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Satisfy a demand with N
units of production at
minimal cost.

Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning

U
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compare total
production and demand
and updates the price,
and so on...
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A Few Questions

In which space lives the multiplier process λ ? For which
duality ?

L2

L1(
L∞)?

What are the relations between the primal and dual problems ?

Can we solve the subproblems by Dynamic Programming ?
 No!

How to update the multiplier process ?
Uzawa Algorithm
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Problem Statement

We consider the following (primal) problem:(
P
)

min
u∈Uad

J(u) ,

s.t. Θ(u) ∈ −C .

Where U and V are two Hausdorff spaces, and

J : U → R̄ is an objective function ,

Θ : U → V is a constraint function (to be dualized),

C ⊂ V is a cone of constraints,

Uad ⊂ U is a constraint set (not to be dualized).
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Dual Problem

The primal problem can be written(
P
)

min
u∈Uad

max
λ∈C?

J(u) +
〈
λ ,Θ(u)

〉
V?,V ,

where C ? ⊂ V? is given by

C ? =
{
λ ∈ V? | ∀x ∈ C ,

〈
λ , x

〉
V?,V ≥ 0

}
.

The dual problem of Problem
(
P
)

reads(
D
)

max
λ∈C?

min
u∈Uad

J(u) +
〈
λ ,Θ(u)

〉
V?,V .
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Gradient of the Dual

Assume that U = U?, and V = V? are Hilbert spaces.
Recall the dual problem

(
D
)

as

max
λ∈C?

min
u∈Uad

{
J(u) +

〈
λ ,Θ(u)

〉
V?,V

}
︸ ︷︷ ︸

:=ϕ
(
λ
) .

Under some regularity and unicity conditions, if u](λ) is a
minimizer of the above problem, then

Θ
(
u](λ)

)
= ∇ϕ

(
λ
)
.
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Uzawa Algorithm

Data: Initial multiplier λ(0) ∈ V, step ρ > 0 ;

Result: Optimal solution u] and multiplier λ] ;
repeat

u(k) ∈ arg min
u∈Uad

{
J(u) +

〈
λ(k) ,Θ(u)

〉}
,

λ(k+1) = projC?
(
λ(k) + ρ Θ

(
u(k)

))
.

until Θ(u(k)) ∈ −C ;
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L∞ setting

From now on we consider that

U = L∞
(
Ω,F ,P;Rn

)
,

V = L∞
(
Ω,F ,P;Rm

)
,

C = {0}.

Where the σ-algebra is not finite (modulo P). Hence, U and V are
non-reflexive, non-separable, Banach spaces.
If the σ-algebra is finite modulo P, U and V are finite dimensional
spaces, and the usual result applies.
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Perks of an Hilbert Space

Fact

In an Hilbert space H we know that

i) the weak and weak? topologies are identical,

ii) the space H and its topological dual can be identified.

Point i) allows to formulate existence of minimizer results:

weakly closed bounded =⇒ weakly compact;

for a convex set: weakly closed ⇐⇒ closed;

for a convex function: weakly l.s.c ⇐⇒ l.s.c.

Hence, a coercive, l.s.c. function J admits an infimum.
Point ii) allows to write gradient-like algorithm: at any iteration k ,
linear combination of λ(k) and g (k) take place in H.
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Difficulties Appearing in a Banach Space

Reflexive Banach space:

i) still holds true ( existence of minimizers)
ii) no longer true ( linear combination of u(k) ∈ E and
g (k) ∈ E? does not have any sense).

Non-reflexive Banach space E : neither i) nor ii) holds true.

E is the topological dual of a Banach space: a weakly? closed
bounded subset of E is weak? compact. Thus, weak? lower
semicontinuity and coercivity of a function J gives the
existence of minimizers of J.
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Specificities of L∞
(
Ω,F ,P;Rn

)
L∞ is the topological dual of the Banach space L1. Hence, if
J is weak? l.s.c and coercive, then J admits a minimizer.

