Exact and converging bounds for SDDP

V. Leclère, P. Carpentier, J-P. Chancelier, A. Lenoir, F. Pacaud

CMS 2018 - NTNU - Trondheim 29/05/2018

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

Abstract SDDP

Dual SDDP

Numerical results

Introduction

We are interested in multistage stochastic optimization problems of the form

$$\min_{\pi} \quad \mathbb{E}\left(\sum_{t=0}^{T-1} L_t(\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{\xi}_t) + K(\boldsymbol{X}_T)\right)$$
s.t. $\boldsymbol{X}_{t+1} = f_t(\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{\xi}_t)$
 $\boldsymbol{U}_t = \pi_t(\boldsymbol{X}_t, \boldsymbol{\xi}_t)$

where

- x_t is the state of the system,
- **u**_t is the control applied at time t,
- ξ_t is the noise happening between time t and t + 1, assumed to be time-independent,
- π is the policy.

Introduction Abstract SDDP Dual SDDP Numerical results

Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by Dynamic Programming, where the Bellman functions satisfy

$$\begin{cases} V_{\mathcal{T}}(x) &= K(x) \\ \hat{V}_t(x,\xi) &= \min_{u_t \in \mathbb{U}} L_t(x,u_t,\xi) + V_{t+1} \circ f_t(x,u_t,\xi) \\ V_t(x) &= \mathbb{E}\left(\hat{V}_t(x,\boldsymbol{\xi}_t)\right) \end{cases}$$

Indeed, π is an optimal policy if

 $\pi_t(x,\xi) \in \underset{u_t \in \mathbb{U}}{\arg\min} \left\{ L_t(x,u_t,\xi) + V_{t+1} \circ f_t(x,u_t,\xi) \right\}$

Introduction	Abstract SDDP	Dual SDDP	Numerical results
00000000	00000000	000000000000	
Bellman op	erator		

For any time *t*, and any function $R : \mathbb{X} \to \mathbb{R} \cup \{+\infty\}$ we define

$$\hat{\mathcal{T}}_t(R)(x,\xi) := \min_{u_t \in \mathbb{U}} L_t(x, u_t, \xi) + R \circ f_t(x, u_t, \xi)$$

and

$$\mathcal{T}_t(\mathbf{R})(x) := \mathbb{E}\Big[\hat{\mathcal{T}}_t(\mathbf{R})(x,\boldsymbol{\xi})\Big].$$

Thus the Bellman equation simply reads

 $\begin{cases} V_{\mathcal{T}} = K \\ V_t = \mathcal{T}_t(V_{t+1}) \end{cases}$

Incidentally, R induce a policy $\pi_t^R(x,\xi)$

Bellman	operator		
Introduction	Abstract SDDP	Dual SDDP	Numerical results
000000000	00000000	000000000000	

For any time *t*, and any function $R : \mathbb{X} \to \mathbb{R} \cup \{+\infty\}$ we define

$$\hat{\mathcal{T}}_t(R)(x,\xi) := \min_{u_t \in \mathbb{U}} L_t(x, u_t, \xi) + R \circ f_t(x, u_t, \xi)$$

and

$$\mathcal{T}_t(\mathbf{R})(x) := \mathbb{E}\Big[\hat{\mathcal{T}}_t(\mathbf{R})(x,\boldsymbol{\xi})\Big].$$

Thus the Bellman equation simply reads

$$\begin{cases} V_T = K \\ V_t = T_t(V_{t+1}) \end{cases}$$

Incidentally, R induce a policy $\pi_t^R(x,\xi)$

Bellman	operator		
Introduction	Abstract SDDP	Dual SDDP	Numerical results
000000000	00000000	000000000000	

For any time *t*, and any function $R : \mathbb{X} \to \mathbb{R} \cup \{+\infty\}$ we define

$$\hat{\mathcal{T}}_t(R)(x,\xi) := \min_{u_t \in \mathbb{U}} L_t(x, u_t, \xi) + R \circ f_t(x, u_t, \xi)$$

and

$$\mathcal{T}_t(\mathbf{R})(x) := \mathbb{E}\Big[\hat{\mathcal{T}}_t(\mathbf{R})(x,\boldsymbol{\xi})\Big].$$

Thus the Bellman equation simply reads

$$\begin{cases} V_T = K \\ V_t = T_t(V_{t+1}) \end{cases}$$

Incidentally, R induce a policy $\pi_t^R(x,\xi)$

SDDP algorithm

Under linear dynamics, and convex costs, the SDDP algorithm iteratively constructs polyhedral outer approximations of V_t .

