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Motivations

An hydroelectric stock

st = st−1 − ut + ξt

where, at time t:
I st is the amount of water
I ut is the water turbined
I ξt is the inflow
I pt is the price

Min
(ut)t=1:T

E

[
T∑
t=1

−ptut + K (sT )

]
s.t. s0 = sinit (initial stock)

st = st−1 − ut + ξt (dynamic)

0 ≤ st ≤ s̄t (state constraints)

σ(ut) ⊂ σ(ξ1, . . . , ξt) (information constraints)
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Introducing the value function

Vt0(s) := Min
(ut)t=t0:T

E

[
T∑

t=t0

ptut + K (sT )

]
s.t. st0 = s (Initial stock)

st = st−1 − ut + ξt (dynamic)

0 ≤ st ≤ s̄t (state constraints)

σ(ut) ⊂ σ(ξ1, . . . , ξt) (information constraints)

Vt0(s) is the optimal value of the problem starting at t0 with stock s

V0(sinit) is the value of the original problem

dVt(s)

ds
is the marginal value of stock
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Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 4 / 30



Dynamic Programming
Under a crucial stagewise independence assumption (i.e. (ξt)t∈[T ] is a
sequence of independent random variables), we have the Dynamic
Programming equation

Vt(s) = Eξt

[
min
ut

{
−ptut︸ ︷︷ ︸

current cost

+Vt+1(s − ut + ξt)︸ ︷︷ ︸
cost-to-go

}]

Algorithm 1: Discretized
Stochastic Dynamic Programming

1 VT ≡ K ; Vt ≡ 0
2 for t : T − 1→ 0 do
3 for s ∈ S do
4 for ξ ∈ Ξ do
5 v̂ = min

u∈U
−ptu +

Vt+1(s − u + ξ)
6 Vt(s) += P(ξt = ξ)v̂

time

x1

x2
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From Dynamic Programming to SDDP

DP is a flexible tool, hampered
by the curses of dimensionality

Numerical illustration (7 dams):
I T = 52 weeks
I |S | = 1007 possible states
I |U| = 107 possible controls
I |ξt | = 10 (1052 scenarios)

å ≈ 2 days on today’s fastest
super-computer
(3.106 years for 10 dams)

å Can be solved1 in ≈ 1 minute
(≈ 3 minutes for 10 dams)

1Approximately, depending on the problem and precision required...
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How can we be so much faster ?

Structural assumptions:
I convexity
I continuous state

å duality tools

Sampling instead of exhaustive computation

Iteratively refining value function estimation at ”the right places” only

å Stochastic Dual Dynamic Programming (SDDP) which
I has been around for 30 years
I is widely used in the energy community
I has lots of extensions and variants
I some convergence results, mainly asymptotic
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Trajectory Following Dynamic Programming

time

x1

x2

First forward pass : computing trajectory
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

First forward pass : computing trajectory
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Trajectory Following Dynamic Programming

time

x1

x2

First backward pass : refining approximation (adding cuts)
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Trajectory Following Dynamic Programming
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

second forward pass : computing trajectory
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

second backward pass : refining approximation (adding cuts)
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Trajectory Following Dynamic Programming
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

third forward pass : computing trajectory
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
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Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 7 / 30



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
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Trajectory Following Dynamic Programming

time

x1

x2

And so on...
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Problem setting

The generic Multistage Stochastic Program considered reads

min E
[ T∑
t=1

`t(x t , ξt)
]

(MSP)

s.t. x t ∈ Xt(x t−1, ξt) ∀t
σ(x t) ⊂ σ({ξτ}τ∈[t]) ∀t

Note that:
I finite, discrete time
I contraints are stagewise independent
I cost could depend on x t−1 or ut if needed
I risk-neutral2

2can be relaxed
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Backward Bellman operators and Dynamic Programming
Define the cost-to-go function