L∞ can be identified with a subset of its topological dual(
L∞
)?

. Thus,

λ(k+1) = λ(k) + ρ Θ
(
U(k)

)
,

make sense: it is a linear combination of elements of
(
L∞
)?

.

Moreover, if λ(0) is chosen in L∞, then the sequence
{λ(k)}k∈N remains in L∞.
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Uzawa Algorithm

Data: Initial multiplier λ(0) ∈ L∞, step ρ > 0 ;

Result: Optimal solution U] and multiplier λ] ;
repeat

U(k) ∈ arg min
U∈Uad

{
J(U) +

〈
λ(k) ,Θ(U)

〉}
,

λ(k+1) = λ(k) + ρ Θ
(
U(k)

)
.

until Θ(U(k)) = 0;

Remark: numerically, other update rules (e.g. quasi-Newton) can
be used, convergence being proven when we find a multiplier λ(k)

such that Θ
(
U(k)

)
= 0.
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Existence of Solution

Theorem

Assume that:

1 the constraint set Uad is weakly? closed;

2 Θ : U → V is affine, weakly? continuous;

3 the objective function J : U → R̄ is weak? lower
semicontinuous and coercive on Uad;

4 there exists an admissible control.

Then the primal problem admits at least one solution.
Moreover for any λ ∈ L∞

(
Ω,F ,P;Rm

)
arg min
U∈Uad

{
J
(
U
)

+
〈
λ ,Θ

(
U
)〉}
6= ∅ .
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Convergence Result

Theorem

Assume that:

1 J : U → R̄ is a proper, weak? lower semicontinuous,
Gâteaux-differentiable, a-convex function;

2 Θ : U → V is affine, weak? continuous and κ-Lipschitz;

3 there exists an admissible control;

4 Uad is weak? closed convex;

5 there is an optimal L1-multiplier to the constraint Θ
(
U
)

= 0;

6 the step ρ is such that 0 < ρ < 2a
κ .

Then, Uzawa algorithm is well defined and there exists a
subsequence

(
U(nk )

)
k∈N converging in L∞ toward the optimal

solution U] of the primal problem.
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Standard duality in L2 spaces I

Assume that U = L2
(
Ω,A,P;Rn

)
and V = L2

(
Ω,A,P;Rm

)
.

The standard sufficient constraint qualification condition

0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
,

is scarcely satisfied in such a stochastic setting.

Proposition

If the σ-algebra A is not finite modulo P, then for any subset
Uad ⊂ Rn that is not an affine subspace, the set

Uad =
{

U ∈ Lp
(
Ω,A,P;Rn

)
| U ∈ Uad P− a.s.

}
,

has an empty relative interior in Lp, for any p < +∞.
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Standard duality in L2 spaces II

Consider the following optimization problem:

inf
u0,U1

u2
0 + E

[
(U1 + α)2

]
,

s.t. u0 ≥ a ,

U1 ≥ 0 ,

u0 −U1 ≥W , to be dualized

where W is a random variable uniform on [1, 2].

For a < 2:

we can construct a maximizing sequence of multipliers for the
dual problem that does not converge in L2;

this is a case of non relatively complete recourse (constraints
on U1 induce stronger constraint on u0;

however there exists an optimal multiplier in
(
L∞
)?
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Constraint qualification in
(
L∞,L1

)
From now on, we assume that

U = L∞
(
Ω,A,P;Rn

)
,

V = L∞
(
Ω,A,P;Rm

)
,

C = {0} ,
where the σ-algebra A is not finite modulo P.1

We consider the pairing
(
L∞,L1

)
with the following topologies:

σ
(
L∞,L1

)
: weak? topology on L∞ (coarsest topology such

that all the L1-linear forms are continuous),

τ
(
L∞,L1

)
: Mackey-topology on L∞ (finest topology such

that the continuous linear forms are only the L1-linear forms).

