Exact discretization methods for Multistage Stochastic Linear Problem

Maël Forcier, Stéphane Gaubert, Vincent Leclère

Robustness and Resilience in SO and SL workshop
Ettore Majorana Foundation, Erice
 May 20th 2022

École des Ponts
ParisTech

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(x_{t}\right)_{t \in[T]}} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.

We set $V_{T+1} \equiv 0$ and:

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(x_{t}\right) \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\xi_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
We set $V_{T+1} \equiv 0$ and:

$$
V_{t}\left(x_{t-1}\right):=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n} t} & \boldsymbol{c}_{t}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\
\text { s.t. } & \boldsymbol{A}_{t} x_{t}+\boldsymbol{B}_{t} x_{t-1} \leqslant \boldsymbol{b}_{t}
\end{array}\right]
$$

Quantization of a MSLP

The distribution of $\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is often discretized

$$
\begin{aligned}
& V_{t}\left(x_{t-1}\right) \simeq V_{t}^{d}\left(x_{t-1}\right):=\sum_{k=1}^{K} p_{k} \min _{x_{t} \in \mathbb{R}^{n_{t}}} c_{t, k}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\
& \underbrace{\text { s.t. } \quad A_{t, k} x_{t}+B_{t, k} x_{t-1} \leqslant b_{t, k}}_{\tilde{v}_{t}\left(x_{t-1}, \xi_{t, k}\right)}
\end{aligned}
$$

Scenario drawn by Monte Carlo: Sample Average Approximation
\square
I wo-stage case:

Quantization of a MSLP

The distribution of $\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is often discretized

$$
\begin{aligned}
& V_{t}\left(x_{t-1}\right) \simeq V_{t}^{d}\left(x_{t-1}\right):=\sum_{k=1}^{K} p_{k} \min _{x_{t} \in \mathbb{R}^{n_{t}}} c_{t, k}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\
& \underbrace{\text { s.t. } \quad A_{t, k} x_{t}+B_{t, k} x_{t-1} \leqslant b_{t, k}}_{\tilde{v}_{t}\left(x_{t-1}, \xi_{t, k}\right)}
\end{aligned}
$$

Scenario drawn by Monte Carlo: Sample Average Approximation Two-stage case:

$$
\begin{equation*}
\min _{x \in X} c^{\top} x+V_{N}^{S A A}(x) \quad \text { where } \quad V_{N}^{S A A}(x):=\frac{1}{N} \sum_{k=1}^{N} \widetilde{V}_{t}\left(x, \xi^{k}\right) \tag{N}
\end{equation*}
$$

Quantization of a MSLP

The distribution of $\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is often discretized

$$
\begin{aligned}
& V_{t}\left(x_{t-1}\right) \simeq V_{t}^{d}\left(x_{t-1}\right):=\sum_{k=1}^{K} p_{k} \min _{x_{t} \in \mathbb{R}^{n_{t}}} c_{t, k}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\
& \underbrace{\text { s.t. } \quad A_{t, k} x_{t}+B_{t, k} x_{t-1} \leqslant b_{t, k}}_{\tilde{V}_{t}\left(x_{t-1}, \xi_{t, k}\right)}
\end{aligned}
$$

Scenario drawn by Monte Carlo: Sample Average Approximation Two-stage case:

$$
\begin{equation*}
\min _{x \in X} c^{\top} x+V_{N}^{S A A}(x) \quad \text { where } \quad V_{N}^{S A A}(x):=\frac{1}{N} \sum_{k=1}^{N} \widetilde{V}_{t}\left(x, \xi^{k}\right) \tag{N}
\end{equation*}
$$

By statistical results, $\operatorname{Val}\left(2 S L P_{N}\right) \rightarrow_{N \rightarrow \infty} \operatorname{Val}(2 S L P)$.

Exact quantization

Definition

We say that an MSLP admits an exact quantization if there exists a finitely supported $\left(\check{\boldsymbol{c}}_{t}, \check{\boldsymbol{A}}_{t}, \check{\boldsymbol{B}}_{t}, \check{\boldsymbol{b}}_{t}\right)_{t \in[T]}$ that yields the same expected cost-to-go functions, $\left(V_{t}\right)_{t \in[T]}$.
\Rightarrow the MSLP is equivalent to a problem on a finite scenario tree.

Questions:
(1) Under which condition does there exist an exact quantization ?
(2) Can we construct a (uniform) exact quantization ?
(3) How does the quantization procedure depends on the noise's law ?

Exact quantization and polyhedrality

- We consider

$$
V(x)=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{B} x+\boldsymbol{A} y \leqslant \boldsymbol{b}
\end{array}\right]
$$

\Rightarrow Assume $V_{t+1} \equiv 0$ for now ${ }^{1}$

Exact quantization and polyhedrality

- We consider

$$
V(x)=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{B} x+\boldsymbol{A} y \leqslant \boldsymbol{b}
\end{array}\right]
$$

\Leftrightarrow Assume $V_{t+1} \equiv 0$ for now ${ }^{1}$

- If the problem is deterministic, then V is polyhedral by projection of the coupling polyhedron

- If the noise is finitely supported, then V is polyhedral

Exact quantization and polyhedrality

- We consider

$$
V(x)=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{B} x+\boldsymbol{A} y \leqslant \boldsymbol{b}
\end{array}\right]
$$

\Leftrightarrow Assume $V_{t+1} \equiv 0$ for now ${ }^{1}$

- If the problem is deterministic, then V is polyhedral by projection of the coupling polyhedron

- If the noise is finitely supported, then V is polyhedral
\Leftrightarrow Existence of exact quantization imply polyhedrality of V.
${ }^{1}$ That is actually a difficulty later on

Counter examples with stochastic constraints

Stochastic B

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} & y \\
\text { s.t. } & \boldsymbol{u x}-y \leqslant 0 \\
& y \geqslant 1
\end{array}\right] \\
& =\mathbb{E}[\max (\boldsymbol{u x}, 1)] \\
& = \begin{cases}1 & \text { if } x \leqslant 1 \\
\frac{x}{2}+\frac{1}{2 x} & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

Stochastic b

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} & y \\
\text { s.t. } & y \geqslant \boldsymbol{u} \\
& x-y \leqslant 0
\end{array}\right] \\
& =\mathbb{E}[\max (x, \boldsymbol{u})] \\
& = \begin{cases}\frac{1}{2} & \text { if } x \leqslant 0 \\
\frac{x^{2}+1}{2} & \text { if } x \in[0,1] \\
x & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

Counter examples with stochastic constraints

Stochastic B

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} & y \\
\text { s.t. } & \boldsymbol{u x}-y \leqslant 0 \\
& y \geqslant 1
\end{array}\right] \\
& =\mathbb{E}[\max (\boldsymbol{u x}, 1)] \\
& = \begin{cases}1 & \text { if } x \leqslant 1 \\
\frac{x}{2}+\frac{1}{2 x} & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