Vt0 (x) = min E
[ T∑
t=t0+1

`t(x t , ξt)
]

s.t. x t0 = x

x t ∈ Xt(x t−1, ξt) ∀t > t0

σ(x t) ⊂ σ({ξτ}τ∈[t]) ∀t > t0

Assuming that (ξτ )τ∈[T ] is stagewise independent, we have

Vt = Bt(Vt+1)

where the Backward Bellman operator Bt is defined

B̂t(Ṽ ) :=


Rnt × Ξt+1 → R ∪ {+∞}
(xt , ξt+1) 7→ min

xt+1∈Xt+1(xt ,ξt+1)
`t+1(xt+1, ξt+1)︸ ︷︷ ︸

transition costs

+ Ṽ (xt+1)︸ ︷︷ ︸
cost-to-go

Bt(Ṽ ) :xt 7→ E
[
B̂t(Ṽ )(xt , ξt+1)

]
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Reachable sets

We define the reachable sets

X r
0 = {x0}

X r
t =

⋃
xt−1∈X r

t−1

⋃
ξ∈Ξt

Xt(xt−1, ξ) ∀t ∈ [T ].

å this is the set of state that one can attain starting from the initial point.
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Cost-to-go induced policy and Forward Bellman operator

Denote the set of γ-optimal solution of stage-t problem

X ]γ,t(Ṽ ) : (x , ξ) 7→ γ - arg min
y∈Xt(x ,ξ)

`t(y , ξ) + Ṽ (y).

We say that Ft is a γ-forward Bellman operator of step t, if, for all
function3 Ṽ , Ft(Ṽ ) is a measurable selection of X ]γ,t(Ṽ ).

å It means that the stage problem are solve with the same deterministic
solver.

A given (collection of) forward operator (Ft)t∈[T ] define, for any

(collection of) cost-to-go approximations (Ṽt)t∈[T ], a policy.

A policy define, for any scenario (ξt)t∈[T ], a trajectory and its
associated cost.

3Lipschitz on X r
t
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Trajectory Following Dynamic Programming algorithms

TFDP algorithms refine outer-approximations of the cost-to-go functions:

1 using the current outer-approximation we compute a trajectory
(forward phase)

2 around the computed trajectory we refine the outer-approximations
(backward phase)

A few comments:

; The forward phase depends on two elements:
I the chosen forward operator Ft

I the node-selection ξkt method

; An inner cost-to-go approximation is sometimes computed and used
in the node-selection process. It is required for the complexity
analysis, but can be set to Vt .

; Outer approximation are defined as maximum of elementary functions
called cuts.
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Cuts

Consider a function F that we approximate with a function f k , called a
cut, with respect to a point xk .
We say that

1 f k is γ
t
-tight if f k(xk) ≥ F (xk)− γ

t

2 f k is valid if f k ≤ F

These definitions are used to define the outer-approximations of Vt :

V k
t := max

κ≤k
f κt

where f κt is a

Lt-Lipschitz on X r
t

valid

γ-tight

cut of Bt(V κ
t+1)
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Example of cuts

1 Affine Bender’s cut

2 Affine Lagrangian cuts

3 Affine integer cuts

4 Step cuts

5 Lipschitz-cuts

V (x)

V (x)

V (x)
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Algorithm 2: A general framework for TFDP algorithms

1 V 0
t ≡ −∞ and V

0
t ≡ +∞ for t ∈ [T ];

2 for k ∈ N do
/* Forward phase: compute trajectory */

3 Set xk0 = x0;
4 for t = 1→ T − 1 do
5 Choose ξkt ∈ supp(ξt) ; (node seletion)

6 xkt = Ft−1(V k−1
t )(xkt−1, ξ

k
t ) ; (forward operator)

/* Backward phase: update approximations */

7 Set V k
T ≡ V

k
T ≡ 0;

8 for t = T − 1→ 1 do
9 f kt ← Lt-Lipschitz on X r

t , valid and γ-tight cut

, of Bt(V k
t+1) at xkt ;

10 V k
t ← max(V k−1

t , f kt );

11 Define monotonous, L̄-Lipschitz, valid, γ̄-tight, V
k
t ;
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Inner-approximation requirements

The inner approximation V
k
t , not necessarily computed, shall satisfy the

following properties:

1 V
k
t (xkt ) ≤ Bt(V

k
t+1)(xkt ) + γ̄t (tightness)

2 V
k
t ≥ Bt(V

k
t+1) (validity)

3 V
k
t ≤ V

k−1
t (monotonicity)