1If the σ-algebra is finite modulo P, U and V are finite dimensional spaces.
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Weak? closedness of linear subspaces of L∞

Proposition

Let Θ : L∞
(
Ω,A,P;Rn

)
→ L∞

(
Ω,A,P;Rm

)
be a linear operator,

and assume that there exists a linear operator
Θ† : L1

(
Ω,A,P;Rm

)
→ L1

(
Ω,A,P;Rn

)
such that:〈

V ,Θ(U)
〉

=
〈
Θ†(V) ,U

〉
∀U, ∀V .

Then the linear operator Θ is weak? continuous.

Applications

Θ(U) = U − E
[
U
∣∣ B]: non-anticipativity constraints,

Θ(U) = AU with A ∈Mm,n(R): finite number of constraints.
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A duality theorem

(
P
)

min
U∈U

J(U) s.t. Θ(U) = 0 ,

with J(U) = E
[

j(U,W)
]
.

Theorem

Assume that j is a convex normal integrand, that J is continuous
in the Mackey topology at some point U0 such that Θ(U0) = 0,
and that Θ is weak? continuous on L∞

(
Ω,A,P;Rn

)
.

Then, U] ∈ U is an optimal solution of Problem
(
P
)

if and only if

there exists λ] ∈ L1
(
Ω,A,P;Rm

)
such that

U] ∈ arg min
U∈U

E
[
j(U,W) + λ] ·Θ(U)

]
,

Θ(U]) = 0.

Extension of a result given by R. Wets for non-anticipativity constraints.
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Dual approximation as constraint relaxation

The original problem is (abstract form)

min
U∈U

J(U)

s.t. Θ(U) = 0

written as

min
U∈U

max
λ

J(U) + E
[
〈λ,Θ(U)〉

]
Subsituting λ by E

(
λ
∣∣Y) gives

min
U∈U

max
λ

J(U) + E
[〈
E
(
λ
∣∣Y),Θ(U)

〉]

equivalent to

min
U∈U

J(U)

s.t. E
(
Θ(U)

∣∣Y) = 0
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Recall of the Multistage Problem

min
U

N∑
i=1

E
[ T−1∑

t=1

Li
t

(
Xi

t ,U
i
t ,Wt+1

)
+ K i

(
XT

)]
Xi

t+1 = f i
t

(
Xi

t ,U
i
t ,Wt+1

)
, Xi

0 = x i
0

Ui
t ∈ U

ad
t,i , Ui

t � Ft

N∑
i=1

θit
(
Ui

t

)
= 0  λt
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Multiplier

Process λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θit
(
Ui

t

)
︸ ︷︷ ︸

∆
(k)
t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆

(k)
t

θit
(
U

i ,(k)
t

)

Information Process
Yt+1 = f̃ (Yt ,Wt+1)

Stochastic spatial
decomposition scheme
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θit
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∆
(k)
t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆

(k)
t

θit
(
U

i ,(k)
t

)

Information Process
Yt+1 = f̃ (Yt ,Wt+1)

Main idea of DADP:
λt  µt := E

(
λt

∣∣Yt

)
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Global problem:

min{
Ui
t

}
i,t

N∑
i=1

E
[ T∑

t=1

Li
t

(
Xi

t ,U
i
t ,Wt+1

)
+ K

(
Xi

T

)]
Xi

t+1 = ft
(
Xi

t ,U
i
t ,Wt+1

)
, Xi

0 = x i
0

Ui
t ∈ Uad

t,i , Ui
t � Ft

n∑
i=1

θit
(
Ui

t

)
= 0

Solved by DP with state
(
X1

t , . . . ,X
N
t

)
:

