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Introduction

Large scale stochastic problem are hard to solve

Different ways of attacking such problems:
decompose the problem and coordinate solutions
construct easily solvable approximations (Linear Programming)
find approximate value functions or policies

Behind the name SDDP, Stochastic Dual Dynamic
Programming, one finds three different things:

a class of algorithms, based on specific mathematical
assumptions
a specific implementation of an algorithm
a software implementing this method, and developed by the
PSR company

Here, we aim at enlightening of how the class of algorithm is
working
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Setting

Multi-step stochastic problem with finite horizon.

Continuous, finite dimensional state and control.

Convex cost, linear dynamic.

Discrete, independent noises.

V. Leclère Introduction to SDDP 07/11/2016 3 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule

3 Stochastic case
Problem statement
Duality theory
SDDP algorithm
Complements
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 07/11/2016 4 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

V (x)

V. Leclère Introduction to SDDP 07/11/2016 5 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

V (x)

V. Leclère Introduction to SDDP 07/11/2016 6 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

V (x)

V. Leclère Introduction to SDDP 07/11/2016 7 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

V (x)

V. Leclère Introduction to SDDP 07/11/2016 8 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

V (x)

V. Leclère Introduction to SDDP 07/11/2016 9 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Kelley algorithm

Consider a convex objective function J : Rn → R to be minimized
over a convex compact set U
The algorithm goes as follows

1 Select u(0) ∈ U . Set k = 0, J(0) ≡ −∞
2 Compute a subgradient λ(k) ∈ ∂J(u(k))

3 Update the lower approximation
J(k+1) = max{J(k), J(u(k)) + 〈λ(k), · − u(k)〉}

4 Select an approximate minimizer u(k+1) ∈ arg min
u∈U

{J(k)(u)}

5 set k → k + 1 and go to step 2
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Problem considered

We consider an optimal control problem in discrete time with finite
horizon

min
u∈UT

T−1∑
t=0

Lt(xt , ut) + K (xT )

s.t. xt+1 = ft(xt , ut)

Where the variables are
xt ∈ X, the state at time t
ut ∈ U, the control applied at the beginning of [t, t + 1[

We assume that
the dynamics functions (xt , ut) 7→ ft(xt , ut) are affine
the sets U and X are compact

the instantaneous costs Lt(xt , ut) and the final cost K (xT ) are
convex
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Introducing Bellman’s function

We look for solutions as policies, where a policy is a sequence of
functions π = (π1, . . . , πT−1) giving for any state x a control u
This problem can be solved by dynamic programming, thanks to
the Bellman function that satisfies{

VT (x) = K (x),
Vt(x) = min

ut∈U

{
Lt(x , ut) + Vt+1 ◦ ft(x , ut)

}
= Tt(Vt+1)(x)

where Tt(A) : x 7→ min
ut∈U

{
Lt(x , ut) + A ◦ ft(x , ut)

}
Indeed, an optimal policy for the original problem is given by

πt(x) ∈ arg min
ut∈U

{
Lt(x , ut) + Vt+1 ◦ ft(x , ut)

}
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Properties of the Bellman operator

Monotonicity:

∀x ∈ X, V (x) ≤ V (x) ⇒ ∀x ∈ X,
(
T V

)
(x) ≤

(
T V

)
(x)

Convexity: if Lt is jointly convex in (x , u), V is convex, and ft
is affine then

x 7→
(
T V

)
(x) is convex

Linearity: for any piecewise linear function V , if Lt is also
piecewise linear, and ft affine, then

x 7→
(
T V

)
(x) is piecewise linear
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Duality property

Consider J : X× U→ R jointly convex, and define

ϕ(x) = min
u∈U

J(x , u)

Then we can obtain a subgradient λ ∈ ∂ϕ(x0) as the dual
multiplier of

min
x ,u

J(x , u),

s.t. x0 − x = 0 [λ]

(This is the marginal interpretation of the multiplier)

In particular, we have that

ϕ(·) ≥ ϕ(x0) + 〈λ, · − x0〉
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General idea

