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Introduction

Large scale stochastic problem are hard to solve.

Two ways of attacking such problems :

decompose (spatially) the problem and coordinate solutions,
construct easily solvable approximations (Linear
Programming).

Behind the name SDDP there is three different things:

a class of algorithm,
a specific implementation of the algorithm,
a software implementing this method develloped by PSR.

The aim of this talk is to give you an idea of how the class of
algorithm is working.
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Problem considered

We consider a discrete and finite time optimal control problem

min
u∈UT

T−1∑
t=0

Lt(xt , ut) + K (xT ),

s.t. xt+1 = ft(xt , ut).

Where
xt ∈ X is the state at time t,
ut ∈ U the control applied at time t.

We assume that
ft are linear,
U and X are compact.

We consider convex cost Lt(xt , ut), and a final cost K (xT ).
A policy is a sequence of functions π = (π1, . . . , πT−1) giving
for any state x a control u.
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Introducing Bellman’s function

This problem can be solved by dynamic programming. In this case
we introduce the Bellman function defined by{

VT (x) = K (x),
Vt(x) = minut∈U

{
Lt(x , ut) + Vt+1 ◦ ft(x , ut)

}
= Tt(Vt+1)(x)

where

Tt(A) : x 7→ min
ut∈U

{
Lt(x , ut) + A ◦ ft(x , ut)

}
.

Indeed an optimal policy for this problem is given by

πt(x) ∈ arg min
ut∈U

{
Lt(x , ut) + Vt+1 ◦ ft(x , ut)

}
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Properties of Bellman operator

Monotonicity:

∀x ∈ X, V (x) ≤ V (x) ⇒ ∀x ∈ X,
(
T V

)
(x) ≤

(
T V

)
(x).

Convexity: if Lt is jointly convex in (x , u), V is convex, and ft
is affine then

x 7→
(
T V

)
(x) is convex.

Linearity: for any piecewise linear function V , if Lt is also
piecewise linear, and ft affine, then

x 7→
(
T V

)
(x) is piecewise linear.
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Duality property

Consider J : X× U→ R jointly convex.

Define
ϕ(x) = min

u∈U
J(x , u),

Then we can obtain a subgradient λ ∈ ∂ϕ(x0) as the dual
multiplier of

min
x ,u

J(x , u),

s.t. x0 − x = 0 [λ]

(This is the marginal interpretation of the multiplier).

In particular it means that

ϕ(·) ≥ ϕ(x0) + 〈λ, · − x0〉.

V. Leclère Introduction to SDDP October 29, 2013 12 / 29
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General idea

The SDDP algorithm recursively constructs an approximation
of each Bellman function as the supremum of a number of
affine functions.

At stage k we have V
(k)
t lower approximations of Vt and we

want to construct a better approximation.

We follow an optimal trajectory (x
(k)
t )t of the approximated

problem and add a cut for each Bellman function.
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Stage k of SDDP description (1/2)

Began a loop forward in time by setting t = 0 and x
(k)
t = x0,

solve

min
x ,u

Lt(x , u) + V
(k)
t+1 ◦ ft(x , u),

x = x
(k)
t . [λ

(k+1)
t ]

We call
β

(k+1)
t the value of the problem,

λ
(k+1)
t a multiplier of the constraint x = x

(k)
t ,

u
(k)
t an optimal control.

This can also be written as

β
(k+1)
t = Tt

(
V

(k)
t+1

)(
x

(k)
t

)
,

λ
(k+1)
t ∈ ∂Tt

(
V

(k)
t+1

)(
x

(k)
t

)
.
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Stage k of SDDP description (2/2)

Thus,

β
(k+1)
t + 〈λ(k+1)

t , · − x
(k)
t 〉 ≤ Tt

(
V

(k)
t+1

)
≤ Tt (Vt+1) = Vt .

Thus x 7→ β
(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉
is a cut.

We update our approximation of Vt by defining

V
(k+1)
t = max

{
V

(k)
t , β

(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉}
.