Stochastic b

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} & y \\
\text { s.t. } & y \geqslant \boldsymbol{u} \\
& x-y \leqslant 0
\end{array}\right] \\
& =\mathbb{E}[\max (x, u)] \\
& = \begin{cases}\frac{1}{2} & \text { if } x \leqslant 0 \\
\frac{x^{2}+1}{2} & \text { if } x \in[0,1] \\
x & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

$\Rightarrow V$ is not polyhedral, thus there does not exist an exact quantization.
u is uniform on $[0,1]$

Remaining case: only c stochastic

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & B x+A y \leqslant h
\end{array}\right]=\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}}\left(\boldsymbol{c}^{\top} y+\mathbb{I}_{B x+A y \leqslant h)}\right)\right]
$$

Theorem (FGL 2021)
If A, B and b are deterministic, then for all distributions of \boldsymbol{c} such that V is well defined, there exists an exact quantization (and V is polyhedral).

Remaining case: only c stochastic

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & B x+A y \leqslant h
\end{array}\right]=\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}}\left(\boldsymbol{c}^{\top} y+\mathbb{I}_{B x+A y \leqslant h)}\right)\right]
$$

Theorem (FGL 2021)
If A, B and b are deterministic, then for all distributions of \boldsymbol{c} such that V is well defined, there exists an exact quantization (and V is polyhedral).
\Leftrightarrow This extends easily to finitely supported random $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{b}.

Remaining case: only c stochastic

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & B x+A y \leqslant h
\end{array}\right]=\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}}\left(\boldsymbol{c}^{\top} y+\mathbb{I}_{B x+A y \leqslant h)}\right)\right]
$$

Theorem (FGL 2021)

If A, B and b are deterministic, then for all distributions of \boldsymbol{c} such that V is well defined, there exists an exact quantization (and V is polyhedral).
\Rightarrow This extends easily to finitely supported random $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{b}.
Let's dive in!

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Reformulation of $V(x)$ highlighting the role of the fiber P_{x} For a given x, (we still assume $V_{t+1} \equiv 0$)

$$
V(x):=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y \\
\text { s.t. } & B x+A y \leqslant b
\end{array}\right]
$$

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \quad \text { where } \quad P_{x}:=\left\{y \in \mathbb{R}^{m} \mid B x+A y \leqslant b\right\}
$$

Illustrative running example:

Reformulation of $V(x)$ highlighting the role of the fiber P_{x} For a given x, (we still assume $V_{t+1} \equiv 0$)

$$
V(x):=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y \\
\text { s.t. } & B x+A y \leqslant b
\end{array}\right]
$$

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right] \quad \text { where } \quad P_{x}:=\left\{y \in \mathbb{R}^{m} \mid B x+A y \leqslant b\right\}
$$

Illustrative running example:

$$
\begin{aligned}
P_{x}:=\left\{y \in \mathbb{R}^{m} \mid\right. & \|y\|_{1} \leqslant 1, \\
& \left.y_{1} \leqslant x, y_{2} \leqslant x\right\}
\end{aligned}
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Figure: $N_{P_{x}}(y)$ for $x=0.3$
Figure: P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Proposition

If P_{x} is bounded, $\left\{\operatorname{ri}(N) \mid N \in \mathcal{N}\left(P_{x}\right)\right\}$ is a partition of \mathbb{R}^{m}.

Figure: $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{X}$

Figure: $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

$$
y \in P_{x}
$$

$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
Figure: P_{x} for $x=0.3$
$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min
For a given x, we have

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$
$\arg \min c^{\top} y$ is a face of P_{x}. $y \in P_{x}$

Figure: P_{x} for $x=0.3$

General cost c is equivalent to discrete cost č for given x
For a given x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\boldsymbol{c}^{\top} \mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N}\right] y_{N}(x)
\end{aligned}
$$

Figure: $\mathcal{N}\left(P_{x}\right)$
for $x=0.3$

We draw a continuous cost \boldsymbol{c}.

General cost c is equivalent to discrete cost č for given x For a given x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\boldsymbol{c}^{\top} \mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N}\right] y_{N}(x) \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \check{c}_{N}^{\top} y_{N}(x)
\end{aligned}
$$

where $y_{N} \in \arg \min _{y} \underbrace{c^{\top}}_{\in-\mathrm{ri} N} y$.

Figure: $\mathcal{N}\left(P_{x}\right)$ and $p_{N} \check{c}_{N}$ for $x=0.3$
For $N \in \mathcal{N}\left(P_{x}\right)$,

$$
\begin{aligned}
& p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\text { ri } N] \\
& \check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\text { ri } N]
\end{aligned}
$$

Instead of drawing a general \boldsymbol{c}, we draw a discrete cost č indexed by the finite collection $\mathcal{N}\left(P_{x}\right)$.

General cost c is equivalent to discrete cost č for given x For a given x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\boldsymbol{c}^{\top} 1_{\boldsymbol{c} \in-\mathrm{ri} N}\right] y_{N}(x) \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \check{c}_{N}^{\top} y_{N}(x) \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
\end{aligned}
$$

For $N \in \mathcal{N}\left(P_{x}\right)$,

$$
\begin{aligned}
& p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
& \check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N]
\end{aligned}
$$

where $y_{N} \in \arg \min _{y} \underbrace{c^{\top}}_{\epsilon-\text { riN }} y$.

Figure:
$p_{N} \check{c}_{N}$ for $x=0.3$

Instead of drawing a general c, we draw a discrete cost č indexed by the finite collection $\mathcal{N}\left(P_{x}\right)$.

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.4
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right) \quad x=-0.4$
Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.3
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right) \quad x=-0.3$
Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.2
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$ $x=-0.2$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$ $x=-0.1$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

$x=0.1$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.2
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=0.2
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.3
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$x=0.3$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.4
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
$\stackrel{1}{4}$

$x=0.4$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.5
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

$x=0.5$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.6
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.7
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.8
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=0.8
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.9
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=0.9
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=1
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$x=1.1$
Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.2
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=1.2
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.3
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=1.3
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.4
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{\chi}\right)$

$$
x=1.4
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.4
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{\chi}\right)$

$$
x=1.4
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.4
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{\chi}\right)$
y_{2}
4

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.3
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=1.3 \longrightarrow
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.2
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=1.2
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

$$
x=1.1 \longrightarrow
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=1
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.9
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.8
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

y_{2}
$\stackrel{1}{4}$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.7
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.6
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.5
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.4
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.3
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.2
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$
y_{2}
4

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=0
$$

$$
y_{2}
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.1
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.2
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.3
$$

Figure: P and P_{x}
$x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant with x.

$$
P:=\{(x, y) \mid B x+A y \leqslant b\} \quad \text { and } \quad P_{x}:=\{y \mid B x+A y \leqslant b\}
$$

$$
x=-0.4
$$

Figure: $\mathcal{N}\left(P_{x}\right) \quad$ Figure: P_{x} and $\mathcal{N}\left(P_{x}\right)$

Figure: P and P_{x}

What are the constant regions of $x \mapsto \mathcal{N}\left(P_{x}\right)$?