The SDDP algorithm recursively constructs an approximation
of each Bellman function Vt as the supremum of an array of
affine functions

At stage k , we have a lower approximation V
(k)
t of Vt and we

want to construct a better approximation

We follow an optimal trajectory (x
(k)
t )t of the approximated

problem, and add a so-called “cut” to improve each Bellman
function
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Stage k of SDDP description (1/2)

Begin a “forward in time” loop by setting t = 0 and x
(k)
t = x0

Solve

min
x ,u

Lt(x , u) + V
(k)
t+1 ◦ ft(x , u)

x = x
(k)
t [λ

(k+1)
t ]

where we call
β

(k+1)
t the value of the problem

λ
(k+1)
t a multiplier of the constraint x = x

(k)
t

u
(k)
t an optimal control

By construction, we have that

β
(k+1)
t = Tt

(
V

(k)
t+1

)(
x

(k)
t

)
,

λ
(k+1)
t ∈ ∂Tt

(
V

(k)
t+1

)(
x

(k)
t

)
.
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Stage k of SDDP description (2/2)

We deduce that

β
(k+1)
t + 〈λ(k+1)

t , · − x
(k)
t 〉 ≤ Tt

(
V

(k)
t+1

)
≤ Tt (Vt+1) = Vt

Thus x 7→ β
(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉
is a cut

We update our approximation V
(k)
t of Vt by defining

V
(k+1)
t = max

{
V

(k)
t , β

(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉}
so that V

(k+1)
t is convex and is lower than Vt

We set
x

(k)
t+1 = ft

(
x

(k)
t , u

(k)
t

)
Upon reaching time t = T we have completed iteration k of
the algorithm.

V. Leclère Introduction to SDDP 07/11/2016 17 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Stage k of SDDP description (2/2)

We deduce that

β
(k+1)
t + 〈λ(k+1)

t , · − x
(k)
t 〉 ≤ Tt

(
V

(k)
t+1

)
≤ Tt (Vt+1) = Vt

Thus x 7→ β
(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉
is a cut

We update our approximation V
(k)
t of Vt by defining

V
(k+1)
t = max

{
V

(k)
t , β

(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉}
so that V

(k+1)
t is convex and is lower than Vt

We set
x

(k)
t+1 = ft

(
x

(k)
t , u

(k)
t

)
Upon reaching time t = T we have completed iteration k of
the algorithm.

V. Leclère Introduction to SDDP 07/11/2016 17 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Stage k of SDDP description (2/2)

We deduce that

β
(k+1)
t + 〈λ(k+1)

t , · − x
(k)
t 〉 ≤ Tt

(
V

(k)
t+1

)
≤ Tt (Vt+1) = Vt

Thus x 7→ β
(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉
is a cut

We update our approximation V
(k)
t of Vt by defining

V
(k+1)
t = max

{
V

(k)
t , β

(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉}
so that V

(k+1)
t is convex and is lower than Vt

We set
x

(k)
t+1 = ft

(
x

(k)
t , u

(k)
t

)
Upon reaching time t = T we have completed iteration k of
the algorithm.

V. Leclère Introduction to SDDP 07/11/2016 17 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Contents

1 Kelley’s algorithm

2 Deterministic case
Problem statement
Some background on Dynamic Programming
SDDP Algorithm
Initialization and stopping rule

3 Stochastic case
Problem statement
Duality theory
SDDP algorithm
Complements
Convergence result

4 Conclusion

V. Leclère Introduction to SDDP 07/11/2016 17 / 41



Kelley’s algorithm Deterministic case Stochastic case Conclusion

Initialization and stopping rule

To initialize the algorithm, we need a lower bound V
(0)
t to

each value functions Vt . This lower bounds can be computed
backward by arbitrarily deciding a point xt and using the
standard cut computation.