4 V
k
t is L̄t-Lipschitz
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Some TFDP algorithms
Algorithm’s Node selection: Complexity

name Choice ξkt Ft V k
t V

k
t Hypothesis known

SDDP Random sampling Exact Benders cuts Vt Convex 4

EDDP Explorative Exact Benders cuts Vt Convex 4

APSDDP Random sampling Exact Adaptive partition Vt Linear 6

SDDiP Random sampling Exact Lagrangian or integer cuts Vt Mixed Integer Linear 6

MIDAS Random sampling Exact Step cuts Vt Monotonic Mixed Integer 6

SLDP Random sampling Exact Reverse norm cuts Vt Non-Convex 6

BDZ17 Problem child Exact Benders cuts Epigraph as convex hull Convex 6

BDZ18 Problem child Exact Benders × Epigraph Hypograph × Benders Convex-Concave 6

RDDP Deterministic Exact Benders cuts Epigraph as convex hull Robust 6

ISDDP Random sampling Inexact Inexact Lagrangian cuts Vt Convex 6

TDP Problem child Exact Benders cuts Min of quadratic Convex 6

ZS19 Random or Problem Regularized Generalized conjugacy cuts Norm cuts Mixed Integer Convex 4

NDDP Random or Problem Regularized Benders cuts Norm cuts Distributionally Robust 4

DSDDP Random sampling Exact Benders cuts Fenchel transform Linear 6
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Structural Assumptions I

Independence of noises

(ξt)t∈[T ] is a sequence of independent exogeneous random variables, i.e.
such that the law of ξt is independent of all decisions variables.

Compatibility of constraints

We make the following assumptions, for all t ∈ [T ],

1 `t is a proper normal integrand;

2 for all xt ∈ X r
t , the random variable `t(xt , ξt) is integrable;

3 for all xt−1 ∈ X r
t−1 and almost all ξt ∈ Ξt−1,

Xt(xt−1, ξt) is non-empty compact

å imply relatively complete recourse
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Structural Assumptions II

Lipschitz

For t ∈ [T ], we assume that

1 X r
t has a diameter smaller than Dt < +∞;

2 the expected cost-to-go function Vt is Lt-Lipschitz.

Existence of cuts

For every t ∈ [T ] and k ∈ N?, there exists at least one Lt-Lipschitz on X r
t ,

valid and γ-tight cut of Bt(V k
t+1) at xkt .

å Usually guaranteed through recourse assumptions.

Maël Forcier, Vincent Leclère Convergence of TFDP June 1st, 2022 19 / 30



Structural Assumptions II

Lipschitz

For t ∈ [T ], we assume that

1 X r
t has a diameter smaller than Dt < +∞;

2 the expected cost-to-go function Vt is Lt-Lipschitz.

Existence of cuts

For every t ∈ [T ] and k ∈ N?, there exists at least one Lt-Lipschitz on X r
t ,

valid and γ-tight cut of Bt(V k
t+1) at xkt .

å Usually guaranteed through recourse assumptions.
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Node selection

We study three node selection procedures:

1 random node selection: the noise ξkt used to obtain xkt in the forward
pass is selected randomly, independently of other node selection.

å the most common, but hardest to study.

2 problem-child node selection: we choose the ξkt that lead to a xkt
maximizing the current gap estimate.

å some numerical advantages, and good theoretical guarantees.

3 explorative node selection: we choose the ξkt that lead to a xkt as far
as possible of the set of “good points”.

å mainly theoretical.
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Effective iterations

Consider (δt)t∈[T ] > 0 and define

εT−1 := γ
T−1

+ γ̄T−1

εt := εt+1 + (L̄t+1 + Lt+1)δt+1 + γFt+1 + γ
t

+ γ̄t ∀t ∈ [T − 2]

ε0 := ε1 + (L̄1 + L1)δ1 + γF1

xkt is εt-saturated, if V
k
t (xkt )− V k

t (xkt ) ≤ εt
xkt is δt-distinguishable if ‖xkt − xκt ‖ > δt
∀κ < k | xκt is εt-saturated.