More precisely, at iteration k

- We have polyhedral functions $\underline{V}_t^k(\cdot) = \max_{\kappa \leq k} \langle \lambda_t^{\kappa}, \cdot \rangle + \beta_t^{\kappa}$, such that $\underline{V}_t^k \leq V_t$.
- Forward pass: We simulate the dynamical system, along one scenario, according to policy π^{V^k}, yielding a trajectory {x^k_t}_{t∈[0,T]}.
- Backward pass: We compute cuts

 $x \mapsto \langle \lambda_t^{k+1}, \cdot \rangle + \beta_t^{k+1} \leq V_t$ along this trajectory, and update our outer approximations.

Contents

- Setting
- Strength and weaknesses of SDDP
- 2 Abstract SDDP
 - Linear Bellman Operator
 - Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

SDDP strengths

- SDDP is a widely used algorithm in the energy community, with multiple applications in
 - mid and long term water storage management problem,
 - long-term investment problems,
 - ...
- Recent works have presented extensions of the algorithm to
 - deal with some non-convexity,
 - treat risk-averse or distributionally robust problems,
 - incorporate integer variables.
- Multiple numerical improvements have been proposed
 - cut selection
 - regularization
 - multi-cut or ε -resolution

Dual SDDP 0000000000000

SDDP weaknesses

There are still some gaps in our knowledge of this approach:

- there is no convergence speed guaranteed,
- regularization methods are not mature yet,
- there is no good stopping test.

SDDP Stopping test

- Exact lower bound of the problem : $\underline{V}_0^k(x_0)$.
- Upper-bound estimated by Monte-Carlo simulation yielding costly statistical stopping tests (Pereira Pinto (1991) or Shapiro (2011))
- Alternative statistical tests have been proposed (see Homem de Mello et al (2011))
- Exact upper-bound computation has been proposed by Philpott et al (2013) but without any proof of convergence, leading to possibly not converging stopping tests.

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

Abstract SDDP

Dual SDDP

Numerical results

Linear Bellman Operator

An operator $\mathcal{B} : F(\mathbb{R}^{n_x}) \to F(\mathbb{R}^{n_x})$ is said to be a *linear Bellman* operator (LBO) if it is defined as follows

$$\begin{split} \mathcal{B}(R) : & x \mapsto \inf_{(\boldsymbol{u},\boldsymbol{y})} \mathbb{E} \Big[\boldsymbol{c}^\top \boldsymbol{u} + R(\boldsymbol{y}) \Big] \\ & s.t. \quad Tx + \mathcal{W}_u(\boldsymbol{u}) + \mathcal{W}_y(\boldsymbol{y}) \leq \boldsymbol{h} \end{split}$$

where $\mathcal{W}_u : \mathcal{L}^0(\mathbb{R}^{n_u}) \to \mathcal{L}^0(\mathbb{R}^{n_c})$ and $\mathcal{W}_y : \mathcal{L}^0(\mathbb{R}^{n_x}) \to \mathcal{L}^0(\mathbb{R}^{n_c})$ are two linear operators. We denote S(R)(x) the set of y that are part of optimal solutions to the above problem. We also define $\mathcal{G}(x)$

 $\mathcal{G}(x) := \left\{ (\boldsymbol{u}, \boldsymbol{y}) \mid Tx + \mathcal{W}_u(\boldsymbol{u}) + \mathcal{W}_y(\boldsymbol{y}) \leq \boldsymbol{h} \right\}.$

Abstract SDDP

Dual SDDP

Numerical results

• Linear point-wise operator:

$$egin{array}{rcl} \mathcal{W} & : & \mathcal{L}^0(\mathbb{R}^{n_{\mathbf{x}}}) & o & \mathcal{L}^0(\mathbb{R}^{n_c}) \ & \left(\omega\mapstooldsymbol{y}(\omega)
ight) & \mapsto & \left(\omega\mapstooldsymbol{A}oldsymbol{y}(\omega)
ight) \end{array}$$

Such an operator allows to encode almost sure constraints.

