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Multistage stochastic linear programming (MSLP)

min
(xt)t∈[T ]

E
[ T∑
t=1

c>t xt
]

s.t. Atxt + Btxt−1 6 bt ∀t ∈ [T ]

σ(xt) ⊂ σ(cτ ,Aτ ,Bτ ,bτ )τ6t ∀t ∈ [T ]

x0 ≡ x0 given

ξt = (ct ,At ,Bt ,bt)t∈[T ] is assumed to be stagewise independent.

We set VT+1 ≡ 0 and:

Vt(xt−1) := E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt


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Quantization of a MSLP

The distribution of (ct ,At ,Bt ,bt)t∈[T ] is often discretized

Vt(xt−1) ' V d
t (xt−1) :=

K∑
k=1

pk min
xt∈Rnt

c>t,kxt + Vt+1(xt)

s.t. At,kxt + Bt,kxt−1 6 bt,k︸ ︷︷ ︸
Ṽt(xt−1,ξt,k )

Scenario drawn by Monte Carlo : Sample Average Approximation
Two-stage case:

min
x∈X

c>x + V SAA
N (x) where V SAA

N (x) :=
1

N

N∑
k=1

Ṽt(x , ξ
k) (2SLPN)

By statistical results, Val(2SLPN)→N→∞ Val(2SLP).
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Exact quantization

Definition

We say that an MSLP admits an exact quantization if there exists a
finitely supported (čt , Ǎt , B̌t , b̌t)t∈[T ] that yields the same expected
cost-to-go functions, (Vt)t∈[T ].
å the MSLP is equivalent to a problem on a finite scenario tree.

Questions:

1 Under which condition does there exist an exact quantization ?

2 Can we construct a (uniform) exact quantization ?

3 How does the quantization procedure depends on the noise’s law ?
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Exact quantization and polyhedrality

We consider

V (x) = E

min
y∈Rm

c>y + Vt+1(y)

s.t. Bx + Ay 6 b


å Assume Vt+1 ≡ 0 for now1

If the problem is deterministic,
then V is polyhedral by
projection of the coupling
polyhedron

If the noise is finitely supported,
then V is polyhedral

y

x

z

P

epi(Q)

epi(V )

å Existence of exact quantization imply polyhedrality of V .

1That is actually a difficulty later on
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Counter examples with stochastic constraints

Stochastic B

V (x) = E


min
y∈Rm

y

s.t. ux − y 6 0

y > 1


= E

[
max(ux , 1)

]
=

{
1 if x 6 1
x
2 + 1

2x if x > 1

Stochastic b

V (x) = E


min
y∈Rm

y

s.t. y > u
x − y 6 0


= E

[
max(x ,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]

x if x > 1

å V is not polyhedral, thus there does not exist an exact quantization.

u is uniform on [0, 1]
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Remaining case: only c stochastic

V (x) = E

min
y∈Rm

c>y

s.t. Bx + Ay 6 h

 = E
[

min
y∈Rm

(c>y + IBx+Ay6h)
]

Theorem (FGL 2021)

If A, B and b are deterministic, then for all distributions of c such that V
is well defined, there exists an exact quantization (and V is polyhedral).

å This extends easily to finitely supported random A, B and b.

Let’s dive in !
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Reformulation of V (x) highlighting the role of the fiber Px

For a given x , (we still assume Vt+1 ≡ 0)

V (x) := E

min
y∈Rm

c>y

s.t. Bx + Ay 6 b


V (x) = E

[
min
y∈Px

c>y
]

where Px := {y ∈ Rm | Bx + Ay 6 b}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1,

y1 6 x , y2 6 x} x

y1

y2
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Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

•

Figure: NPx (y) for x = 0.3

• y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

• y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•
y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•
y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•
y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

• y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

• y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•
y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•

y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•

y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: NPx (y) for x = 0.3

•

y1

y2

Figure: Px , y and NPx (y) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

Figure: N (Px) for x = 0.3

y1

y2

Figure: Px and N (Px) for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 9 / 42



N (Px): partition of cost coherent with the min
For a given x , we have

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

arg min
y∈Px

c>y is a face of Px .

−c1

−c2

Figure: N (Px) for x = 0.3

y1

y2

Figure: Px for x = 0.3

Vincent Leclère Exact discretization for MSLP 20/05/2022 10 / 42



N (Px): partition of cost coherent with the min
For a given x , we have

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

arg min
y∈Px

c>y is a face of Px .