Lemma (general knowledge ${ }^{1}$)

There exists a collection $\mathcal{C}(P, \pi)$ called the chamber complex whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}\left(P_{x}\right)$.
I.e, for $\sigma \in \mathcal{C}(P, \pi)$ and $x, x^{\prime} \in \operatorname{ri}(\sigma)$, we have $\mathcal{N}\left(P_{x}\right)=\mathcal{N}\left(P_{x^{\prime}}\right)=: \mathcal{N}_{\sigma}$

\mathcal{N}_{σ} for $\sigma=[-0.5,0] \quad \mathcal{N}_{\sigma}$ for $\sigma=[0,0.5]$

Chamber complex

V is affine on the chamber complex, how is it defined?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. }} \pi \in \pi(F) \quad \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined ?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. }} \pi \in \pi(F) \quad \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. }} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined ?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. }} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined ?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. } x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. } x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Chamber complex

V is affine on the chamber complex, how is it defined?

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \text { s.t. }} \pi \in \pi(F) \text { (F) }
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$

$$
\pi(E):=\left\{x \in \mathbb{R}^{n} \quad \mid \quad \exists y \in \mathbb{R}^{m},(x, y) \in E\right\}
$$

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,
$V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y$

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{T}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$ \mathcal{N}_{τ} and \check{c}

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{\tau}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

\mathcal{N}_{σ}

We take the common refinement:

$$
\mathcal{R}:=\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}=\left\{N \cap N^{\prime} \mid N \in \mathcal{N}_{\sigma}, N^{\prime} \in \mathcal{N}_{\tau}\right\}
$$

For all $x \in \operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,
$V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y$

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{T}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

\mathcal{N}_{σ}

We take the common refinement:

$$
\mathcal{R}:=\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}=\left\{N \cap N^{\prime} \mid N \in \mathcal{N}_{\sigma}, N^{\prime} \in \mathcal{N}_{\tau}\right\}
$$

For all $x \in \operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{R}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

General cost c is equivalent to discrete cost č for all x

Let's sum up:
(1) We had an exact quantization, for given x, on \mathcal{N}_{x};
(2) we can have an exact quantization for x and x^{\prime} by taking the refinement,
(3) we have shown that $x \mapsto \mathcal{N}\left(P_{x}\right)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$

General cost c is equivalent to discrete cost \check{c} for all x Let's sum up:
(1) We had an exact quantization, for given x, on \mathcal{N}_{x};
(O) we can have an exact quantization for x and x^{\prime} by taking the refinement,
© we have shown that $x \mapsto \mathcal{N}\left(P_{x}\right)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$
Theorem (Uniform quantization of the cost distribution)
Let $\mathcal{R}=\bigwedge_{\sigma \in \mathcal{C}(P, \pi)}-\mathcal{N}_{\sigma}$, then for all $x \in \mathbb{R}^{n}$

$$
V(x)=\sum_{R \in \mathcal{R}} \check{p}_{R} \min _{y \in P_{x}} \check{c}_{R}^{\top} y
$$

where $\check{p}_{R}:=\mathbb{P}[\boldsymbol{c} \in \operatorname{ri}(R)]$ and $\check{c}_{R}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in \operatorname{ri}(R)]$
Moreover, for all distributions of \boldsymbol{c},
V is affine on each cell of the chamber complex $\mathcal{C}(P, \pi)$.

Extension to multistage and stochastic constraints

Theorem

All results generalizes to multistage problem with finitely supported stochastic constraints.
\Rightarrow The regions where $\left(V_{t}\right)_{t}$ is affine do not depend on the $\left(\boldsymbol{c}_{t}\right)_{t}$
\Leftrightarrow We have an exact discretization method that only requires an oracle returning, for any polyhedral cone $C, \mathbb{P}\left(\boldsymbol{c}_{t} \in C\right)$ and $\mathbb{E}\left[\boldsymbol{c}_{t} \mid \boldsymbol{c}_{t} \in C\right]$.

Core idea of the proof
Iterated chamber complexes

Extension to multistage and stochastic constraints

Theorem

All results generalizes to multistage problem with finitely supported stochastic constraints.
\Rightarrow The regions where $\left(V_{t}\right)_{t}$ is affine do not depend on the $\left(\boldsymbol{c}_{t}\right)_{t}$
\Leftrightarrow We have an exact discretization method that only requires an oracle returning, for any polyhedral cone $C, \mathbb{P}\left(\boldsymbol{c}_{t} \in C\right)$ and $\mathbb{E}\left[\boldsymbol{c}_{t} \mid \boldsymbol{c}_{t} \in C\right]$.

Core idea of the proof:
Iterated chamber complexes

$$
\begin{aligned}
\mathcal{P}_{t, \xi} & :=\mathcal{C}\left(\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}(\xi)\right), \pi_{x_{t-1}}^{x_{t-1}, x_{t}}\right) \\
\mathcal{P}_{t} & :=\bigwedge_{\xi_{t} \in \text { supp } \xi_{t}} \mathcal{P}_{t, \xi}
\end{aligned}
$$

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. }(x, y) \in P_{t}
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
\text { s.t. } & (x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
z \in \mathbb{R} \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

$$
\text { with } Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}} \text {. }
$$

$\Leftrightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
z \in \mathbb{R} \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Rightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
§epi $\left(Q_{t}\right)$ appears in the constraint and depends on \boldsymbol{c}_{t+1} !

