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Introduction

We are interested in multistage stochastic optimization problems
of the form

min
π

E

(
T−1∑
t=0

Lt(X t ,U t , ξt) + K (XT )

)
s.t. X t+1 = ft(X t ,U t , ξt)

U t = πt(X t , ξt)

where

x t is the state of the system,

ut is the control applied at time t,

ξt is the noise happening between time t and t + 1, assumed
to be time-independent,

π is the policy.
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Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by
Dynamic Programming, where the Bellman functions satisfy

VT (x) = K (x)

V̂t(x , ξ) = min
ut∈U

Lt(x , ut , ξ) + Vt+1 ◦ ft(x , ut , ξ)

Vt(x) = E
(
V̂t(x , ξt)

)
Indeed, π is an optimal policy if

πt(x , ξ) ∈ arg min
ut∈U

{
Lt(x , ut , ξ) + Vt+1 ◦ ft(x , ut , ξ)

}
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Bellman operator

For any time t, and any function R : X→ R ∪ {+∞} we define

T̂t(R)(x , ξ) := min
ut∈U

Lt(x , ut , ξ) + R ◦ ft(x , ut , ξ)

and
Tt(R)(x) := E

[
T̂t(R)(x , ξ)

]
.

Thus the Bellman equation simply reads{
VT = K
Vt = Tt(Vt+1)

Incidentally, R induce a policy πRt (x , ξ)
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SDDP algorithm

Under linear dynamics, and convex costs, the SDDP algorithm
iteratively constructs polyhedral outer approximations of Vt .

More precisely, at iteration k

We have polyhedral functions V k
t (·) = maxκ≤k

〈
λκt , ·

〉
+ βκt ,

such that V k
t ≤ Vt .

Forward pass: We simulate the dynamical system, along one
scenario, according to policy πV

k
, yielding a trajectory

{xkt }t∈J0,T K.

Backward pass: We compute cuts
x 7→

〈
λk+1
t , ·

〉
+ βk+1

t ≤ Vt along this trajectory, and update
our outer approximations.
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SDDP strengths

SDDP is a widely used algorithm in the energy community,
with multiple applications in

mid and long term water storage management problem,
long-term investment problems,
...

Recent works have presented extensions of the algorithm to

deal with some non-convexity,
treat risk-averse or distributionally robust problems,
incorporate integer variables.

Multiple numerical improvements have been proposed

cut selection
regularization
multi-cut or ε-resolution
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SDDP weaknesses

There are still some gaps in our knowledge of this approach:

there is no convergence speed guaranteed,

regularization methods are not mature yet,

there is no good stopping test.
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SDDP Stopping test

Exact lower bound of the problem : V k
0(x0).

Upper-bound estimated by Monte-Carlo simulation yielding
costly statistical stopping tests (Pereira Pinto (1991) or
Shapiro (2011))

Alternative statistical tests have been proposed (see Homem
de Mello et al (2011))

Exact upper-bound computation has been proposed by
Philpott et al (2013) but without any proof of convergence,
leading to possibly not converging stopping tests.
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Linear Bellman Operator

An operator B : F (Rnx )→ F (Rnx ) is said to be a linear Bellman
operator (LBO) if it is defined as follows

B(R) : x 7→ inf
(u,y)

E
[
c>u + R(y)

]
s.t. Tx +Wu(u) +Wy (y) ≤ h

where Wu : L0(Rnu)→ L0(Rnc ) and Wy : L0(Rnx )→ L0(Rnc ) are
two linear operators. We denote S(R)(x) the set of y that are part
of optimal solutions to the above problem.
We also define G(x)

G(x) :=
{

(u, y) | Tx +Wu(u) +Wy (y) ≤ h
}
.
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Examples

Linear point-wise operator:

W : L0(Rnx ) → L0(Rnc )(
ω 7→ y(ω)

)
7→

(
ω 7→ Ay(ω)

)
Such an operator allows to encode almost sure constraints.

Linear expected operator:

W : L0(Rnx ) → L0(Rnc )(
ω 7→ y(ω)

)
7→

(
ω 7→ A E(y)

)
Such an operator allows to encode constraints in expectation.
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Relatively Complete Recourse and cuts

Definition (Relatively Complete Recourse)

We say that the pair (B,R) satisfy a relatively complete recourse
(RCR) assumption if for all x ∈ dom(G) there exists admissible
controls (u, y) ∈ G(x) such that y ∈ dom(R).

