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Stochastic Controlled Dynamic System

A stochastic controlled dynamic system is defined by its dynamic

x t+1 = ft(x t ,ut ,w t+1)

and initial state
x0 = x0

The variables

x t is the state of the system,

ut is the control applied to the system at time t,

w t is an exogeneous noise.
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Examples

Stock of water in a dam:

x t is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
w t is the inflow of water at time t.

Boat in the ocean:

x t is the position of the boat at time t,
ut is the direction and speed chosen at time t,
w t is the wind and current at time t.

Subway network:

x t is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
w t is the delay due to passengers and incident on the network
at time t.
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Optimization Problem

We want to solve the following optimization problem

min E
[ T−1∑

t=0

Lt
(
x t ,ut ,w t+1

)
+ K

(
xT
)]

(1a)

s.t. x t+1 = ft(x t ,ut ,w t+1), x0 = x0 (1b)

ut ∈ Ut(x t) (1c)

σ(ut) ⊂ σ
(
w0, · · · ,w t

)
(1d)
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Dynamic Programming Principle

Assume that the noises w t are independent and exogeneous.

Then, there exists an optimal solution, called a strategy, of the
form ut = πt

(
x t
)
, given by

πt(x) = arg min
u∈Ut(x)

E
[
Lt(x , u,w t+1)︸ ︷︷ ︸

current cost

+Vt+1 ◦ ft
(
x , u,w t+1

)︸ ︷︷ ︸
future costs

]
,

where (Dynamic Programming Equation)
VT (x) = K (x)

Vt(x) = min
u∈Ut(x)

E
[
Lt(x , u,w t+1) + Vt+1 ◦ ft

(
x , u,w t+1

)︸ ︷︷ ︸
”X t+1”

]
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Interpretation of Bellman Value

The Bellman’s value function Vt0(x) can be interpreted as the
value of the problem starting at time t0 from the state x . More
precisely we have

Vt0(x) = min E
[ T−1∑
t=t0

Lt
(
x t ,ut ,w t+1

)
+ K

(
xT
)]

(2a)

s.t. x t+1 = ft(x t ,ut ,w t+1), x t0 = x (2b)

ut ∈ Ut(x t) (2c)

σ(ut) ⊂ σ
(
w0, · · · ,w t

)
(2d)
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Information structures in the multistage setting

Open-Loop Every decision (ut)t∈J0,T−1K is taken before any
noises (ξt)t∈J0,T−1K is known. We decide a planning,
and stick to it.

Decision Hazard Decision ut is taken knowing all past noises
ξ0, . . . , ξt , but not knowing ξt+1, . . . , ξT .

Hazard Decision Decision ut is taken knowing all past noises
ξ0, . . . , ξt , and the next noise ξt+1 but not knowing
ξt+2, . . . , ξT .

Anticipative Every decision (ut)t∈J0,T−1K is taken knowing the
whole scenario (ξt)t∈J0,T−1K. There is one
deterministic optimization problem by scenario.

With the same objective function this gives better and better value
as the solution use more and more information.
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Information structures: comments

Open-Loop This case can happen in practice (e.g. fixed
planning). There are specific methods to solve this
type of optimization problem (e.g. stochastic
gradient methods).

Decision Hazard The decision ut is taken at the beginning of
period [t, t + 1[. The decision is always
implementable, and might be conservative as it
doesnot leverage any prediction over the noise in
[t, t + 1[.

Hazard Decision The decision ut is taken at the end of period
[t, t + 1[. The modelization is optimistic as it
assumes perfect knowledge that might not be
available in practice.

Anticipative This problem is never realistic. However it is a lower
bound of the real problem that can be estimated
through Monte-Carlo and deterministic optimization.

Remark : other information structures might exists.
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Independence of noise

The Dynamic Programming equation requires only the
time-independence of noises.
This can be relaxed if we consider an extended state.
Consider a dynamic system driven by an equation

y t+1 = ft(X t ,ut , εt+1)

where the random noise εt is an AR1 process :

εt = αtεt−1 + βt +w t ,

{w t}t∈Z being independent.
Then y t is called the physical state of the system and DP can
be used with the information state X t = (y t , εt−1).
Generically speaking, if the noise w t is exogeneous (not
affected by decisions ut), then we can always apply Dynamic
Programming with the state

(x t ,w1, . . . ,w t)
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Dynamic Programming Algorithm

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T → 0 do

for x ∈ Xt do
Vt(x) =∞;
for u ∈ Ut(x) do

vu = E
[
Lt(x , u,w t+1) + Vt+1 ◦ ft

(
x , u,w t+1

)]
;

if vu < v then
Vt(x) = vu ;
πt(x) = u ;

Algorithm 1: Dynamic Programming Algorithm (discrete case)

Number of flops: O(T × |Xt | × |Ut | × |Wt |).
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3 curses of dimensionality

1 State. If we consider 3 independent states each taking 10
values, then |Xt | = 103 = 1000. In practice DP is not
applicable for states of dimension more than 5.

2 Decision. The decision are often vector decisions, that is a
number of independent decision, hence leading to huge
|Ut(x)|.

3 Expectation. In practice random information came from large
data set. Without a proper statistical treatment computing an
expectation is costly. Monte-Carlo approach are costly too,
and unprecise.
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Numerical considerations

The DP equation holds in (almost) any case.
The algorithm shown before compute a look-up table of
control for every possible state offline. It is impossible to do if
the state is (partly) continuous.
Alternatively, we can focus on computing offline an
approximation of the value function Vt and derive the optimal
control online by solving a one-step problem, solved only at
the current state :

πt(x) ∈ arg min
u∈Ut(x)

E
[
Lt(x , u,w t+1) + Vt+1 ◦ ft

(
x , u,w t+1

)]
The field of Approximate DP gives methods for computing
those approximate value function (decomposed on a base of
functions).
The simpler one consisting in discretizing the state, and then
interpolating the value function.
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DP on a Markov Chain

Sometimes it is easier to represent a problem as a controlled
Markov Chain

Dynamic Programming equation can be computed directly,
without expliciting the control.