• Linear expected operator:

$$egin{array}{rcl} \mathcal{W} & : & \mathcal{L}^0(\mathbb{R}^{n_{\mathrm{x}}}) & o & \mathcal{L}^0(\mathbb{R}^{n_c}) \ & (\omega\mapstooldsymbol{y}(\omega)) & \mapsto & (\omega\mapsto A\,\mathbb{E}(oldsymbol{y})) \end{array}$$

Such an operator allows to encode constraints in expectation.

Abstract SDDP

Dual SDDP

Relatively Complete Recourse and cuts

Definition (Relatively Complete Recourse)

We say that the pair (\mathcal{B}, R) satisfy a relatively complete recourse (RCR) assumption if for all $x \in \text{dom}(\mathcal{G})$ there exists admissible controls $(\boldsymbol{u}, \boldsymbol{y}) \in \mathcal{G}(x)$ such that $\boldsymbol{y} \in \text{dom}(R)$.

Cut

If R is proper and polyhedral, with RCR assumption, then $\mathcal{B}(R)$ is a proper polyhedral function.

Furthermore, computing $\mathcal{B}(R)(x)$ consists of solving a linear problem which also generates a supporting hyperplane of $\mathcal{B}(R)$, that is, a pair $(\lambda, \beta) \in \mathbb{R}^{n_x} \times \mathbb{R}$ such that

$$\begin{cases} \langle \lambda, \cdot \rangle + \beta \leq \mathcal{B}(R)(\cdot) \\ \langle \lambda, x \rangle + \beta = \mathcal{B}(R)(x) \end{cases}$$

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

Introduction 000000000	Abstract SDDP	Dual SDDP 000000000000	Numerical results
Setting			

Consider a *compatible* sequence of LBO $\{\mathcal{B}_t\}_{t \in [\![0, T-1]\!]}$, that is, such that all admissible controls of \mathcal{B}_t lead to admissible states of \mathcal{B}_{t+1} .

Consider a sequence of functions such that

$$\begin{cases} R_T = K \\ R_t = \mathcal{B}_t(R_{t+1}) \quad \forall t \in \llbracket 0, T-1 \rrbracket \end{cases}$$

Then, the abstract SDDP algorithm generates a sequence of lower polyhedral approximations of R_t . In a forward pass it simulates a trajectory of states, along which the approximation is refined in the backward pass.

 \mathbf{O}

Introduction	Abstract SDDP	Dual SDDP	Numerical results
00000000	000000000	000000000000	
Setting			

Consider a *compatible* sequence of LBO $\{\mathcal{B}_t\}_{t \in [\![0, T-1]\!]}$, that is, such that all admissible controls of \mathcal{B}_t lead to admissible states of \mathcal{B}_{t+1} .

Consider a sequence of functions such that

$$\begin{cases} R_T = K \\ R_t = \mathcal{B}_t(R_{t+1}) \quad \forall t \in \llbracket 0, T - 1 \rrbracket \end{cases}$$

Then, the abstract SDDP algorithm generates a sequence of lower polyhedral approximations of R_t . In a forward pass it simulates a trajectory of states, along which the approximation is refined in the backward pass.

