

There have been multiple proposition to extend SDDP to an infinite
horizon framework, where we solve

V = B(V )

The core idea is to have forward pass going further and further

An important extension is the periodic setting, which is relevant for
long-term energy applications for example.
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Conclusion

TFDP algorithm are Dynamic Programming methods that iteratively
refine approximations of the value functions

They are less subject to the curse of dimensionality as:
▶ they leverages structure of the problem to have global approximation
▶ they smartly determine where to refine approximations along iterations

Among them SDDP, for convex problem, is the most well-known and
used algorithm

It has numerous usefull extensions:
▶ to risk-averse or distributionally robust model
▶ to Markov Chain noises
▶ to integer variables
▶ to stochastic or infinite horizon
▶ . . .
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