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
z \in \mathbb{R} \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Rightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
§epi $\left(Q_{t}\right)$ appears in the constraint and depends on \boldsymbol{c}_{t+1} !
V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
z \in \mathbb{R} \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Rightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
©epi $\left(Q_{t}\right)$ appears in the constraint and depends on \boldsymbol{c}_{t+1} !
V_{t+1} affine on $\mathcal{P}_{t+1} \quad$ (by assumption)

$$
\mathcal{Q}_{t}:=\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}\right)
$$

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{ll}
\min _{x_{t} \in \mathbb{R}_{t} n_{t}}^{z \in \mathbb{R}} & \boldsymbol{c}_{t}^{\top} y+z \\
& \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Rightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
§epi $\left(Q_{t}\right)$ appears in the constraint and depends on \boldsymbol{c}_{t+1} !
V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$
\begin{aligned}
& \mathcal{Q}_{t}:=\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}\right) \\
& \mathcal{P}_{t}:=\mathcal{C}\left(\mathcal{Q}_{t}, \pi_{x}^{\times, y}\right)
\end{aligned}
$$

Obtaining a multistage uniform exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+z \\
z \in \mathbb{R} \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Rightarrow V_{t}$ affine on $\mathcal{C}\left(\operatorname{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
§epi $\left(Q_{t}\right)$ appears in the constraint and depends on \boldsymbol{c}_{t+1} !
V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$
\begin{aligned}
& \mathcal{Q}_{t}:=\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}\right) \\
& \mathcal{P}_{t}:=\mathcal{C}\left(\mathcal{Q}_{t}, \pi_{x}^{\times, y}\right)
\end{aligned}
$$

[FGL21, Lem. 4.1]: $\mathcal{P}_{t} \preccurlyeq \mathcal{C}\left(\mathrm{epi}\left(Q_{t}\right), \pi_{x}^{\times, y, z}\right)$

$\Rightarrow V_{t}$ affine on \mathcal{P}_{t}

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Earlier and new complexity results

Volume of a polytope
$\operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right)$ or
$\operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Barvinok (1994)

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{0}^{\top} x+\mathbb{I}_{A x \leqslant b} \\
& \quad+\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y+\mathbb{I}_{T x+}+W_{y \leqslant h}\right]
\end{aligned}
$$

- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m ?

Earlier and new complexity results

Volume of a polytope
$\operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right)$ or
$\operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Barvinok (1994)

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{0}^{\top} x+\mathbb{I}_{A x \leqslant b} \\
& \quad+\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}} c^{\top} y+\mathbb{I}_{T x+} W_{y \leqslant h}\right]
\end{aligned}
$$

- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m : FGL (2021)

Earlier and new complexity results

Volume of a polytope
$\operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right)$ or
$\operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Barvinok (1994)

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{0}^{\top} x+\mathbb{I}_{A x \leqslant b} \\
& \quad+\mathbb{E}\left[\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y+\mathbb{I}_{T x+}+W_{y \leqslant h}\right]
\end{aligned}
$$

- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m :

FGL (2021)
\rightsquigarrow Exact case
\rightsquigarrow Approximated case

Complexity result multistage

We can generalize to multistage by fixing several dimensions and the horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that n_{t}, and $\left|\operatorname{supp}\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)\right|$, for $t=2, \ldots, T$, are fixed integers. ${ }^{\text {a }}$ Further, assume that we have an (approximate) oracle taking as argument a cone C and returning in polynomial-time $\mathbb{E}\left[\boldsymbol{c} \in C \mid\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$ and $\mathbb{P}\left(\boldsymbol{c} \in C \mid\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right)$. Then, MSLP is solvable in polynomial time.

[^0]\Rightarrow Can be adapted to approximate complexity for a large class of distribution (densities with a bounded total variation).

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

2 stage stochastic linear programming (2SLP)

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}_{+}^{+}} & c^{\top} x+\mathbb{E}[Q(x, \xi)] \\
\text { s.t. } & A x=b
\end{array}
$$

where $\xi=(T, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
\begin{aligned}
Q(x, \xi):= & \min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y \\
& \text { s.t. } T x+W y=h
\end{aligned}
$$

We define

${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

2 stage stochastic linear programming (2SLP)

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}_{+}^{+}} & c^{\top} x+\mathbb{E}[Q(x, \xi)] \\
\text { s.t. } & A x=b
\end{array}
$$

where $\xi=(T, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
\begin{aligned}
Q(x, \xi):= & \min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y & \max _{\lambda \in \mathbb{R}^{n}}(h-T x)^{\top} \lambda \\
& \text { s.t. } T x+W y=h & \text { s.t. } W^{\top} \lambda \leqslant q
\end{aligned}
$$

We define
${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

2 stage stochastic linear programming (2SLP)

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}_{+}^{+}} & c^{\top} x+\mathbb{E}[Q(x, \xi)] \\
\text { s.t. } & A x=b
\end{array}
$$

where $\xi=(T, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
\begin{aligned}
Q(x, \xi):= & \min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y \\
& =\max _{\lambda \in \mathbb{R}^{n}}(h-T x)^{\top} \lambda \\
\text { s.t. } T x+W y=h & \text { s.t. } W^{\top} \lambda \leqslant q
\end{aligned}
$$

We define

$$
X:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\} \quad D:=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
$$

${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

2 stage stochastic linear programming (2SLP)

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}_{+}^{+}} & c^{\top} x+\mathbb{E}[Q(x, \xi)] \\
\text { s.t. } & A x=b
\end{array}
$$

where $\xi=(T, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
\begin{aligned}
Q(x, \xi):= & \min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y \\
& =\max _{\lambda \in \mathbb{R}^{n}}(h-T x)^{\top} \lambda \\
\text { s.t. } T x+W y=h & \text { s.t. } W^{\top} \lambda \leqslant q
\end{aligned}
$$

We define

$$
X:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\} \quad D:=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
$$

${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

2 stage stochastic linear programming (2SLP)

$$
\min _{x \in X} \quad c^{\top} x+\mathbb{E}[Q(x, \xi)]
$$

where $\xi=(T, h)$ is random whereas q and W are deterministic ${ }^{2}$

$$
Q(x, \xi):=\min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y \quad=\max _{\lambda \in D}(h-T x)^{\top} \lambda
$$

$$
\text { s.t. } \quad T x+W y=h
$$

We define

$$
X:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\} \quad D:=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
$$

${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

2 stage stochastic linear programming (2SLP)

$$
\min _{x \in X} \quad c^{\top} x+\mathbb{E}[Q(x, \xi)]
$$

where $\xi=(\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
Q(x, \xi):=\min _{y \in \mathbb{R}_{+}^{m}} q^{\top} y \quad=\max _{\lambda \in D}(h-T x)^{\top} \lambda
$$

$$
\text { s.t. } \quad T x+W y=h
$$

We define

$$
X:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\} \quad D:=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
$$

No direct formula to compute $V(x):=\mathbb{E}[Q(x, \xi)]$ even for fixed x.