At any step k we have an admissible, non optimal solution
(u(k))t , with

an upper bound

T−1∑
t=0

Lt
(
x

(k)
t , u

(k)
t

)
+ K

(
x

(k)
T

)
a lower bound V

(k)
0 (x0)

A reasonable stopping rule for the algorithm is given by
checking that the (relative) difference between the upper and
lower bound is small enough

V. Leclère Introduction to SDDP 07/11/2016 18 / 41
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What’s new ?

Now we introduce random variables Wt in our problem, which
complexifies the algorithm in different ways:

we need some probabilistic assumptions

for each stage k we need to do a forward phase, for each
sequence of realizations of the random variables, that yields a

trajectory (x
(k)
t )t , and a backward phase that gives a new cut

we cannot compute an exact upper bound for the problem’s
value

V. Leclère Introduction to SDDP 07/11/2016 19 / 41
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Problem statement

We consider the optimization problem

min
π

E

(
T−1∑
t=0

Lt(Xt ,Ut ,Wt) + K (XT )

)
s.t. Xt+1 = ft(Xt ,Ut ,Wt)

Ut = πt(Xt ,Wt)

under the crucial assumption that (Wt)t∈{1,··· ,T} is a white noise

V. Leclère Introduction to SDDP 07/11/2016 20 / 41
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Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by
dynamic programming, where the Bellman functions satisfy

VT (x) = K (x)

V̂t(x ,w) = min
ut∈U

Lt(x , ut ,w) + Vt+1 ◦ ft(x , ut ,w)

Vt(x) = E
(
V̂t(x ,Wt)

)
Indeed, an optimal policy for this problem is given by

πt(x ,w) ∈ arg min
ut∈U

{
Lt(x , ut ,w) + Vt+1 ◦ ft(x , ut ,w)

}

V. Leclère Introduction to SDDP 07/11/2016 21 / 41
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Bellman operator

For any time t, and any function A mapping the set of states and
noises X×W into R, we define

T̂t(A)(x ,w) := min
ut∈U

Lt(x , ut ,w) + A ◦ ft(x , ut ,w)

Thus the Bellman equation simply reads{
VT (x) = K (x)

Vt(x) = Tt(Vt+1)(x) := E
(
T̂t(Vt+1)(x ,Wt)

)
The Bellman operators have the same properties as in the
deterministic case

V. Leclère Introduction to SDDP 07/11/2016 22 / 41
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Duality theory (1/2)

Suppose that we have V
(k+1)
t+1 ≤ Vt+1

β̂
(k+1)
t (w) = min

x ,u
Lt(x , u,w) + V

(k+1)
t+1 ◦ ft(x , u,w)

s.t x = x
(k)
t [λ̂

(k+1)
t (w)]

This can also be written as

β̂
(k+1)
t (w) = T̂t

(
V

(k+1)
t+1

)
(x ,w)

λ̂
(k+1)
t (w) ∈ ∂x T̂t

(
V

(k+1)
t+1

)
(x ,w)

Thus, for all w ,

β̂
(k+1)
t (w)+

〈
λ̂

(k+1)
t (w), x − x

(k)
t

〉
≤ T̂t

(
V

(k+1)
t+1

)
(x ,w) ≤ V̂t(x ,w)
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Duality theory (2/2)

Thus, we have an affine minorant of V̂t(x ,Wt) for each realisation
of Wt

Replacing w by the random variable Wt and taking the
expectation yields the following affine minorant

β
(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉
≤ Vt

where  β
(k+1)
t := E

(
β̂

(k+1)
t (Wt)

)
= Tt

(
V

(k)
t+1

)
(x)

λ
(k+1)
t := E

(
λ̂

(k+1)
t (Wt)

)
∈ ∂xTt

(
V

(k)
t+1

)
(x)

V. Leclère Introduction to SDDP 07/11/2016 24 / 41
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At the beginning of step k

At the beginning of step k , we suppose that we have, for each time
step t, an approximation V k

t of Vt satisfying

V k
t ≤ Vt

V k
T = K

V k
t is convex

V. Leclère Introduction to SDDP 07/11/2016 25 / 41
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Forward path: define a trajectory