Introduction 000000000	Abstract SDDP ○○○○○○●○○	Dual SDD 0000000	OP Numerical results
Abstract SD	DP		
t=0		t=1	t=2 K
× Final Cost	$R_2 = K$	x	x

Introduction 000000000	Abstract SDDP	Dual SDDP 000000000000	Numerical results
Abstract SI	DDP		

Introduction
000000000

Abstract SDDP

Dual SDDP

Numerical results

00000000	000000000	00000000000
Abstract SL	JDP	

Introduction
000000000

Dual SDDP

Numerical results

Introduction

Dual SDDP

Numerical results

Introduction
000000000

Dual SDDP

Numerical results

Introduction
000000000

Abstract SDDP 000000000

Dual SDDP

Abstract SDDP

Thus we have a lower bound on the value of our problem

Introduction	
000000000	

Abstract SDDP

Dual SDDP

Numerical results

Abstract SDDP

Dual SDDP

Numerical results

Introduction	
000000000	

Dual SDDP

Numerical results

Abstract SDDP ○○○○○●○○ Dual SDDP

Numerical results

Abstract SDDP ○○○○○●○○ Dual SDDP

Numerical results

Abstract SDDP

Dual SDDP

Numerical results

Abstract SDDP

Dual SDDP

Numerical results

Introduction	
000000000	

Abstract SDDP

Dual SDDP

Numerical results

Introduction	
000000000	

Dual SDDP

Numerical results

Abstract SDDP

Dual SDDP

Numerical results

Introduction	
000000000	

Dual SDDP

Numerical results

Introduction

Abstract SDDP ○○○○○●○○ Dual SDDP

Numerical results

Introduction	
000000000	

Dual SDDP

Abstract SDDP

We only compute the face active at x_0

Introduction
000000000

Dual SDDP

Abstract SDDP

We only compute the face active at x_0

Introduction

Dual SDDP

Numerical results

Introduction

Dual SDDP

Numerical results

Data: Initial point x_0 Set $R_{t}^{(0)} \equiv -\infty$ for $k \in \mathbb{N}$ do // Forward Pass : compute a set of trial points $\{x_t^k\}_{t \in [0,T]}$ Set $x_0^k = x_0$: for $t: 0 \rightarrow T$ do select $\mathbf{x}_{t+1}^k \in S_t(\underline{R}_{t+1}^k)(\mathbf{x}_t^k)$; draw a realisation x_{t+1}^k of $x_{t+1}^k(\omega^k)$; end // Backard Pass : refine the lower-approx at trial points Set $R_{T}^{k+1} = K$: for $t: T - 1 \rightarrow 0$ do $\beta_{t}^{k+1} = \mathcal{B}_{t}(R_{t+1}^{k+1})(x_{t}^{k});$ // computing cut coefficients $\lambda_t^{k+1} \in \partial \mathcal{B}_t(R_{t+1}^{k+1})(x_t^k)$; $\beta_t^{k+1} := \theta_t^{k+1} - \langle \lambda_t^{k+1}, \overline{x}_t^k \rangle;$ set $\mathcal{C}_t^{k+1}: x \mapsto \langle \lambda_t^{k+1}, x \rangle + \beta_t^{k+1};$ // new cut $\underline{R}_{t}^{k+1} := \max \left\{ \underline{R}_{t}^{k}, \mathcal{C}_{t}^{k+1} \right\}; \qquad // \text{ update lower approximation}$ end end

Dual SDDP

Absract SDDP convergence

Theorem

Assume that Ω is finite, $R(x_0)$ is finite, and $\{\mathcal{B}_t\}_t$ is compatible. Further assume that, for all $t \in [0, T]$ there exists compact sets X_t such that, for all k, $x_t^k \in X_t$ (e.g. \mathcal{B}_t have compact domain).

Then, $(\underline{R}_t^k)_{k \in \mathbb{N}}$ is a non-decreasing sequence of lower approximations of R_t , and $\lim_k \underline{R}_0^k(x_0) = R_0(x_0)$, for $t \in [0, T-1]$.

Further, the cuts coefficients generated remain in a compact set.

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

Dual SDDP

Numerical results

Fenchel transform of LBO

Theorem

Assume that the pair (\mathcal{B}, R) satisfy the RCR assumption, R being proper polyhedral, and \mathcal{B} compact (i.e. \mathcal{G} is compact valued with compact domain).

Then $\mathcal{B}(R)$ is a proper function and we have that

 $[\mathcal{B}(R)]^{\star} = \mathcal{B}^{\ddagger}(R^{\star})$

where \mathcal{B}^{\ddagger} is an explicitely given LBO.