V
(k+1)
t is convex and lower than Vt .

set
x

(k)
t+1 = ft

(
x

(k)
t , u

(k)
t

)
.

Upon reaching time t = T we have completed iteration k of
the algorithm.
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Initialisation and stopping rule

To initialize the algorithm it seems that we need a lower
bound (that exist) to all value function.

In fact we can choose V
(0)
t = 0 in order to compute the cuts,

and simply set V
(1)
t equal to the first cut, which means that

we “forget” V (0) in the maximum that determine V
(1)
t .

At any step k we have a admissible, non optimal solution
(u(k))t , with

an upper bound

T−1∑
t=0

Lt
(
x

(k)
t , u

(k)
t

)
+ K

(
x

(k)
T

)
,

a lower bound V
(k)
0 (x0).

A reasonable stopping rule for the algorithm is given by
checking that the (relative) difference of the upper and lower
bound is small.
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What’s new ?

Now we introduce some random variables Wt in our problem. This
complexify the algorithm in different ways :

we need some probabilistic assumptions;

for each stage k we need to do a forward phase that yields a

trajectory (x
(k)
t )t , and a backward phase that gives a new cut;

we can not compute an exact upper bound for the problem’s
value.
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Problem statement

min
π

E

(
T−1∑
t=0

Lt(Xt ,Ut ,Wt) + K (XT )

)
,

s.t. Xt+1 = ft(Xt ,Ut ,Wt),

Ut = πt(Xt ,Wt).

Where (Wt)t∈{1,··· ,T} is assumed to be a white noise.

V. Leclère Introduction to SDDP October 29, 2013 18 / 29
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Stochastic Dynamic Programming

This problem can be solved by dynamic programming. In this case
we introduce the Bellman function defined by

VT (x) = K (x),

V̂t(x ,w) = minut∈U Lt(x , ut ,w) + Vt+1 ◦ ft(x , ut ,w),

Vt(x) = E
(
V̂t(x ,Wt)

)
.

(1)

Indeed an optimal policy for this problem is given by

πt(x ,w) ∈ arg min
ut∈U

{
Lt(x , ut ,w) + Vt+1 ◦ ft(x , ut ,w)

}

V. Leclère Introduction to SDDP October 29, 2013 19 / 29
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Bellman operator

For any time t, and any function A mapping the set of states and
noises X×W into R we define :

T̂t(A)(x ,w) := min
ut∈U

Lt(x , ut ,w) + A ◦ ft(x , ut ,w).

Thus the Bellman equation simply reads{
VT (x) = K (x),

Vt(x) = Tt(Vt+1)(x) := E
(
T̂t(Vt+1)(x ,Wt)

)
.

The Bellman operator have the same properties as in the
deterministic case.
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Duality theory (1/2)

Consider that we know V k+1
t+1 ≤ Vt+1.

β̂
(k+1)
t (w) = min

x ,u
Lt(x , u,w) + V

(k+1)
t+1 ◦ ft(x , u,w),

s.t x = x
(k)
t [λ̂

(k+1)
t (w)]

Which can also be written

β̂
(k+1)
t (w) = T̂t

(
V

(k)
t+1

)
(x ,w),

λ̂
(k+1)
t (w) ∈ ∂x T̂t

(
V

(k)
t+1

)
(x ,w).

Thus for all w ,

β̂
(k+1)
t (w)+

〈
λ̂

(k+1)
t (w), x − x

(k)
t

〉
≤ T̂t

(
V

(k)
t+1

)
(x ,w) ≤ V̂t(x ,w).
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Duality theory (2/2)

Thus we have an affine minorant for each realisation of Wt .
Replacing w by the random variable Wt and taking the
expectation yields the following affine minorant

β
(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉
≤ Vt ,

where β
(k+1)
t := E

(
β̂

(k+1)
t (Wt)

)
= Tt

(
V

(k)
t+1

)
(x),

λ
(k+1)
t := E

(
λ̂

(k+1)
t (Wt)

)
∈ ∂xTt

(
V

(k)
t+1

)
(x).
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At the beginning of step k

At the beginning of step k we suppose that we have, for each time
step t an approximation V k

t of Vt verifying

V k
t ≤ Vt ,

V k
T = K ,

V k
t is convex.
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Forward path : define a trajectory

Randomly select a scenario (w0, . . . ,wT−1) ∈WT .