−c1

−c2

Figure: Cost −c and N (Px) for x = 0.3

y1

y2

Figure: Px for x = 0.3
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General cost c is equivalent to discrete cost č for given x
For a given x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
c>1c∈− riN
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yN(x)
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N∈N (Px )

pN čN
>yN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

For N ∈ N (Px),

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]

where yN ∈ arg miny c>︸︷︷︸
∈− riN

y .
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Figure: N (Px)

and pN čN

for x = 0.3

We draw a continuous cost c .

we draw a discrete cost č indexed by
the finite collection N (Px).
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x 7→ N (Px) is piecewise constant with x .
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What are the constant regions of x 7→ N (Px) ?

Lemma (general knowledge1)

There exists a collection C(P, π)
called the chamber complex whose
relative interior of cells are the
constant regions of x 7→ N (Px).

I.e, for σ ∈ C(P, π) and x , x ′ ∈ ri(σ), we

have N (Px) = N (Px′) =: Nσ

x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

−c1

−c2

Nσ for σ = [−0.5, 0]

−c1

−c2

Nσ for σ = [0, 0.5]

−c1

−c2

Nσ for σ = [0.5, 1]

−c1

−c2

Nσ for σ = [1,+∞)

1sort of
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Chamber complex

V is affine on the chamber complex,
how is it defined ?

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) s.t. x∈π(F )

π(F )

P

π

x

y

Px

• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y) 7→ x

π(E ) := {x ∈ Rn | ∃y ∈ Rm, (x , y) ∈ E}
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Common Refinement of Normal Fans
We can quantize c on each chamber.

Nσ and č

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

čN
>y

For all x ′ ∈ ri(τ),

V (x ′) =
∑

N∈Nτ

pN min
y∈Px

čN
>y

Nτ and č

We take the common refinement:

R :== {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈

pN min
y∈Px

č>N y
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č>N y

Nτ

We take the common refinement:

R := Nσ ∧Nτ = {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

NσNτR

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈R

pN min
y∈Px
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General cost c is equivalent to discrete cost č for all x

Let’s sum up:

1 We had an exact quantization, for given x , on Nx ;

2 we can have an exact quantization for x and x ′ by taking the
refinement,

3 we have shown that x 7→ N (Px) is constant on each σ ∈ C(P, π)

Theorem (Uniform quantization of the cost distribution)

Let R =
∧

σ∈C(P,π)

−Nσ, then for all x ∈ Rn

V (x) =
∑
R∈R

p̌R min
y∈Px

č>R y

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
Moreover, for all distributions of c ,
V is affine on each cell of the chamber complex C(P, π).
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Extension to multistage and stochastic constraints

Theorem

All results generalizes to multistage problem with finitely supported
stochastic constraints.

å The regions where (Vt)t is affine do not depend on the (ct)t
å We have an exact discretization method that only requires an oracle

returning, for any polyhedral cone C, P(ct ∈ C ) and E
[
ct | ct ∈ C

]
.

Core idea of the proof :
Iterated chamber complexes

Pt,ξ := C((Rnt × Pt+1) ∧ F
(
Pt(ξ)

)
, π

xt−1,xt
xt−1 )

Pt :=
∧

ξt∈supp ξt

Pt,ξ
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Obtaining a multistage uniform exact quantization

Vt(x) = E

 min
xt∈Rnt

z∈R

c>
t y + Vt+1(y)

s.t. (x , y) ∈ Pt


with Qt(x , y) := Vt+1(y) + I(x,y)∈Pt

.

å Vt affine on C(epi(Qt), π
x,y ,z
x )

"epi(Qt) appears in the constraint and
depends on ct+1 !

Vt+1 affine on Pt+1 (by assumption)

Qt := (Rnt × Pt+1) ∧ F
(
Pt

)
Pt := C(Qt , π

x,y
x )

[FGL21, Lem. 4.1]: Pt 4 C(epi(Qt), π
x,y ,z
x )

å Vt affine on Pt

x

y

z

Pt

πx,y,z
x,y

(
epi(Qt )

)

Qt

epi(Vt+1)

epi(Qt)
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•

•

• •
•

•

•

•• • • •• • ••C
(

epi(Qt ), πx,y,z
x

)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol
(
{z ∈ Rd |Az 6 b}

)
or

Vol
(

Conv(v1, · · · , vn)
) min

x∈Rn
c>0 x + IAx6b

+ E
[

min
y∈Rm

c>y + ITx+Wy6h
]

]P-complete:
Dyer and Frieze (1988)

Polynomial for fixed dimension
d : Barvinok (1994)
t t
t

]P-hard: Hanasusanto, Kuhn
and Wiesemann (2016)

Polynomial for fixed m ?