[^1]
2 stage stochastic linear programming (2SLP)

$$
\min _{x \in X} \quad c^{\top} x+\mathbb{E}[Q(x, \xi)]
$$

where $\xi=(\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic ${ }^{2}$

$$
Q(x, \xi):=\min _{y \in \mathbb{R}_{+}^{m}} a^{\top} y \quad=\max _{\lambda \in D}(h-T x)^{\top} \lambda
$$

$$
\text { s.t. } \quad T x+W y=h
$$

We define

$$
X:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\} \quad D:=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
$$

No direct formula to compute $V(x):=\mathbb{E}[Q(x, \xi)]$ even for fixed x.
\rightsquigarrow need to discretize ξ
${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

Partitioning the cost-to-go function

ξ continuous
$V(x)=\mathbb{E}[Q(x, \boldsymbol{\xi})] \quad V_{N}^{S A A}(x)=\frac{1}{N} \sum_{k=1}^{N} Q\left(x, \xi^{k}\right) \quad V_{\mathcal{P}}(x)$
Definition (Partitioned expected-cost-go)
Let \mathcal{P} be a \mathbb{P}-partition of $\overline{\text { I, we define }}$

$$
V_{\mathcal{P}}(x):=\sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi} \mid P])
$$

Properties of partitioned cost-to-go

Recall that

$$
\begin{aligned}
V(x) & =\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
V_{\mathcal{P}}(x) & =\sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi} \mid P])
\end{aligned}
$$

- $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $Q(\cdot, \mathbb{E}[\boldsymbol{\xi} \mid P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Finally,
is equivalent to

Properties of partitioned cost-to-go

Recall that

$$
\begin{aligned}
V(x) & =\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
V_{\mathcal{P}}(x) & =\sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi} \mid P])
\end{aligned}
$$

- $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $Q(\cdot, \mathbb{E}[\boldsymbol{\xi} \mid P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Finally,

$$
\begin{equation*}
\min _{x \in X} c^{\top} x+V_{\mathcal{P}}(x) \tag{P}
\end{equation*}
$$

is equivalent to

$$
\begin{aligned}
\min _{x \in X,\left(y_{P}\right)_{P \in \mathcal{P}}} & c^{\top} x+\sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_{P} \\
& \mathbb{E}[\boldsymbol{T} \mid P] x+W_{y_{P}} \leqslant \mathbb{E}[\boldsymbol{h} \mid P] \quad \forall P \in \mathcal{P}
\end{aligned}
$$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_{0} if

$$
V_{\mathcal{P}}\left(x_{0}\right)=V\left(x_{0}\right):=\mathbb{E}\left[Q\left(x_{0}, \boldsymbol{\xi}\right)\right]
$$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_{0} if

$$
V_{\mathcal{P}}\left(x_{0}\right)=V\left(x_{0}\right):=\mathbb{E}\left[Q\left(x_{0}, \boldsymbol{\xi}\right)\right]
$$

Definition

An partition oracle is a function taking a first stage decision x^{k} as argument and returning an partition of $\overline{\text { E. }}$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_{0} if

$$
V_{\mathcal{P}}\left(x_{0}\right)=V\left(x_{0}\right):=\mathbb{E}\left[Q\left(x_{0}, \boldsymbol{\xi}\right)\right]
$$

Definition

An partition oracle is a function taking a first stage decision x^{k} as argument and returning an partition of \equiv.

Definition

An adapted partition oracle is a function taking a first stage decision x^{k} as argument and returning an adapted to x^{k} partition of \equiv.

Refinement

\mathcal{R} refines $\mathcal{P}(\mathcal{R} \preccurlyeq \mathcal{P})$ if

$$
\forall R \in \mathcal{R}, \exists P \in P, R \subset P
$$

[$\mathcal{R} \preccurlyeq \mathbb{P} \mathcal{P}$ if \mathcal{R} refines \mathcal{P} up to \mathbb{P}-null sets.]

Then, $\quad \mathcal{R} \preccurlyeq \mathbb{P} \mathcal{P} \Rightarrow V_{\mathcal{R}} \geqslant V_{\mathcal{P}}$

Refinement

\mathcal{R} refines $\mathcal{P}(\mathcal{R} \preccurlyeq \mathcal{P})$ if

$$
\forall R \in \mathcal{R}, \exists P \in P, R \subset P
$$

[$\mathcal{R} \preccurlyeq \mathbb{P} \mathcal{P}$ if \mathcal{R} refines \mathcal{P} up to \mathbb{P}-null sets.]

\mathcal{P}

\mathcal{R}

Then, $\quad \mathcal{R} \preccurlyeq \mathbb{P} \mathcal{P} \Rightarrow V_{\mathcal{R}} \geqslant V_{\mathcal{P}}$

The common refinement of \mathcal{P} and \mathcal{P}^{\prime} is

$$
\mathcal{P} \wedge \mathcal{P}^{\prime}:=\left\{P \cap P^{\prime} \mid P \in \mathcal{P}, P^{\prime} \in \mathcal{P}^{\prime}\right\}
$$

Since $\mathcal{P} \wedge \mathcal{P}^{\prime}$ refines \mathcal{P} and \mathcal{P}^{\prime}

$$
\max \left(V_{\mathcal{P}}, V_{\mathcal{P}^{\prime}}\right) \leqslant V_{\mathcal{P} \wedge \mathcal{P}^{\prime}}
$$

$\mathcal{P} \wedge \mathcal{P}^{\prime}$

General framework for APM

$k \leftarrow 0, z_{U}^{0} \leftarrow+\infty, z_{L}^{0} \leftarrow-\infty, \mathcal{P}^{0} \leftarrow\{\equiv\} ;$
while $z_{U}^{k}-z_{L}^{k}>\varepsilon$ do
$k \leftarrow k+1$;
Solve (for x^{k}) $\quad z_{L}^{k} \leftarrow \min _{x \in X} c^{\top} x+V_{\mathcal{P}^{k-1}}(x)$;
$\mathcal{P}_{x^{k}} \leftarrow \operatorname{Oracle}\left(x^{k}\right)$;
$\mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}}$;
$z_{U}^{k} \leftarrow \min \left(z_{U}^{k-1}, c^{\top} x^{k}+V_{\mathcal{P}^{k}}\left(x^{k}\right)\right) ;$
end
Algorithm 1: Generic framework for APM.

General framework for APM

$$
k \leftarrow 0, z_{U}^{0} \leftarrow+\infty, z_{L}^{0} \leftarrow-\infty, \mathcal{P}^{0} \leftarrow\{\equiv\} ;
$$

while $z_{U}^{k}-z_{L}^{k}>\varepsilon$ do
$k \leftarrow k+1$;
Solve (for x^{k}) $\quad z_{L}^{k} \leftarrow \min _{x \in X} c^{\top} x+V_{\mathcal{P}^{k-1}}(x)$;
$\mathcal{P}_{x^{k}} \leftarrow \operatorname{Oracle}\left(x^{k}\right)$;
$\mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}}$;
$z_{U}^{k} \leftarrow \min \left(z_{U}^{k-1}, c^{\top} x^{k}+V_{\mathcal{P}^{k}}\left(x^{k}\right)\right) ;$

end

Algorithm 1: Generic framework for APM.

Theorem (FL2021)

If the oracle is adapted, then x^{k} is an ε-solution of problem (2SLP) for $k \geqslant\left(\frac{\operatorname{Ldiam}(X)}{\varepsilon}+1\right)^{n}$.