Dual LBO

Abstract SDDP 000000000 Dual SDDP

Numerical results

More precisely we have

$$\begin{split} \mathcal{B}^{\ddagger}(\boldsymbol{Q}) &: \lambda \mapsto \inf_{\boldsymbol{\mu} \in \mathcal{L}^{0}(\mathbb{R}^{n_{\chi}}), \boldsymbol{\nu} \in \mathcal{L}^{0}(\mathbb{R}^{n_{c}})} & \mathbb{E}\Big[-\boldsymbol{\mu}^{\top}\boldsymbol{h} + \boldsymbol{Q}(\boldsymbol{\nu})\Big] \\ s.t. \quad \mathcal{T}^{\top}\mathbb{E}\big[\boldsymbol{\mu}\big] + \lambda &= 0 \\ & \mathcal{W}^{\dagger}_{\boldsymbol{u}}(\boldsymbol{\mu}) = \boldsymbol{C} \\ & \mathcal{W}^{\dagger}_{\boldsymbol{y}}(\boldsymbol{\mu}) &= \boldsymbol{\nu} \\ & \boldsymbol{\mu} \leq 0 \;, \end{split}$$

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

• Fenchel transform of LBO

Dual SDDP

- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

Abstract SDDP 00000000 Dual SDDP

Numerical results

Recursion over dual value function

Denote
$$\mathcal{D}_t := V_t^{\star}$$
.

Theorem

Then

$$\begin{cases} \mathcal{D}_{\mathcal{T}} &= \mathcal{K}^{\star} \ , \\ \mathcal{D}_{t} &= \mathcal{B}_{t}^{\ddagger} \quad (\mathcal{D}_{t+1}) \qquad \forall t \in \llbracket 0, \mathcal{T} - 1 \rrbracket \end{cases}$$

This is a Bellman recursion on \mathcal{D}_t instead of V_t .

Abstract SDDP 00000000 Dual SDDP

Numerical results

Recursion over dual value function

Denote
$$\mathcal{D}_t := V_t^{\star}$$
.

Theorem

Then

$$\begin{cases} \mathcal{D}_{\mathcal{T}} &= \mathcal{K}^{\star} \ ,\\ \mathcal{D}_{t} &= \mathcal{B}_{t,L_{t+1}}^{\ddagger}(\mathcal{D}_{t+1}) \qquad \forall t \in \llbracket 0, T-1 \rrbracket \end{cases}$$

where $\mathcal{B}_{t,L_{t+1}}^{\ddagger} := \mathcal{B}_{t}^{\ddagger} + \mathbb{I}_{\parallel \lambda_{t+1} \parallel_{\infty} \leq L_{t+1}}.$

This is a Bellman recursion on \mathcal{D}_t instead of V_t .

Abstract SDDP

Dual SDDP

Numerical results

Recursion over dual value function

Denote
$$\mathcal{D}_t := V_t^{\star}$$
.

Theorem

Then

V

$$\begin{cases} \mathcal{D}_{\mathcal{T}} &= \mathcal{K}^{\star} \ ,\\ \mathcal{D}_{t} &= \mathcal{B}_{t,L_{t+1}}^{\ddagger}(\mathcal{D}_{t+1}) \qquad \forall t \in \llbracket 0, \, \mathcal{T}-1 \rrbracket \end{cases}$$
where $\mathcal{B}_{t,L_{t+1}}^{\ddagger} := \mathcal{B}_{t}^{\ddagger} + \mathbb{I}_{\|\lambda_{t+1}\|_{\infty} \leq L_{t+1}}.$

This is a Bellman recursion on \mathcal{D}_t instead of V_t . Further, under easy technical assumptions, $\{\mathcal{B}_{t,L_{t+1}}^{\ddagger} t \in [0,T]\}$ is a compatible sequence of LBOs, where V_t is L_t -Lipschitz.