:
FGL (2021)
 Exact case
 Approximated case
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Complexity result multistage

We can generalize to multistage by fixing several dimensions and the
horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that nt , and | supp(At ,Bt ,bt)|, for t = 2, . . . ,T, are fixed
integers.a Further, assume that we have an (approximate) oracle taking as
argument a cone C and returning in polynomial-time
E
[
c ∈ C |(At ,Bt ,bt) = (A,B, b)

]
and P

(
c ∈ C |(At ,Bt ,bt) = (A,B, b)

)
.

Then, MSLP is solvable in polynomial time.

aNo requirement for the first decision.

å Can be adapted to approximate complexity for a large class of
distribution (densities with a bounded total variation).
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2 stage stochastic linear programming (2SLP)

min
x∈Rn

+

c>x + E
[
Q(x , ξ)

]
s.t. Ax = b

where ξ = (T ,h) is random whereas q and W are deterministic2

Q(x , ξ) := min
y∈Rm

+

q>y

s.t. Tx + Wy = h

= max
λ∈Rn

(h − Tx)>λ

s.t. W>λ 6 q
We define

X := {x ∈ Rn
+ | Ax = b} D := {λ ∈ Rl |W>λ 6 q}

No direct formula to compute V (x) := E
[
Q(x , ξ)

]
even for fixed x .

 need to discretize ξ

2Can be extended to generic random q, and finitely supported W
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Partitioning the cost-to-go function

ξ continuous SAA N = 20 Partition

V (x) = E
[
Q
(
x , ξ
)]

V SAA
N (x) =

1

N

N∑
k=1

Q
(
x , ξk

) VP(x)

Definition (Partitioned expected-cost-go )

Let P be a P-partition of Ξ, we define

VP(x) :=
∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])
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Properties of partitioned cost-to-go
Recall that

V (x) = E
[
Q(x , ξ)

]
VP(x) =

∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])

Q(x , ·) is convex  VP 6 V .

Q
(
·,E
[
ξ|P
])

is polyhedral  VP is
polyhedral.

VP(x)

V (x)

x

Finally,
min
x∈X

c>x + VP(x) (2SLPP)

is equivalent to

min
x∈X ,(yP)P∈P

c>x +
∑
P∈P

P
[
P
]
q>yP

E
[
T |P

]
x + WyP 6 E

[
h|P

]
∀P ∈ P
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Adapted partition

Definition

We say that a partition P is adapted
to x0 if

VP(x0) = V (x0) := E
[
Q(x0, ξ)

] VP(x)

V (x)

x
x0

Definition

An partition oracle is a function taking a first stage decision xk as
argument and returning an partition of Ξ.

Definition

An adapted partition oracle is a function taking a first stage decision xk as
argument and returning an adapted to xk partition of Ξ.
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Refinement

R refines P (R 4 P) if

∀R ∈ R,∃P ∈ P,R ⊂ P

[R 4P P if R refines P up to P-null sets.]

Then, R 4P P ⇒ VR > VP

The common refinement of P and P ′ is

P ∧ P ′ := {P ∩ P ′ |P ∈ P,P ′ ∈ P ′}

Since P ∧ P ′ refines P and P ′

max(VP ,VP′) 6 VP∧P′

P R

P P ′

P ∧ P ′
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General framework for APM

k ← 0, z0
U ← +∞, z0

L ← −∞, P0 ← {Ξ} ;

while zkU − zkL > ε do
k ← k + 1;

Solve (for xk) zkL ← min
x∈X

c>x + VPk−1(x) ;

Pxk ← Oracle(xk) ;

Pk ← Pk−1 ∧ Pxk ;

zkU ← min
(
zk−1
U , c>xk + VPk (xk)

)
;

end
Algorithm 1: Generic framework for APM.