Previous APM methods

Lemma (Song \& Luedtke)

 exists a common optimal multiplier λ_{P}, i.e.

$$
\forall P \in \mathcal{P}, \quad \exists \lambda_{P} \in D, \quad \forall \xi_{k} \in P, \quad \lambda_{P} \in \underset{\lambda \in D}{\operatorname{argmax}}\left(h^{k}-T^{k} x\right)^{\top} \lambda
$$

Previous APM methods

Lemma (Song \& Luedtke)

 exists a common optimal multiplier λ_{P}, i.e.

$$
\forall P \in \mathcal{P}, \quad \exists \lambda_{P} \in D, \quad \forall \xi_{k} \in P, \quad \lambda_{P} \in \underset{\lambda \in D}{\operatorname{argmax}}\left(h^{k}-T^{k} x\right)^{\top} \lambda
$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Previous APM methods

Lemma (Song \& Luedtke)

 exists a common optimal multiplier λ_{P}, i.e.

$$
\forall P \in \mathcal{P}, \quad \exists \lambda_{P} \in D, \quad \forall \xi_{k} \in P, \quad \lambda_{P} \in \underset{\lambda \in D}{\operatorname{argmax}}\left(h^{k}-T^{k} x\right)^{\top} \lambda
$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Previous APM methods

Lemma (Song \& Luedtke)

 exists a common optimal multiplier λ_{P}, i.e.

$$
\forall P \in \mathcal{P}, \quad \exists \lambda_{P} \in D, \quad \forall \xi_{k} \in P, \quad \lambda_{P} \in \underset{\lambda \in D}{\operatorname{argmax}}\left(h^{k}-T^{k} x\right)^{\top} \lambda
$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Previous APM methods

Lemma (Song \& Luedtke)

 exists a common optimal multiplier λ_{P}, i.e.

$$
\forall P \in \mathcal{P}, \quad \exists \lambda_{P} \in D, \quad \forall \xi_{k} \in P, \quad \lambda_{P} \in \underset{\lambda \in D}{\operatorname{argmax}}\left(h^{k}-T^{k} x\right)^{\top} \lambda
$$

Lemma (Ramirez-Pico \& Moreno)

Let \mathcal{P} a partition of \equiv. If there exists $\lambda(\xi)$ such that, for all $P \in \mathcal{P}$,

$$
\begin{aligned}
\mathbb{E}[\boldsymbol{h} \mid P]^{\top} \mathbb{E}[\lambda(\boldsymbol{\xi}) \mid P] & =\mathbb{E}\left[\boldsymbol{h}^{\top} \lambda(\boldsymbol{\xi}) \mid P\right] \\
x^{\top} \mathbb{E}[\boldsymbol{T} \mid P]^{\top} \mathbb{E}[\lambda(\boldsymbol{\xi}) \mid P] & =x^{\top} \mathbb{E}\left[\boldsymbol{T}^{\top} \lambda(\boldsymbol{\xi}) \mid P\right]
\end{aligned}
$$

then \mathcal{P} is an adapted partition.

A (partial) comparison between partition based results

Paper	Song, Luedtke (2015)	Ramirez-Pico, Moreno (2020)	Forcier, L. (2021)
Non-finite supp $\boldsymbol{(\xi)}$	\times	\checkmark	\checkmark
Explicit oracle	\checkmark	\times	\checkmark
Proof of convergence	\checkmark	\times	\checkmark
Complexity result	\times	\times	\checkmark
Fast iteration	\checkmark	\times	\times

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Local exact quantization and adapted partition Local exact quantization
random cost

Recall that for a fixed x,

$$
\begin{aligned}
\mathbb{E} & {\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] } \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
\end{aligned}
$$

where,

$$
\begin{gathered}
p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
\check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N] \\
P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
\end{gathered}
$$

GAPM

random constraints
Similarly, for a given q, and all x,

$$
\begin{aligned}
V(x) & :=\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
& =\mathbb{E}\left[\max _{\lambda \in D_{q}}(\boldsymbol{h}-\boldsymbol{T} x)^{\top} \lambda\right] \\
& =\sum_{N \in \mathcal{N}\left(D_{q}\right)} p_{N} \max _{\lambda \in D_{q}} \psi_{N, x}^{\top} \lambda
\end{aligned}
$$

where,

$$
\begin{aligned}
p_{N} & :=\mathbb{P}\left[\boldsymbol{h}-\boldsymbol{T}_{x} \in \operatorname{ri} N\right] \\
\psi_{N, x} & :=\mathbb{E}[\boldsymbol{h}-\boldsymbol{T} x \mid \boldsymbol{h}-\boldsymbol{T} x \in \text { ri } N] \\
D_{q} & :=\left\{\lambda \in \mathbb{R}^{\prime} \mid W^{\top} \lambda \leqslant q\right\}
\end{aligned}
$$

An explicit adapted partition

Consider $x \in \mathbb{R}^{n}$ and $N \in \mathcal{N}\left(D_{q}\right)$ a normal cone of D_{q}. We define

$$
E_{N, x}:=\{\xi \in \equiv \mid h-T x \in \operatorname{ri} N\}
$$

Theorem (FL 2021)
$\mathcal{R}_{x}:=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}$ is an adapted partition to x
i.e. $V_{\mathcal{R}_{x}}(x)=V(x)$

An explicit adapted partition

Consider $x \in \mathbb{R}^{n}$ and $N \in \mathcal{N}\left(D_{q}\right)$ a normal cone of D_{q}. We define

$$
E_{N, x}:=\{\xi \in \equiv \mid h-T x \in \operatorname{ri} N\}
$$

Theorem (FL 2021)
$\mathcal{R}_{x}:=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}$ is an adapted partition to x
i.e. $V_{\mathcal{R}_{x}}(x)=V(x)$

Proof:

$$
\begin{aligned}
V(x) & :=\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
& =\sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{h}-\boldsymbol{T}_{x} \in \mathrm{ri} N\right] \min _{\lambda \in D} \mathbb{E}\left[\boldsymbol{h}-\boldsymbol{T}_{x} \mid \boldsymbol{h}-\boldsymbol{T}_{x} \in \mathrm{ri} N\right]^{\top} \lambda \\
& =\sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{\xi} \in E_{N, x}\right] Q\left(\mathbb{E}\left[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in E_{N, x}\right], x\right)=V_{\mathcal{R}_{x}}(x)
\end{aligned}
$$

An explicit adapted partition

Consider $x \in \mathbb{R}^{n}$ and $N \in \mathcal{N}\left(D_{q}\right)$ a normal cone of D_{q}. We define

$$
E_{N, x}:=\{\xi \in \equiv \mid h-T x \in \operatorname{ri} N\}
$$

Theorem (FL 2021)
$\mathcal{R}_{x}:=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}$ is an adapted partition to x
i.e. $V_{\mathcal{R}_{x}}(x)=V(x)$

Proof:

$$
\begin{aligned}
V(x) & :=\mathbb{E}[Q(x, \boldsymbol{\xi})] \\
& =\sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{h}-\boldsymbol{T}_{x} \in \mathrm{ri} N\right] \min _{\lambda \in D} \mathbb{E}\left[\boldsymbol{h}-\boldsymbol{T} x \mid \boldsymbol{h}-\boldsymbol{T}_{x} \in \text { ri } N\right]^{\top} \lambda \\
& =\sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{\xi} \in E_{N, x}\right] Q\left(\mathbb{E}\left[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in E_{N, x}\right], x\right)=V_{\mathcal{R}_{x}}(x)
\end{aligned}
$$

\Leftrightarrow Is it the coarsest one ?