Randomly select a scenario (w0, . . . ,wT−1) ∈WT

Define a trajectory (x
(k)
t )t=0,...,T by

x
(k)
t+1 = ft(x

(k)
t , u

(k)
t ,wt)

where u
(k)
t is an optimal solution of

min
u∈U

Lt
(
x

(k)
t , u,wt

)
+ V

(k)
t+1 ◦ ft

(
x

(k)
t , u,wt

)

This trajectory is given by the optimal policy where Vt is

replaced by V
(k)
t

V. Leclère Introduction to SDDP 07/11/2016 26 / 41
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Backward path: add cuts

For any t we want to add a cut to the approximation V
(k)
t of

Vt

At time t solve, for any possible w ,

β̂
(k+1)
t (w) = min

x ,u
Lt(x , u,w) + V

(k+1)
t+1 ◦ ft(x , u,w),

s.t x = x
(k)
t [λ̂

(k+1)
t (w)]

Compute λ
(k+1)
t = E

(
λ

(k+1)
t (Wt)

)
and

β
(k+1)
t = E

(
β

(k+1)
t (Wt)

)
Add a cut

V
(k+1)
t (x) = max

{
V

(k)
t (x), β

(k+1)
t +

〈
λ

(k+1)
t , x − x

(k)
t

〉}
Go one step back in time: t ← t − 1. Upon reaching t = 0,
we have completed step k of the algorithm
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Recall on CLT

Let {Ci}i∈N be a sequence of identically distributed random
variables with finite variance.

Then the Central Limit Theorem ensure that

√
n

∑n
i=1 Ci

n
=⇒ G ∼ N (E[C1],Var [C1]) ,

where the convergence is in law.

In practice it is often used in the following way.
Asymptotically,

P
(
E
[
C1

]
∈
[
C̄ n −

1.96σn√
n

, C̄ n +
1.96σn√

n

])
' 95% ,

where C̄ n =
∑n

i=1 Ci
n is the empirical mean and

σn =

√∑n
i=1(C

i
−C̄ n)2

n−1 the empirical standard semi-deviation.
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Bounds

Exact lower bound on the value of the problem: V
(k)
0 (x0).

Exact upper bound on the value of the problem:

E

(
T−1∑
t=0

Lt(X
(k)
t ,U

(k)
t ,Wt) + K (XT )

)

where X
(k)
t and U

(k)
t are the trajectories induced by V

(k)
t .

This bound cannot be computed exactly, and should be
estimated by Monte-Carlo method :

Draw N scenarios
{
W n

1 , . . . ,W
n
t

}
.

Simulate the corresponding N trajectories X
(k),n
t ,U

(k),n
t , and

the total cost for each trajectory C (k),n.
Compute the empirical mean C̄ (k),N and standard dev. σ(k),N .
Then, with confidence 95% the upper bound on our problem is[
C̄ (k),N − 1.96σ(k),N

√
N

, C̄ (k),N +
1.96σ(k),N

√
N︸ ︷︷ ︸

UBk

]
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Stopping rule

One stopping test consist in fixing an a-priori relative gap ε,
and stopping if

UBk − V
(k)
0 (x0)

V
(k)
0 (x0)

≤ ε

in which case we know that the solution is ε-optimal with
probability 97.5%.

It is not necessary to evaluate the gap at each iteration.

To alleviate the computation charge, we can estimate the
upperbound by using the trajectories of the recent forward
phases.

Another more practical stopping rule consist in stopping after
a given number of iterations or fixed computation time.
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Non-independent inflows

In most cases the independence assumption is not realistic.

One classical way of modelling dependencies consist in
considering that the inflows It are an AR-k process :

It = α1It−1 + · · ·+ αk It−k + βt +Wt

where Wt is the independent residual.

The state of the system is now (Xt , It−1, . . . , I(t−k)).
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A few other implementations

We presented DOASA: select one scenario (one realisation of
(W1, . . . ,WT−1)) to do a forward and backward path

Classical SDDP: select a number N of scenarios to do the
forward path (computation can be parallelized); then during
the backward path we add N cuts to Vt before computing the
cuts on Vt−1.