Theorem (FL2021)

If the oracle is adapted, then xk is an ε-solution of problem (2SLP) for

k >

(
Ldiam(X )

ε
+ 1

)n

.

Vincent Leclère Exact discretization for MSLP 20/05/2022 26 / 42



General framework for APM

k ← 0, z0
U ← +∞, z0

L ← −∞, P0 ← {Ξ} ;

while zkU − zkL > ε do
k ← k + 1;

Solve (for xk) zkL ← min
x∈X

c>x + VPk−1(x) ;

Pxk ← Oracle(xk) ;

Pk ← Pk−1 ∧ Pxk ;

zkU ← min
(
zk−1
U , c>xk + VPk (xk)

)
;

end
Algorithm 1: Generic framework for APM.

Theorem (FL2021)

If the oracle is adapted, then xk is an ε-solution of problem (2SLP) for

k >

(
Ldiam(X )

ε
+ 1

)n

.

Vincent Leclère Exact discretization for MSLP 20/05/2022 26 / 42



Previous APM methods

Lemma (Song & Luedtke)

Let P a partition of Ξ. P is adapted at x iff for all set of scenarios P ∈ P, there
exists a common optimal multiplier λP , i.e.

∀P ∈ P, ∃λP ∈ D, ∀ξk ∈ P, λP ∈ argmax
λ∈D

(hk − T kx)>λ

Lemma (Ramirez-Pico & Moreno)

Let P a partition of Ξ. If there exists λ(ξ) such that, for all P ∈ P,

E
[
h|P

]>E[λ(ξ)|P
]

= E
[
h>λ(ξ)|P

]
x>E

[
T |P

]>E[λ(ξ)|P
]

= x>E
[
T>λ(ξ)|P

]
then P is an adapted partition.
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A (partial) comparison between partition based results

Paper Song, Luedtke Ramirez-Pico, Forcier, L.
(2015) Moreno (2020) (2021)

Non-finite supp(ξ) × X X
Explicit oracle X × X

Proof of convergence X × X
Complexity result × × X

Fast iteration X × ×
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Local exact quantization and adapted partition
Local exact quantization
random cost

GAPM
random constraints

Recall that for a fixed x ,

E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

where,

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]
Px := {y ∈ Rm |Ay + Bx 6 b}

Similarly, for a given q, and all x ,

V (x) := E
[
Q(x , ξ)

]
= E

[
max
λ∈Dq

l
(h − Tx)>λ

]
=

∑
N∈N (Dq)

pN max
λ∈Dq

ψN,x
>λ

where,

pN := P
[
h − Tx ∈ riN

]
ψN,x := E

[
h − Tx | h − Tx ∈ riN

]
Dq := {λ ∈ Rl |W>λ 6 q}
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An explicit adapted partition
Consider x ∈ Rn and N ∈ N (Dq) a normal cone of Dq. We define

EN,x := {ξ ∈ Ξ | h − Tx ∈ riN}

Theorem (FL 2021)

Rx :=
{
EN,x | N ∈ N (Dq)

}
is an adapted partition to x

i.e. VRx (x) = V (x)

Proof:

V (x) := E
[
Q(x , ξ)

]
=

∑
N∈N (D)

P
[
h − Tx ∈ riN

]
min
λ∈D

E
[
h − Tx |h − Tx ∈ riN

]>
λ

=
∑

N∈N (D)

P
[
ξ ∈ EN,x

]
Q
(
E
[
ξ |ξ ∈ EN,x

]
, x
)

= VRx (x)

å Is it the coarsest one ?
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CNS conditions for a partition to be adapted

Theorem (FL 2021)

For x ∈ Rn and P a partition of Ξ, there exists Rx <P Rx such that

P 4P Rx ⇐⇒ VP(x) = V (x).

If ξ admits a density, Rx =P Rx .

An oracle is adapted if and only if it returns a partition P refining Rx .

•
Rx

•
P

•
P ′

••

Rx

EN,x := {ξ ∈ Ξ | h − Tx ∈ ri(N)}
Rx :=

{
EN,x | N ∈ N (Dq)

} EN,x := {ξ ∈ Ξ | h − Tx ∈ N}
Rx :=

{
EN,x | N ∈ N (Dq)max}.
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Stochastic cost and recourse

We have shown a local exact quantization result for random T ,h,
and deterministic q,W .