Cut

If R is proper and polyhedral, with RCR assumption, then B(R) is
a proper polyhedral function.
Furthermore, computing B(R)(x) consists of solving a linear
problem which also generates a supporting hyperplane of B(R),
that is, a pair (λ, β) ∈ Rnx × R such that{〈

λ , ·
〉

+ β ≤ B(R)(·)〈
λ , x

〉
+ β = B(R)(x) .
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Setting

Consider a compatible sequence of LBO {Bt}t∈J0,T−1K, that is,
such that all admissible controls of Bt lead to admissible states of
Bt+1.
Consider a sequence of functions such that{

RT = K

Rt = Bt(Rt+1) ∀t ∈ J0,T − 1K

Then, the abstract SDDP algorithm generates a sequence of lower
polyhedral approximations of Rt . In a forward pass it simulates a
trajectory of states, along which the approximation is refined in the
backward pass.
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Abstract SDDP

x

t=0

x

t=1

K

x

t=2

Final Cost R2 = K
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Abstract SDDP

x

t=0

R1

x

t=1

K

x

t=2

Real Bellman function R1 = T1(R2)
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Abstract SDDP
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Abstract SDDP

R0

x
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x
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Lower polyhedral approximation K of K
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Abstract SDDP

R0

x
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Assume that we have lower polyhedral approximations of Rt
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Abstract SDDP

R0
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Thus we have a lower bound on the value of our problem
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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Data: Initial point x0

Set R
(0)
t ≡ −∞

for k ∈ N do
// Forward Pass : compute a set of trial points

{
xk
t

}
t∈J0,TK

Set xk
0 = x0;

for t : 0→ T do
select x

k
t+1 ∈ St(R

k
t+1)

(
xk
t

)
;

draw a realisation xk
t+1 of xk

t+1(ωk);

end
// Backard Pass : refine the lower-approx at trial points

Set Rk+1
T = K ;

for t : T − 1→ 0 do
βk+1
t = Bt(R

k+1
t+1 )(xk

t ) ; // computing cut coefficients

λk+1
t ∈ ∂Bt(R

k+1
t+1 )(xk

t ) ;

βk+1
t := θk+1

t −
〈
λk+1
t , xk

t

〉
;

set Ck+1
t : x 7→

〈
λk+1
t , x

〉
+ βk+1

t ; // new cut

Rk+1
t := max

{
Rk

t , C
k+1
t

}
; // update lower approximation

end

end
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Absract SDDP convergence

Theorem

Assume that Ω is finite, R(x0) is finite, and {Bt}t is compatible.
Further assume that, for all t ∈ J0,T K there exists compact sets Xt

such that, for all k , xkt ∈ Xt (e.g. Bt have compact domain).

Then, (Rk
t )k∈N is a non-decreasing sequence of lower

approximations of Rt , and limk R
k
0(x0) = R0(x0), for t ∈ J0,T −1K.

Further, the cuts coefficients generated remain in a compact set.
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Fenchel transform of LBO

Theorem

Assume that the pair (B,R) satisfy the RCR assumption, R being
proper polyhedral, and B compact (i.e. G is compact valued with
compact domain).

Then B(R) is a proper function and we have that

[B(R)]? = B‡
(
R?
)

where B‡ is an explicitely given LBO.
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Dual LBO

More precisely we have

B‡(Q) : λ 7→ inf
µ∈L0(Rnx ),ν∈L0(Rnc )

E
[
− µ>h + Q(ν)

]
s.t. T>E

[
µ
]

+ λ = 0

W†u(µ) = C

W†y (µ) = ν

µ ≤ 0 ,
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Recursion over dual value function

Denote Dt := V ?
t .

Theorem

Then {
DT = K ? ,

Dt = B‡t

,Lt+1

(Dt+1) ∀t ∈ J0,T − 1K

where B‡t,Lt+1
:= B‡t+I‖λt+1‖∞≤Lt+1

.

This is a Bellman recursion on Dt instead of Vt .