CUPPS algorithm suggests to use V
(k)
t+1 instead of V

(k+1)
t+1 in

the computation of the cuts. In practice:

select randomly a scenario (wt)t=0,...,T−1

at time t we have a state x
(k)
t , we compute the new cut for Vt

choose the optimal control corresponding to the realization

Wt = wt in order to compute the state x
(k)
t+1 where the cut for

Vt+1 will be computed, and goes to the next step
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Numerical tricks

We can compute some cuts before starting the algorithm. For
example by bypassing the forward phase by properly choosing

the trajectory (x
(k)
t )t=0,...,T .

With time the number of cuts can become exceedingly large
and pruning (i.e. eliminate some cuts) can be numerically
efficient.

Eliminate some non-convexity through Lagrange dualization of
the non-convex constraint.

The number of simulations in the forward phase can vary
throughout the algorithm, leading to better numerical results.
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Cut Selection methods I

Let V
(k)
t be defined as maxl≤k

{
β

(l)
t +

〈
λ

(l)
t , · − x

(l−1)
t

〉}
.

For j ≤ k , if

min
x ,α

α− (β
(j)
t +

〈
λ

(j)
t ), x − x

(j−1)
t

〉
s.t. α ≥ β(l)

t +
〈
λ

(l)
t , x − x

(l−1)
t

〉
∀l 6= j

is non-negative, then cut j can be discarded without

modifying V
(k)
t

this technique is exact but time-consuming.
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Cut Selection methods II

Instead of comparing a cut everywhere, we can choose to
compare it only on the already visited points.

The Level-1 cut method goes as follow:

keep a list of all visited points x
(l)
t for l ≤ k.

for l from 1 to k , tag each cut that is active at x
(l)
t .

Discard all non-tagged cut.
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SDDP and risk

The problem studied was risk neutral

However a lot of works has been done recently about how to
solve risk averse problems

Most of them are using CVAR, or a mix between CVAR and
expectation either as objective or constraint

Indeed CVAR can be used in a linear framework by adding
other variables

Another easy way is to use “composed risk measures”

Finally a convergence proof with convex costs (instead of
linear costs) exists, although it requires to solve non-linear
problems
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SDDP and trees

SDDP is often presented on trees, where the a cut is
computed for a given node, and then shared to others through
the independence assumption.

2-step case : L-Shape method (Van-Slyke and Wets 1969),
strongly related to Bender decomposition

multistep case : nested-decomposition (Birge 1985)
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Assumptions

Noises are time-independent, with finite support.

Decision and state constraint sets are compact convex subset
of finite dimensional space.

Dynamic is linear, costs are convex and lower semicontinuous.

There is a strict relatively complete recourse assumption.

Remark, if we take the tree-view of the algorithm :

time-independence of noise is not required to have theoretical
convergence

node-selection process should be admissible (e.g. independent,
SDDP, CUPPS...)
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Convergence result

Theorem

With the preceding assumption, we have that the upper and lower
bound are almost surely converging toward the optimal value, and
we can obtain an ε−optimal strategy for any ε > 0.

More precisely, if we call V
(k)
t the outer approximation of the

Bellman function Vt at step k of the algorithm, and π
(k)
t the

corresponding strategy, we have

V
(k)
0 (x0)→k V0(x0)

and

E
[
Lt
(
X

(k)
t , π

(k)
t (X

(k)
t ),Wt

)
+ V

(k)
t+1(X

(k)
t+1)

]
→k Vt(X

(k)
t ).
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Conclusion

SDDP is an algorithm, more precisely a class of algorithms, that

exploits convexity of the value functions (from convexity of
costs...)

does not require state discretization

constructs outer approximations of Vt , those approximations
being precise only “in the right places”

gives bounds:

“true” lower bound V
(k)
0 (x0)

estimated (by Monte-Carlo) upper bound

constructs linear-convex approximations, thus enabling to use
linear solver like CPLEX

can be shown to display asymptotic convergence
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