Vt(x) = min
{Ui

t}i

N∑
i=1

E
[
Li
t

(
x i
t , u

i
t ,Wt+1

)
+ Vt+1

(
Xt+1

)]
Xi

t+1 = ft
(
x i
t ,U

i
t ,Wt+1

)
,

ui
t ∈ Uad

t,i ,
n∑

i=1

θit
(
Ui

t

)
= 0
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Subproblem of Stochastic Decomposition

min{
Ui
t

}
t

E
[ T∑

t=1

Li
t

(
Xi

t ,U
i
t ,Wt+1

)
+ 〈λt , θt

(
Ui

t

)
〉+ K

(
Xi

T

)]
Xi

t+1 = ft
(
Xi

t ,U
i
t ,Wt+1

)
, Xi

0 = x i
0

Ui
t ∈ Uad

t,i , Ui
t � Ft

Solved by DP with state
(
W1, . . . ,Wt

)
:

Vt

({
wτ
}t−1

1

)
= min
{Ui

t}
E
[
Li
t

(
x i
t , u

i
t ,Wt+1

)
+ 〈λt , θt

(
Ui

t

)
〉+ Vt+1

({
Wτ

}t
1

)∣∣∣
{

Wτ

}t−1

1
=
{
wτ
}t−1

1

]
Xi

t+1 = ft
(
x i
t ,U

i
t ,Wt+1

)
,

ui
t ∈ Uad

t,i ,
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Subproblem of DADP

min{
Ui
t

}
t

E
[ T∑

t=1

Li
t

(
Xi

t ,U
i
t ,Wt+1

)
+ 〈µt

(
Yt

)
, θt
(
Ui

t

)
〉+ K

(
Xi

T

)]
Xi

t+1 = ft
(
Xi

t ,U
i
t ,Wt+1

)
, Xi

0 = x i
0

Ui
t ∈ Uad

t,i , Ui
t � Ft

Yt+1 = f̃t
(
Yt ,Wt+1

)
Solved by DP with state

(
Xi

t ,Yt

)
:

V i
t (x , y) = min

{Ui
t}

E
[
Li
t

(
x i
t , u

i
t ,Wt+1

)
+ 〈µt

(
Yt

)
, θt
(
Ui

t

)
〉+ Vt+1

(
Xt+1,Yt+1

)]
Xi

t+1 = ft
(
x i
t ,U

i
t ,Wt+1

)
,

ui
t ∈ Uad

t,i ,

Yt+1 = f̃t
(
y ,Wt+1

)
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Main idea of DADP: λt  µt := E
(
λt

∣∣Yt

)
Multiplier

Process λ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

N∑
i=1

θit
(
Ui

t

)
︸ ︷︷ ︸

∆
(k)
t

= 0 ?

λ
(k

+
1

)
t

=
λ

(k
)

t
+
ρ

∆
(k

)
t

θit
(
U

i ,(k)
t

)

Main problems:

Subproblems not easily
solvable by DP

λ(k) live in a huge space

Multiplier

function µ
(k)
t

· · ·Solving
subproblem 1

Solving
subproblem N

E
( N∑

i=1

θit
(
Ui

t

)∣∣∣∣Yt = y

)
︸ ︷︷ ︸

∆
(k)
t (y)

= 0 ?

µ
(k

+
1

)
t

(·)
=
µ

(k
)

t
(·)

+
ρ

∆
(k

)
t

(·)

θit
(
U

i ,(k)
t

)

Advantages:

Subproblems solvable by DP
with state

(
Xi

t ,Yt

)
µ(k) live in a smaller space
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3 Interpretations of DADP

DADP as an approximation of the optimal multiplier

λt  E
(
λt

∣∣Yt

)
.

DADP as a decision-rule approach in the dual

max
λ

min
U

L
(
λ,U

)
 max

λt�Yt

min
U

L
(
λ,U

)
.

DADP as a constraint relaxation

n∑
i=1

θit
(
Ui

t

)
= 0  E

( n∑
i=1

θit
(
Ui

t

)∣∣∣∣Yt

)
= 0 .
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Theoretical Results

Consistence of the approximation (if we consider a sequence
of approximated problems).