Data: Initial primal point x_0 , Lipschitz bounds $\{L_t\}_{t \in [0, T]}$ for $k \in \mathbb{N}$ do // Forward Pass : compute a set of trial points $\{\lambda_t^{(k)}\}_{t \in [0,T]}$ Compute $\lambda_0^k \in \arg \max_{\|\lambda_0\|_{\infty} \leq L_0} \left\{ x_0^\top \lambda_0 - \underline{\mathcal{D}}_0^k(\lambda_0) \right\}$; for $t: 0 \rightarrow T$ do select $\lambda_{t+1}^k \in \arg \min \mathcal{B}_t^{\ddagger}(\mathcal{D}_{t+1}^k)(\lambda_t^k)$; and draw a realization λ_{t+1}^k of λ_{t+1}^k ; end // Backard Pass : refine the lower-approx at trial points Set $\mathcal{D}_{T}^{k} = K^{\star}$.; for $t: T - 1 \rightarrow 0$ do $\overline{\theta}_t^{k+1} := \mathcal{B}_{t,t+1}^{\ddagger} (\underline{\mathcal{D}}_{t+1}^{k+1})(\lambda_t^k);$ // computing cut coefficients $\overline{x}_{t}^{k+1} \in \partial \mathcal{B}_{t,l+1}^{\ddagger}(\underline{\mathcal{D}}_{t+1}^{k+1})(\lambda_{t}^{k});$ $\overline{\beta}_{t}^{k+1} := \overline{\theta}_{t}^{k+1} - \langle \lambda_{t}^{k}, \overline{x}_{t}^{k+1} \rangle;$ $\mathcal{C}_{t}^{k+1}: \lambda \mapsto \langle \overline{x}_{t}^{k+1}, \lambda \rangle + \overline{\beta}_{t}^{k+1};$ $\mathcal{D}_{\star}^{k+1} = \max\left(\mathcal{D}_{\star}^{k}, \mathcal{C}_{\star}^{k+1}\right);$ // update lower approximation end If some stopping test is satisfied STOP ; end

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

Abstract SDDP

Dual SDDP

Numerical results

Converging upper bound and stopping test

We have

 $\underline{V}_t^k \leq V_t$

and

$$\underline{\mathcal{D}}_t^k \leq \mathcal{D}_t \implies \underbrace{\left(\underline{\mathcal{D}}_t^k\right)^\star}_{:pprox \overline{V}_t^k} \geq \left(\mathcal{D}_t^\star\right) = V_t^{\star\star} = V_t$$

Finally, we obtain

 $\underline{V}_0(x_0) \leq V_0(x_0) \leq \overline{V}_0(x_0).$

Using the convergence of the abstract SDDP algorithm we show that this bounds are converging, yielding converging deterministic stopping tests.

Abstract SDDP

Dual SDDP

Numerical results

Converging upper bound and stopping test

We have

 $\underline{V}_t^k \leq V_t$

and

$$\underline{\mathcal{D}}_t^k \leq \mathcal{D}_t \implies \underbrace{\left(\underline{\mathcal{D}}_t^k\right)^\star}_{:pprox \overline{V}_t^k} \geq \left(\mathcal{D}_t^\star
ight) = V_t^{\star\star} = V_t$$

Finally, we obtain

 $\underline{V}_0(x_0) \leq V_0(x_0) \leq \overline{V}_0(x_0).$

Using the convergence of the abstract SDDP algorithm we show that this bounds are converging, yielding converging deterministic stopping tests.

Abstract SDDP

Dual SDDP

Numerical results

Contents

Introduction

- Setting
- Strength and weaknesses of SDDP

2 Abstract SDDP

- Linear Bellman Operator
- Abstract SDDP

3 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation

4 Numerical results

V. Leclère

Dual SDDP

A converging strategy - with guaranteed payoff

Theorem

Let $C_t^{IA,k}(x)$ be the expected cost of the strategy $\pi \overline{V}_t^k$ when starting from state x at time t. We have,

$$C_t^{IA,k}(x) \leq \overline{V}_t^k(x) , \quad \lim_k C_t^{IA,k}(x) = V_t(x)$$

Thus, the inner-approximation yields a new converging strategy, and we have an upper-bound on the (expected) value of this strategy.