CNS conditions for a partition to be adapted

Theorem (FL 2021)
For $x \in \mathbb{R}^{n}$ and \mathcal{P} a partition of \equiv, there exists $\overline{\mathcal{R}}_{x} \succcurlyeq \mathbb{P} \mathcal{R}_{x}$ such that

$$
\mathcal{P} \preccurlyeq \mathbb{P} \overline{\mathcal{R}}_{x} \Longleftrightarrow V_{\mathcal{P}}(x)=V(x) .
$$

- If $\boldsymbol{\xi}$ admits a density, $\mathcal{R}_{x}=\mathbb{P} \overline{\mathcal{R}}_{x}$.
- An oracle is adapted if and only if it returns a partition \mathcal{P} refining $\overline{\mathcal{R}}_{x}$.

\mathcal{R}_{x}

$$
\begin{aligned}
E_{N, x} & :=\left\{\xi \in \equiv \mid h-T_{x} \in \operatorname{ri}(N)\right\} \\
\mathcal{R}_{x} & :=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}
\end{aligned}
$$

\mathcal{P}^{\prime}

$\overline{\mathcal{R}}_{x}$

$$
\begin{aligned}
\bar{E}_{N, x} & :=\{\xi \in \equiv \mid h-T x \in N\} \\
\overline{\mathcal{R}}_{x} & :=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)^{\text {max }}\right\} .
\end{aligned}
$$

Stochastic cost and recourse

- We have shown a local exact quantization result for random $\boldsymbol{T}, \boldsymbol{h}$, and deterministic q, W.
- If \boldsymbol{q} and \boldsymbol{W} are finitely supported random variable:
(1) compute an exact quantization \mathcal{N}_{ξ} for every element of the support;
(2) take the common refinement.

We have seen that we can deal with non-finitely supported \boldsymbol{q} through the chamber complexes.
\Leftrightarrow Can we do the same here ?

Stochastic cost and recourse

- We have shown a local exact quantization result for random $\boldsymbol{T}, \boldsymbol{h}$, and deterministic q, W.
- If \boldsymbol{q} and \boldsymbol{W} are finitely supported random variable:
(1) compute an exact quantization \mathcal{N}_{ξ} for every element of the support;
(2) take the common refinement.

We have seen that we can deal with non-finitely supported \boldsymbol{q} through the chamber complexes.
\Leftrightarrow Can we do the same here ?

Adapted partition for general \boldsymbol{q}

We define coupling constraint and fiber for the dual.

$$
\begin{aligned}
D_{q} & :=\left\{\lambda \in \mathbb{R}^{\ell} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\Delta & :=\left\{(\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\mathcal{R}_{x, q} & :=\left\{E_{N, x} \quad \mid \quad N \in \mathcal{N}\left(D_{q}\right)\right\}
\end{aligned}
$$

- The chamber complex $C\left(\triangle, \pi_{\lambda}^{\lambda, q}\right)=\Sigma$-fan $(W)^{3}$.
- For $S \in \sum$-fan (W) define $\mathcal{R}_{x, S}:=\mathcal{R}_{x, q}$ for any $q \in \operatorname{ri}(S)$.

Adapted partition for general \boldsymbol{q}

We define coupling constraint and fiber for the dual.

$$
\begin{aligned}
D_{q} & :=\left\{\lambda \in \mathbb{R}^{\ell} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\Delta & :=\left\{(\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\mathcal{R}_{x, q} & :=\left\{E_{N, x} \quad \mid \quad N \in \mathcal{N}\left(D_{q}\right)\right\}
\end{aligned}
$$

Recall that $q \mapsto \mathcal{N}\left(D_{q}\right)$ is piecewise constant on $\mathcal{C}\left(\Delta, \pi_{\lambda}^{\lambda, q}\right)$ and so is $\mathcal{R}_{x, q}$.
\Rightarrow we can take the common refinement of a finite number of $\mathcal{R}_{x, q}$!!

More precisely:

- The chamber complex $C\left(\Delta, \pi_{\lambda}^{\lambda, q}\right)=\Sigma$-fan $(W)^{3}$.
- For $S \in \sum-\operatorname{fan}(W)$ define $\mathcal{R}_{x, S}:=\mathcal{R}_{x, q}$ for any $q \in$ ri(S). $\Rightarrow\left\{\operatorname{ri}(S) \times R \mid S \in \Sigma-\operatorname{fan}(W), R \in \mathcal{R}_{x, S}\right\}$ is an adapted partition to x

Adapted partition for general \boldsymbol{q}

We define coupling constraint and fiber for the dual.

$$
\begin{aligned}
D_{q} & :=\left\{\lambda \in \mathbb{R}^{\ell} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\Delta & :=\left\{(\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \quad \mid \quad W^{\top} \lambda \leqslant q\right\} \\
\mathcal{R}_{x, q} & :=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}
\end{aligned}
$$

Recall that $q \mapsto \mathcal{N}\left(D_{q}\right)$ is piecewise constant on $\mathcal{C}\left(\Delta, \pi_{\lambda}^{\lambda, q}\right)$ and so is $\mathcal{R}_{x, q}$.
\Rightarrow we can take the common refinement of a finite number of $\mathcal{R}_{x, q}$!!
More precisely:

- The chamber complex $\mathcal{C}\left(\Delta, \pi_{\lambda}^{\lambda, q}\right)=\Sigma$-fan $(W)^{3}$.
- For $S \in \Sigma$-fan (W) define $\mathcal{R}_{x, S}:=\mathcal{R}_{x, q}$ for any $q \in \operatorname{ri}(S)$.
$\Leftrightarrow\left\{\operatorname{ri}(S) \times R \mid S \in \Sigma-\operatorname{fan}(W), R \in \mathcal{R}_{x, S}\right\}$ is an adapted partition to x.