Existence of multiplier of the coupling constraint.

Convergence of the decomposition algorithm for a given
relaxation.

Lower and upper bounds on the original problem.

A posteriori verification allowing for better multiplier update.
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Choosing an Information Process Y

Perfect memory: Yi
t =

(
W0, . . . ,Wt

)
.

 equivalent to original problem, no numerical gain.

Minimal information: Yi
t ≡ cste.

 equivalent to replacing a.s. constraint by expected
constraint. Subproblems solved efficiently (state Xi

t),
multiplier is deterministic.

Static information:Yi
t = hi

t

(
Wt

)
.

 Subproblems solved efficiently (state Xi
t).

Dynamic information: Yi
t+1 = hi

t

(
Yi

t ,Wt+1

)
.

 A number of possibilities. Some ideas:
mimicking the trajectory of the state of another unit (phantom
state),
mimicking the control of other units,
Markov chain representing rougly the general state of the
system.
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Numerical Advantages of a finitely supported Y

Assume that each noise Wt take w values, and the constraint
function take value in R.

Then the multiplier λt of the almost sure constraint at time t
lives in Rwt .

Assume that the information process at time t take y values,
then the multiplier of the relaxed constraint µt lives in Ry .

Moreover each subproblems take “only” roughly y times more
computational effort to solve than the subproblem with local
state Xi

t .
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Back to Admissibility

Consider an information process Yt+1 = f̃t
(
Yt ,Wt+1

)
.

For a multiplier process µ
(k)
t we obtain local Bellman function

Ṽ i
t (x i , y) = min

ui
E
[

Li
t

(
x i , ui ,Wt+1

)
+ Ṽ i

t

(
x i
t+1, yt+1

)]
Xi

t+1 = ft
(
x i , ui ,Wt+1

)
Yt+1 = f̃t

(
y ,Wt+1

)
An admissible strategy is given by

πad
t (x , y) ∈ arg min

{ui}i∈[[1,N]]

E
[ N∑

i=1

(
Li
t

(
x i , ui ,Wt+1

)
+ Ṽ i

t

(
Xt+1,Yt+1

))]
Xi

t+1 = f i
t

(
x i , ui ,Wt+1

)
, ∀i

Yt+1 = f̃t
(
y ,Wt+1

)
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Problem Specification

We consider a 3 dam problem, over 12 time steps.

We relax each constraint with a given information process Yi .

All random variable are discrete (noise, control, state).

We test the following information processes:

Constant information equivalent to replace the a.s. constraint
by an expected constraint,

Part of noise the information process is the inflow of the
above dam Yi

t = Wi−1
t ,

Phantom state the information process mimick the optimal
trajectory of the state of the first dam (by
statistical regression over the known optimal
trajectory in this case)
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Numerical Results on the 3 Dams Example

DADP - E DADP - Wi−1 DADP - dyn. DP

Nb of it. 165 170 25 1

Time (min) 2 3 67 41

Lower Bound −1.386× 106 −1.379× 106 −1.373× 106

Final Value −1.335× 106 −1.321× 106 −1.344× 106 −1.366× 106

Loss −2.3% −3.3% −1.6% ref.

Table: Numerical results on the 3-dam problem
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Summing up DADP

Choose an information process Y following
Yt+1 = f̃t

(
Yt ,Wt+1

)
.

We relax the almost sure coupling constraint into a
conditional expectation one and apply a price decomposition
scheme to the relaxed problem.

The subproblems can be solved by dynamic programming with
the state

(
Xi

t ,Yt

)
.

We give a consistency result (family of information process), a
convergence result (fixed information process) and an
existence of multiplier condition.
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The end

Thanks for your attention!

More information2 on theoretical results tomorrow at ENPC,
amphi Caquot I, (14h).

2and hopefully some champagne
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