If q and W are finitely supported random variable:
1 compute an exact quantization Nξ for every element of the support;
2 take the common refinement.

We have seen that we can deal with non-finitely supported q through the
chamber complexes.

å Can we do the same here ?
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Adapted partition for general q

We define coupling constraint and fiber for the dual.

Dq :=
{
λ ∈ R` | W>λ 6 q

}
∆ :=

{
(λ, q) ∈ R` × Rm | W>λ 6 q

}
Rx ,q :=

{
EN,x | N ∈ N (Dq)

}
Recall that q 7→ N (Dq) is piecewise constant on C(∆, πλ,qλ ) and so is Rx ,q.
å we can take the common refinement of a finite number of Rx ,q !!

More precisely:

The chamber complex C(∆, πλ,qλ ) = Σ -fan(W )3.

For S ∈ Σ -fan(W ) define Rx ,S := Rx ,q for any q ∈ ri(S).

å
{

ri(S)× R |S ∈ Σ -fan(W ),R ∈ Rx ,S

}
is an adapted partition to x .

3The well studied secondary fan of W
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Synthesis of local and uniform quantization results

W (T ,h) q
Local ∅ Rx N (Px)

Uniform ∅ ∅
∧

σ∈C(P,π)

Nσ
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Subgradient of partition function

Recall that if P 4P Rx then

VRx (x) = VP(x) = V (x)

VRx (·) 6 VP(·) 6 V (·)

Lemma

Let x ∈ dom(V ) and P be a refinement of Rx , i.e. P 4 Rx , then

∂VRx (x) ⊂ ∂VP(x) ⊂ ∂V (x)

Furthermore, if x ∈ ri dom(V ),

∂VRx (x) = ∂VP(x) = ∂V (x)
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

x0
x

V (x)

X
x0

x
X

V (x)

VP(x)

Theorem (Convergence and complexity results)

If X ∩ dom(V ) ⊂ R+ is contained in a ball of diameter M ∈ R+ and
x → c>x + V (x) is Lipschitz with constant L
then the partition based method finds an ε-solution in at most

(
LM
ε + 1

)n
iterations.
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Explicit formulas for usual distributions

Recall that VP(x) =
∑

P∈P P
[
P
]
Q
(
x ,E

[
ξ|P
])

.

Thus, we need to compute P
[
C
]

and E
[
ξ |C

]
when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional
simplex or simplicial cone, which can be used through triangulation.

Distribution Uniform on polytope Exponential Gaussian

dP(ξ)
1ξ∈Q

Vold (Q)
LAff(Q)(dξ)

eθ
>ξ1ξ∈K
ΦK (θ)

LAff(K)(dξ) e
− 1

2
ξ>M−2ξ

(2π)
m
2 det M

dξ

Support Polytope : Q Cone : K Rm

P
[
S
] Vold (S)

Vold (Q)

| det(Ray(S))|
ΦK (θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
ξ | S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ( m+1

2
)

Γ( m
2

)
M Ctr

(
S ∩ Sm−1

)
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Numerical Results - LandS

Figure: Results given by GAPM for LandS problem4

4illustration from Ramirez-Pico and Moreno
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Numerical Results - ProdMix

k xk zkL zkU Gap |Pmax
k |

1 (1333.33, 66.67) −18666.67 −16939.71 9.3% 4

2 (1441.41, 59.57) −17873.01 −17383.73 2.7% 9

3 (1399.05, 57.91) −17789.88 −17659.19 0.74% 16

4 (1379.98, 56.64) −17744.67 −17708.00 0.20% 25

5 (1371.36, 55.71) −17718.96 −17709.05 0.056% 36

6 (1375.55, 56.21) −17713.74 −17711.37 0.013% 49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100
times, each with 10 000 scenarios randomly drawn, yielding a 95%
confidence interval centered in −17711, with radius 2.2.
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Conclusions and perspectives

We have shown how to obtain a (uniform) exact quantization for an
MSLP, providing new complexity results. Unfortunately this
quantization might be very large.

We have shown how to use local exact quantization for two-stage
problem, in a Benders’ like manner.

Our next steps:
I Computing and using only local exact quantization in a simplex-like

method working on the chamber complexes.
I Using the APM method for multistage problems, with sampling leading

to SDDP methods for non-finitely supported problem.
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Thank you for listening ! Any question ?
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