å An effective iteration k ∈ N generates either a ε0 first stage
lower-bound, or a new εt-saturated and δt-distinguishable point for at
least one t ∈ [T ].
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Convergence results: by effective iterations

Theorem (bound on effective iterations number)

Assume that δt ∈ [0,Dt ] and ηt ∈ R+ are given and εt defined as above.
Let

K :=
T−1∑
t=1

(
Dt

δt
+ 1

)nt

After at most K + 1 effective iterations we have a ε1-lower bound:

V k
0(x0) = `1(xk1 , ξ1) + V k

1(xk1 ) ≥ val(MSP)− ε1

Further, there exists, among those K̄ + 1 effective iteration, at least one
such that xk1 is an ε0-solution to problem (MSP):

`1(xk1 , ξ1) + V1(xk1 ) ≤ val((MSP)) + ε0
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Convergence result: deterministic node selection

Theorem

If the node selection is done by problem child method or explorative
method then each iteration is effective.

Theorem

Assume that each iteration is effective.
γΣ :=

∑T−1
t=1 γ

t
+ γ̄t + γFt

nt ≤ n, Dt = D, Lt = Lt = L.

Then, for every ε > γΣ, sufficiently small (e.g. such that ε ≤ 2DL + γΣ),
TFDP finds an ε-first stage solution xk1 within at most K̄ε iterations where

K̄ε :=

(
2DL

ε− γΣ

)n

(T − 1)n+1
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Convergence result: random node selection

Lemma

Assume that we draw ξkt ∼ ξt , and independently of all other ξ̃κτ as well as
(ξτ )τ∈[T−1].
Then,

P
[
Iteration k is effective.

∣∣∣Ak−1
]
≥

T∏
t=1

(
1− e

−2η2
t

D2
t

)

Theorem

Set γΣ :=
∑T−1

t=1 γ
t

+ γ̄t + γFt and choose n,D, L such that, for all

t ∈ [T − 1], nt ≤ n, Dt = D, Lt = Lt = L.
Then, for ε > γΣ, sufficiently small, the expected number of iterations of
TFDP required to find an ε-first stage solution xk1 , is bounded by

(T − 1)
(

4DL(T−1)
ε−γΣ

)n+2(T−1)
.
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The assumption we did not make

Finitely supported noise

The support of the random process (ξt)t∈[T ] is finite.

å To our knowledge all previous convergence results require this
assumption.

å Further this assumption is sometimes “abused”, using the fact that
each scenario (1052) is sampled an infinite number of time.
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Computing cuts: finitely supported case

Recall that
Bt(Ṽ )(·) = E

[
B̂t(Ṽ )(·, ξt+1)

]
Thus, we can get cut for B(Ṽ ) as average of cuts for B̂(Ṽ )

å This is easily done with the finitely supported noise assumption.

More precisely, if supp(ξt) = {ξ1, . . . , ξN}, with P(ξt = ξn) = πn:

for each n ∈ [N] compute a cut f̂n for B̂t(Ṽ )(·, ξn) at x

define f :=
∑N

n=1 πn f̂n as a cut for Bt(Ṽ ) at x
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Computing cuts: non-finitely supported case

If ξt is not finitely supported, computing a cut is harder. However, there
are at least two cases:

1 In the linear setting, using advanced polyhedral geometry tools (more
on that in a few moments), we can compute exact cuts for some
non-finitely supported noises.

2 In the convex setting, using convexity (Jensen’s and
Edmunson-Madanski) inequalities, we can derive inexact cuts.
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Algorithm variations

Node selection Two main possibilities: random or problem-child. Other
exists, like quasi-montercarlo, not covered by our results.

Forward operator Usually taken as an optimal solution, can also be the
optimal solution of a regularized problem.

Multiple forward phases It is usual to simulate multiple trajectory in the
forward phase before updating approximation to leverage
parallelization.

Multicut Included in the framework with finitely supported
assumption, unclear otherwise.

Cut selection To alleviate each iteration burden we sometimes use
heuristics to drop cuts. This usually lose the convergence
results and is not covered by our results.
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Setting extensions

We can adapt the results to other problem settings:

Minimax Can be seen as a two-player repeated stochastic game. The
results can be adapted as long as we can compute inner and
outer approximation and both reachable sets are of finite
dimension and diameter.

Robust Special case of minimax problem.

Risk-averse Using nested coherent risk-measure formulation it is a special
case of minimax. Results apply if the risk set can be
described by a finite number of parameters, in particular if
either

we consider polyhedral coherent risk measures;
or we consider mix of expectation and AVAR.
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Questions ?
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