Synthesis of local and uniform quantization results

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Subgradient of partition function

Recall that if $\mathcal{P} \preccurlyeq \mathbb{P} \mathcal{R}_{x}$ then

$$
\begin{gathered}
V_{\mathcal{R}_{x}}(x)=V_{\mathcal{P}}(x)=V(x) \\
V_{\mathcal{R}_{x}}(\cdot) \leqslant V_{\mathcal{P}}(\cdot) \leqslant V(\cdot)
\end{gathered}
$$

Lemma

Let $x \in \operatorname{dom}(V)$ and \mathcal{P} be a refinement of \mathcal{R}_{x}, i.e. $\mathcal{P} \preccurlyeq \mathcal{R}_{x}$, then

$$
\partial V_{\mathcal{R}_{x}}(x) \subset \partial V_{\mathcal{P}}(x) \subset \partial V(x)
$$

Furthermore, if $x \in \operatorname{ridom}(V)$,

$$
\partial V_{\mathcal{R}_{x}}(x)=\partial V_{\mathcal{P}}(x)=\partial V(x)
$$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

$$
\begin{array}{r}
V(x) \\
V_{\mathcal{P}}(x)
\end{array}
$$

$x \xrightarrow{\sim} \quad x$
x
\qquad

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

$V(x)$.
$V_{\mathcal{P}}(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

$V(x)$.
$V_{\mathcal{P}}(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

$$
V(x)_{\Lambda}
$$

$V(x)_{\wedge}$
$V_{\mathcal{P}}(x)$

X

- x
X
- x

Theorem (Convergence and complexity results)

If $X \cap \operatorname{dom}(V) \subset \mathbb{R}^{+}$is contained in a ball of diameter $M \in \mathbb{R}^{+}$and $x \rightarrow c^{\top} x+V(x)$ is Lipschitz with constant L then the partition based method finds an ε-solution in at most $\left(\frac{L M}{\varepsilon}+1\right)^{n}$ iterations.

Contents

(1) Uniform Exact Quantization Result

- Fixed state x and normal fan
- Variable state x and chamber complex
- Complexity results
(2) Adaptive partition based methods
- General framework for APM methods
- A novel APM algorithm
- Convergence and complexity of APM methods
- Numerical results

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x)=\sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi} \mid P])$.
Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\boldsymbol{\xi} \mid C]$ when C is a polyhedron.
Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution \mid Uniform on polytope
Exponential
Gaussian

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x)=\sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi} \mid \mathcal{P}])$.
Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\boldsymbol{\xi} \mid C]$ when C is a polyhedron.
Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	Gaussian
$d \mathbb{P}(\xi)$	$\frac{1_{\xi \in Q}}{\operatorname{Vol}_{d}(Q)} \mathcal{L}_{\text {Aff }(Q)}(d \xi)$	$\frac{e^{\theta} \xi^{1} \xi_{\xi \in K}}{\Phi_{K}(\theta)} \mathcal{L}_{\text {Aff }(K)}(d \xi)$	$\frac{e^{-\frac{1}{2} \xi^{\top} M^{-2} \xi}}{(2 \pi)^{\frac{m}{2}} \operatorname{det} M} d \xi$
Support	$\operatorname{Polytope}: Q$	$\operatorname{Cone}: K$	\mathbb{R}^{m}
$\mathbb{P}[S]$	$\frac{\operatorname{Vol}_{d}(S)}{\operatorname{Vol}_{d}(Q)}$	$\frac{\|\operatorname{det}(\operatorname{Ray}(S))\|}{\Phi_{K}(\theta)} \prod_{r \in \operatorname{Ray}(S)} \frac{1}{-r^{\top} \theta}$	$\operatorname{Ang}\left(M^{-1} S\right)$
$\mathbb{E}[\boldsymbol{\xi} \mid S]$	$\frac{1}{d} \sum_{v \in \operatorname{Vert}(S)} v$	$\left(\sum_{r \in \operatorname{Ray}(S)} \frac{-r_{i}}{r^{\top} \theta}\right)_{i \in[m]}$	$\frac{\sqrt{2 \Gamma\left(\frac{m+1}{2}\right)}}{\Gamma\left(\frac{m}{2}\right)} M \operatorname{Ctr}\left(S \cap \mathbb{S}_{m-1}\right)$

Numerical Results - LandS

Iter 4

Iter 3

Iter 2

Iter 1

Iter	x_{1}	x_{2}	x_{3}	x_{4}
1	0.833	3.000	4.167	4.000
2	2.500	3.000	3.500	3.000
3	1.833	4.000	3.667	2.500
4	2.000	4.167	3.583	2.250
5	1.917	4.083	3.625	2.375
6	1.875	4.042	3.646	2.438

Iter	LB	UB	Gap
1	378.667	382.711	1.0567%
2	380.122	381.100	0.2567%
3	380.601	380.844	0.0640%
4	380.842	380.893	0.0007%
5	380.843	380.856	0.0004%
6	380.844	380.847	0.0002%

Figure: Results given by GAPM for LandS problem ${ }^{4}$

[^2]
Numerical Results - ProdMix

k	x_{k}	z_{L}^{k}	z_{U}^{k}	Gap	$\left\|\mathcal{P}_{k}^{\max }\right\|$
1	$(1333.33,66.67)$	-18666.67	-16939.71	9.3%	4
2	$(1441.41,59.57)$	-17873.01	-17383.73	2.7%	9
3	$(1399.05,57.91)$	-17789.88	-17659.19	0.74%	16
4	$(1379.98,56.64)$	-17744.67	-17708.00	0.20%	25
5	$(1371.36,55.71)$	-17718.96	-17709.05	0.056%	36
6	$(1375.55,56.21)$	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711 , with radius 2.2 .

Conclusions and perspectives

- We have shown how to obtain a (uniform) exact quantization for an MSLP, providing new complexity results. Unfortunately this quantization might be very large.
- We have shown how to use local exact quantization for two-stage problem, in a Benders' like manner.
- Our next steps:
- Computing and using only local exact quantization in a simplex-like method working on the chamber complexes.
- Using the APM method for multistage problems, with sampling leading to SDDP methods for non-finitely supported problem.
Y. Song, J. Luedtke

An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse.
SIAM Journal on Optimization, 25(3), 1344-1367.
C. Ramirez-Pico, E. Moreno

Generalized adaptive partition-based method for two-stage stochastic linear programs with fixed recourse.
Mathematical Programming (2021): 1-20.

M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems.
arXiv preprint arXiv:2107.09566 (2021).

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization.
arXiv preprint arXiv:2109.04818 (2021).
(3)
M. Forcier, V. Leclère

Convergence of Stochastic Dual Dynamic Programming algorithms for non-finitely supported distributions
soon.

Thank you for listening! Any question ?

[^0]: ${ }^{a}$ No requirement for the first decision.

[^1]: ${ }^{2}$ Can be extended to generic random \boldsymbol{q}, and finitely supported \boldsymbol{W}

[^2]: ${ }^{4}$ illustration from Ramirez-Pico and Moreno