Abstract SDDP 00000000 Dual SDDP

Numerical results

Inner Approximation

•
$$\overline{V}_t^k := \left[\underline{\mathcal{D}}_t^k\right]^*$$
 which is lower than V_t on X_t
• Or

$$\overline{V}_t^k(x) = \min_{\sigma \in \Delta} \left\{ -\sum_{\kappa=1}^k \sigma_{\kappa} \overline{\beta}_t^{\kappa} \mid \sum_{\kappa=1}^k \sigma_{\kappa} \overline{x}_t^{\kappa} = x \right\}$$

• The inner approximation can be computed by solving

$$egin{aligned} \overline{V}_t^{k+1}(x) &= \sup_{\lambda, heta} \quad x^ op \lambda - heta \ s.t. \quad heta \geq \left\langle \underline{x}_t^i, \lambda
ight
angle + \overline{eta}_t^\kappa \qquad orall \kappa \in \llbracket 1, k
ight
ceil \,. \end{aligned}$$

Abstract SDDP 000000000

Dual SDDP

Numerical results

Inner Approximation - regularized

• $\overline{V}_t^k := \left[\underline{\mathcal{D}}_t^k\right]^* \Box(L_t \| \cdot \|_1)$ which is lower than V_t on X_t • Or

$$\overline{V}_t^k(x) = \min_{y \in \mathbb{R}^{n_x}, \sigma \in \Delta} \left\{ L_t \| x - y \|_1 - \sum_{\kappa=1}^k \sigma_{\kappa} \overline{\beta}_t^{\kappa} \quad \Big| \quad \sum_{\kappa=1}^k \sigma_{\kappa} \overline{x}_t^{\kappa} = y \right\}$$

• The inner approximation can be computed by solving

$$\begin{split} \overline{V}_t^{k+1}(x) &= \sup_{\lambda,\theta} \quad x^\top \lambda - \theta \\ & s.t. \quad \theta \geq \left\langle \underline{x}_t^i, \lambda \right\rangle + \overline{\beta}_t^\kappa \qquad \forall \kappa \in \llbracket 1, k \rrbracket \ . \\ & \|\lambda\|_{\infty} \leq L_t \end{split}$$

Abstract SDDP

Dual SDDP

Numerical results

Numerical results

<u><u> </u></u>		
Sto	nning	toct
JU	pping	ισοι

Dual stopping test		Statistical stopping test		
ε (%)	<i>n</i> it.	CPU time	n it.	CPU time
2.0	156	183s	250	618s
1.0	236	400s	300	787s
0.5	388	1116s	450	1429s
0.1	> 1000		1000	5519s

Table: Comparing dual and statistical stopping criteria for different accuracy levels ε .

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

Introduction
000000000

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

Introduction
000000000

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

Introduction
000000000

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

Introduction
000000000

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.
Dual SDDP 0000000000000

Bibliography

- Mario VF Pereira and Leontina MVG Pinto. Multi-stage stochastic optimization applied to energy planning. Mathematical programming, 52(1-3):359–375, 1991.
- Tito Homem-de Mello, Vitor L De Matos, and Erlon C Finardi. Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. *Energy Systems*, 2(1):1–31, 2011.
 - Andrew Philpott, Vitor de Matos, and Erlon Finardi. On solving multistage stochastic programs with coherent risk measures. *Operations Research*, 61(4):957–970, 2013.

- Alexander Shapiro.
- Analysis of stochastic dual dynamic programming method. *European Journal of Operational Research*, 209(1):63–72, 2011.
- Pierre Girardeau, Vincent Leclere, and Andrew B Philpott. On the convergence of decomposition methods for multistage stochastic convex programs.
 - Mathematics of Operations Research, 40(1):130–145, 2014.

V. Leclère

D-SDDP

Bibliography

Regan Baucke, Anthony Downward, and Golbon Zakeri. A deterministic algorithm for solving multistage stochastic programming problems.

Optimization Online, 2017.

Vincent Guigues.

Dual dynamic programing with cut selection: Convergence proof and numerical experiments.

European Journal of Operational Research, 258(1):47–57, 2017.

Wim Van Ackooij, Welington de Oliveira, and Yongjia Song. On regularization with normal solutions in decomposition methods for multistage stochastic programming.

Optimization Online, 2017.