Let’s work out an example...
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The Linear-Quadratic setting

We assume a linear dynamic

x t+1 = Atx t + Btut +W t+1

associated with a quadratic cost

E
[ T−1∑

t=0

(
X ′tQtx t + u ′tRtut

)]
+ X ′TQTxT .

A few more assumptions

x t is of dimension n, ut of dimension m.

Qt is a symmetric semidefinite positive matrix, and Rt

symmetric definite positive.

w t is a centered (i.e. of mean 0) independent, exogeneous
noise (i.e their law does not depend of the state or control),
with finite second order moment.

The controls are non-anticipative.
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Solving the LQ case I

The DP equation read{
VT (x) = x ′QT x

Vt(x) = min
u

E
[
x ′Qtx + u′Rtu + Vt+1

(
Atx + Btu +W t+1

)]
Leading to

Vt(xt) = x ′tKtxt +
T−1∑
τ=t

E
[
w ′t+1Kt+1w t+1

]
and

u
]
t = π]t(x t) = Ltx t .
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Solving the LQ case II

We have

Vt(xt) = x ′tKtxt +
T−1∑
τ=t

E
[
w ′t+1Kt+1w t+1

]
and

u
]
t = π]t(x t) = Ltx t .

Where
Lt = −

(
B ′tKt+1Bt + Rt

)−1
B ′tKt+1At ,

and{
KT = QT

Kt = A′t

(
Kt+1 − Kt+1Bt

(
B ′tKt+1Bt + Rt

)−1
B ′tKt+1

)
At + Qt

V. Leclère Dynamic Programming October 8, 2015 17 / 23



Dynamic Programming Curses of Dimensionality Linear-Quadratic Setting Infinite Horizon

Contents

1 Dynamic Programming

2 Curses of Dimensionality

3 Linear-Quadratic Setting

4 Infinite Horizon

V. Leclère Dynamic Programming October 8, 2015 17 / 23



Dynamic Programming Curses of Dimensionality Linear-Quadratic Setting Infinite Horizon

Introducing the Bellman operators

We define the Bellman operator associated to our optimisation
problem

Tt(J) : x 7→ min
u∈Ut(x)

E
[
Lt(x , u,w t+1) + J ◦ ft

(
x , u,w t+1

)]
.

The Dynamic Programming equation can then be written{
VT = K

Vt = Tt

(
Vt+1

)
We also construct the policy-dependent Bellman operator

Tπ
t (J) : x 7→ E

[
Lt(x , π(x),w t+1) + J ◦ ft

(
x , π(x),w t+1

)]
.

V. Leclère Dynamic Programming October 8, 2015 18 / 23



Dynamic Programming Curses of Dimensionality Linear-Quadratic Setting Infinite Horizon

Discounted fixed cost case

We now consider the following specific case problem, where(
w t

)
t∈N is i.i.d.

min E
[ T∑
t=0

αtL
(
x t ,ut ,w t+1

)]
(3)

s.t. x t+1 = f (x t ,ut ,w t+1), x0 = x0 (4)

ut ∈ U(x t) (5)

σ(ut) ⊂ σ
(
w0, · · · ,w t

)
(6)

where α ∈]0, 1]. Note that the constraint and cost structure
doesnot depend on t.

The Bellman operator is given by

T (J) : x 7→ min
u∈U(x)

E
[
L(x , u,w t+1) + αJ ◦ f (x , u,w t+1)

]
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Infinite horizon problems

There is different ways of considering the above problem in an
“infinite horizon” setting.

1 Discounted case. This is the case where α < 1. It is especially
easy to treat if the cost L is bounded.

2 Stochastic shortest path. In this case α = 1 but there is a
“cemetary state” such that once reached the system remains
there with null cost. Moreover, we assume that the system
always reach the cemetary state in a finite time.

3 Average cost per stage problems. This approach is mainly
taken if the infinite time cost isn’t finite (for example α = 1
and L > 0). We consider

lim
T→∞

1

T
E
[ T−1∑

t=0

L(x t ,ut ,w t+1)
]
.
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An overview of typical infinite horizon results

Here are the main results that can be shown in infinite horizon
problems (under the right set of assumptions)

1 the sequence of value function Vn+1 = T
(
Vn

)
, converges

toward the value function of the infinite horizon problem:
limn→∞ Vn = V ].

2 The optimal value of the infinite horizon problem is a fixed
point of the Bellman operator: V ] = T

(
V ]
)
.

3 If π is such that V ] = TπV ] then the stationnary policy π is
optimal.
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Value iteration algorithm

Data: Initial value V (0)

Result: optimal policy and value;
repeat

for x ∈ X do

V (k+1)(x) = T
(
V (k)

)
(x)

until ‖V (k+1) − V (k)‖∞ < ε;

Algorithm 2: Value iteration algorithm

Each step takes O(|X| × |U| × |Ω|) flops.

The error |Vn(x)− V ](x)| is bounded by Cαn.
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Policy iteration algorithm

Data: Initial policy π(0)

Result: optimal policy and value;
repeat

policy evaluation step: solve V = Tπ(k)(
V
)

which gives V (k);
policy improvement step :
for x ∈ X do

π(k+1)(x) = arg min
u∈U(x)

E
[
L(x , u,w t+1) + αV (k) ◦ f

(
x , u,w t+1

)]

until V (k) = T
(
V (k)

)
;

Algorithm 3: Policy iteration algorithm

The policy iteration algorithm terminate in a finite number of step.
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