Further, under easy technical assumptions,
{
B‡t,Lt+1 t∈J0,T K

}
is a

compatible sequence of LBOs, where Vt is Lt-Lipschitz.
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Data: Initial primal point x0, Lipschitz bounds {Lt}t∈J0,TK

for k ∈ N do

// Forward Pass : compute a set of trial points
{
λ

(k)
t

}
t∈J0,TK

Compute λk
0 ∈ arg max‖λ0‖∞≤L0

{
x>0 λ0 −Dk

0(λ0)
}

;

for t : 0→ T do

select λk
t+1 ∈ arg minB‡t (Dk

t+1)(λk
t ) ;

and draw a realization λk
t+1 of λk

t+1;

end
// Backard Pass : refine the lower-approx at trial points

Set Dk
T = K?. ;

for t : T − 1→ 0 do

θ
k+1
t := B‡t,Lt+1

(Dk+1
t+1 )(λk

t ) ; // computing cut coefficients

xk+1
t ∈ ∂B‡t,Lt+1

(Dk+1
t+1 )(λk

t );

β
k+1

t := θ
k+1
t −

〈
λk
t , x

k+1
t

〉
;

Ck+1
t : λ 7→

〈
xk+1
t , λ

〉
+ β

k+1

t ;

Dk+1
t = max

(
Dk

t , Ck+1
t

)
; // update lower approximation

end
If some stopping test is satisfied STOP ;

end
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Converging upper bound and stopping test

We have
V k

t ≤ Vt

and
Dk

t ≤ Dt =⇒
(
Dk

t

)?︸ ︷︷ ︸
:≈V k

t

≥
(
D?t
)

= V ??
t = Vt

Finally, we obtain

V 0(x0) ≤ V0(x0) ≤ V 0(x0).

Using the convergence of the abstract SDDP algorithm we show
that this bounds are converging, yielding converging deterministic
stopping tests.
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Link between primal and dual approximations

x

Primal

λ

Dual

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

Link between primal and dual approximations

λ3

λ2
λ1

x

Primal

λ

Dual

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

Link between primal and dual approximations

x

Primal

x1
x2

x3

λ

Dual

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

Link between primal and dual approximations

x1 x2 x3

x

Primal

x1
x2

x3

λ

Dual

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

Link between primal and dual approximations

x1 x2 x3

x

Primal

x1
x2

x3

λ

Dual

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

Contents

1 Introduction
Setting
Strength and weaknesses of SDDP

2 Abstract SDDP
Linear Bellman Operator
Abstract SDDP

3 Dual SDDP
Fenchel transform of LBO
Dual SDDP
Converging upper bound and stopping test
Inner Approximation

4 Numerical results

V. Leclère D-SDDP 29/05/2018 21 / 29



Introduction Abstract SDDP Dual SDDP Numerical results

A converging strategy - with guaranteed payoff

Theorem

Let C IA,k
t (x) be the expected cost of the strategy πV

k
t when

starting from state x at time t.
We have,

C IA,k
t (x) ≤ V

k
t (x) , lim

k
C IA,k
t (x) = Vt(x)

Thus, the inner-approximation yields a new converging strategy,
and we have an upper-bound on the (expected) value of this
strategy.
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Inner Approximation

V
k
t :=

[
Dk

t

]?
which is lower than Vt on Xt

Or

V
k
t (x) = min

σ∈∆

{
−

k∑
κ=1

σκβ
κ
t

∣∣∣ k∑
κ=1

σκx
κ
t = x

}

The inner approximation can be computed by solving

V
k+1
t (x) = sup

λ,θ
x>λ− θ

s.t. θ ≥
〈
x it , λ

〉
+ β

κ
t ∀κ ∈ J1, kK .
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Inner Approximation - regularized

V
k
t :=

[
Dk

t

]?
�(Lt‖ · ‖1) which is lower than Vt on Xt

Or

V
k
t (x) = min

y∈Rnx ,σ∈∆

{
Lt‖x − y‖1−

k∑
κ=1

σκβ
κ
t

∣∣∣ k∑
κ=1

σκx
κ
t = y

}

The inner approximation can be computed by solving

V
k+1
t (x) = sup

λ,θ
x>λ− θ

s.t. θ ≥
〈
x it , λ

〉
+ β

κ
t ∀κ ∈ J1, kK .

‖λ‖∞ ≤ Lt
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Numerical results
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Stopping test

Dual stopping test Statistical stopping test
ε (%) n it. CPU time n it. CPU time

2.0 156 183s 250 618s
1.0 236 400s 300 787s
0.5 388 1116s 450 1429s
0.1 > 1000 . 1000 5519s

Table: Comparing dual and statistical stopping criteria for different
accuracy levels ε.
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Conclusion

We extend the SDDP algorithm to an abstract framework.

Leveraging Fenchel conjugate we are able to show a dynamic
recursion between dual Bellman value functions.

We can apply SDDP to this dual recursion.

This yields a converging exact upper bound on the value of
the original problem, hence giving exact and converging
stopping tests.

This also yields a converging strategy with guaranteed payoff.

More information : http://www.optimization-online.org/

DB_FILE/2018/04/6575.pdf
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