Define a trajectory (x
(k)
t )t=0,...,T by

x
(k)
t+1 = ft(x

(k)
t , u

(k)
t ,wt),

where u
(k)
t is an optimal solution of

min
u∈U

Lt
(
x

(k)
t , u,wt

)
+ V

(k)
t+1 ◦ ft

(
x

(k)
t , u,wt

)
.

This trajectory is given by the optimal policy where Vt is

replaced by V
(k)
t .
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Backward path : add cuts

For any t we want to add a cut to the approximation of Vt .

At time t solve, for any w possible

β̂
(k+1)
t (w) = min

x ,u
Lt(x , u,w) + V

(k+1)
t+1 ◦ ft(x , u,w),

s.t x = x
(k)
t [λ̂

(k+1)
t (w)]

Compute λ
(k+1)
t = E

(
λ

(k+1)
t (Wt)

)
and

β
(k+1)
t = E

(
β

(k+1)
t (Wt)

)
.

Add a cut

V
(k+1)
t (x) = max

{
V

(k)
t (x), β

(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉}
Go one step back in time : t ← t − 1. Upon reaching t = 0
we have completed step k of the algorithm.
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Initialization and stopping rule

In order to accelerate the convergence it can be useful to
bypass a few forward paths by abritrarily choosing some

trajectories (x
(k)
t )t .

We have a lower bound given by V
(k)
0 (x0).

The upper bound is more complicated (expectation over the
whole process (W0, . . . ,WT−1)), but can be estimated by
Monte-Carlo methods, and we have no control over the error
of our solution.

A heuristic stopping rule consist in stopping the algorithm if
the lower bound is in the confidence interval of the upper
bound for a determined number of Monte-Carlo simulation.
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A few other implementation

We presented DOASA : select one scenario (one realisation of
(W1, . . . ,WT−1)) to do a forward and backward path.
Classical SDDP : select a number N of scenarios to do the
forward path (computation can be parallelized). Then during
the backward path we add N cuts to Vt before computing the
cuts on Vt−1.

CUPPS algorithm suggest to use V
(k)
t+1 instead of V

(k+1)
t+1 in

the computation of the cuts. In practice :
select randomly a scenario (wt)t=0,...,T−1;

at time t we have a state x
(k)
t , we compute the new cut for Vt ;

choose the optimal control corresponding to the realization

Wt = wt in order to compute the state x
(k)
t+1 where the cut for

Vt+1 will be computed, and goes to the next step.

We can compute some cuts before starting the algorithm. For
example by bypassing the forward phase by choosing the

trajectory (x
(k)
t )t=0,...,T .
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SDDP and risk

The problem studied was risk neutral.

However a lot of works has been done recently about how to
solve risk averse problems.

Most of them are using CVAR, or a mix between CVAR and
expectation.

Indeed CVAR can be used in a linear framework by adding
another variable.

Another easy way is to use “composed risk measures”.

Finally a convergence proof with convex costs (instead of
linear costs) exists. However it require to solve non-linear
problems.
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Conclusion

SDDP is an algorithm, more precisely a class of algorithms that

exploit convexity of the value functions (from convexity of
costs...);

does not require discretization;

construct outer approximations of Vt , those approximations
being precise only “in the right places”;

gives bounds :

real lower bound V
(k)
0 (x0),

estimated (by Monte-Carlo) upper bound;

construct linear-convex approximations, thus enabling to use
linear solver like CPLEX,

have some proof of asymptotic convergence.
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