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Abstract

Adaptive Partition-based Methods (APM) are numerical methods that solve, in particular, two-stage
stochastic linear problems (2SLP). We say that a partition of the uncertainty space is adapted to the current
first stage control x̌ if we can aggregate scenarios while conserving the true value of the expected recourse
cost at x̌. The core idea of APM is to iteratively constructs an adapted partition to all past tentative first
stage controls. Relying on the normal fan of the dual admissible set, we give a necessary and sufficient
condition for a partition to be adapted even for non-finite distribution, and provide a geometric method to
obtain an adapted partition. Further, by showing the connection between APM and the L-shaped algorithm,
we prove convergence and complexity bounds of the APM methods. The paper presents the fixed recourse
case and ends with elements to forgo this assumption.

1. Introduction

Stochastic programming is a powerful modeling
paradigm for optimization under uncertainty that
has found many applications in energy, logistics or
finance (see e.g. [1]). Two-stage linear stochastic
programs (2SLP) constitute an important class of
stochastic programs. They have been thoroughly
studied, see e.g. [2] and references therein. One
reason for this interest is the availability of efficient
linear solvers and the use of dedicated algorithms
leveraging the special structure of linear stochastic
programs ([3, 2, 4]).

1.1. Setting
We denote random variables as bold letters (e.g.

ξ) and their realization as normal scripts (e.g. ξ).
We consider the following problem 2-stage stochas-
tic linear problem with fixed recourse:

min
x∈Rn

+

{
c>x+ E

[
Q(x, ξ)

]︸ ︷︷ ︸
:=V (x)

| Ax = b
}
, (2SLP)

where the expectation is with respect to ξ = (T ,h)
an integrable random variable on (Ω,A,P) taking
values in Ξ ⊂ R`×n × R`, and the recourse cost is

Q(x, ξ) := min
y∈Rm

+

{
q>y | Tx+Wy = h

}
. (1)

The dual formulation of the recourse problem is

QD(x, ξ) := max
λ∈R`

{
(h− Tx)>λ |W>λ 6 q

}
. (2)

We define

X := {x ∈ Rn+ | Ax = b},

D := {λ ∈ R` |W>λ 6 q}.

In the rest of the paper, we assume that D 6= ∅
which implies by duality: Q(x, ξ) = QD(x, ξ).

For the sake of simplicity, we assume throughout
the paper that we are in a relatively complete re-
course setting, that is X ⊂ dom(V ). Most results
can be obtained without this assumption if we add
feasibility cuts (see Section 3.2).

1.2. Literature review
Most results for 2SLP with continuous distribu-

tions rely on discretizing the distributions. The
Sample Average Approximation (SAA) method
samples the costs and constraints. It relies on prob-
abilistic results based on uniform laws of large num-
bers to give statistical guarantees, see [4, Chap. 5]
for details. Obtaining an approximation with sat-
isfying guarantees requires a large number of sce-
narios. Otherwise, when the support of the ran-
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dom variables are simplices, we can leverage con-
vexity inequalities (like Jensen’s and Edmundson-
Madansky’s) or moments inequalities to construct
finite scenario trees such that the discretized prob-
lem yields upper or lower bound of the continuous
one (see e.g. [5, 6]).

In each of these approaches, we solve an approx-
imate version of the stochastic program, with or
without guarantees. In any case, the number of
scenarios increase the numerical burden of 2SLP.

In order to alleviate the computations, we can
use scenario reduction methods. Some are based
on heuristics, aiming at matching properties of the
underlying distribution (e.g. matching moments),
others are based on adequate distances on the sce-
nario tree (see [7, 8]). Alternatively, APM meth-
ods iteratively solve an aggregated version of 2SLP
over a partition of the uncertainty space by replac-
ing each subset of scenarios by its weighted mean.
We say that a partition is adapted to a first-stage
control x if the aggregated recourse problem has the
same optimal objective value as the recourse prob-
lem with the original distribution. After solving an
aggregated 2SLP, an APM method call a (adapted)
partition oracle to define a new (adapted) parti-
tion at the current first-stage control. APM were
first introduced by Song and Luedtke [9], who gave
a partition oracle designed for fixed recourse 2SLP
with finitely supported random variables. Van Ack-
ooj, de Oliveira and Song [10] improved the perfor-
mance of APM by combining it with level decom-
position methods ideas. Finally, Ramirez-Pico and
Moreno extended the scope of APMs, under the
name GAPM, in [11] to problems with continuous
distributions for the right-hand side and technology
matrix (and fixed recourse cost vector and matrix).
They gave a sufficient condition for a partition to
be adapted. They also provided adapted partition
oracles for some specific problems.

1.3. Contributions

The main contribution of the paper are the fol-
lowing: i) using polyhedral geometry tools we pro-
vide a generic adapted partition oracle, ii) we give
a new necessary and sufficient condition for a par-
tition to be adapted to x̌ even in the non-finitely
supported case, iii) by casting APM methods as
accelerated L-Shaped algorithms where tangeant
cones are added instead of tangeant planes (affine
cuts), we give convergence and complexity results
for APM methods.

1.4. Structure of the paper
Section 2 presents the APM framework and a nec-

essary and sufficient condition for a partition to be
adapted to x̌. Section 3 uses the link between APM
and L-Shaped to obtain convergence and complex-
ity results. Finally, Section 4 presents numerical
results, while Section 5 briefly extends GAPM to
non-fixed recourse problem.

2. General framework and geometric oracle

In this section, we start by presenting a generic
framework for APM algorithms, which depends on
partition oracle choice.

We proceed by giving a necessary and sufficient
condition for a partition oracle to be adapted, and
then a geometric adapted partition oracle.

2.1. Partition, refinements and APM framework
A partition P of Ξ is a collection of non-empty

pairwise disjoint subsets covering Ξ, i.e. ∪P∈PP =
Ξ, P ∩P ′ = ∅ and P 6= ∅ for P 6= P ′ ∈ P. Let P be
a measurable subset of Ξ. We denote by E

[
· |P

]
the

conditional expectation E
[
· |ξ ∈ P

]
and P

[
P
]

the
probability P

[
ξ ∈ P

]
. We say that two measurable

subsets of E,F ⊂ Ξ are P-equivalent, denoted E ∼P
F , if and only if they differ by a P-negligeable set

E ∼P F ⇐⇒ P
[
E ∩ F

]
= P

[
E
]
= P

[
F
]
,

similarly we denote

E ⊂P F ⇐⇒ P
[
E ∩ F

]
= P

[
E
]
.

A P-partition of Ξ is the equivalence class of all
partitions that are P-equivalent.

Let P and R be two P-partitions of Ξ. We say
that P refines R, denoted P 4P R, if

∀P ∈ P, ∃R ∈ R, P ⊂P R,

The common refinement of P and R is given by

P ∧R = {P ∩R |P ∈ P, R ∈ R}.

Definition 1 (Expected recourse cost of partition).
For P a P-partition of Ξ ⊂ R`×m × R` we define

VP : x 7→
∑
P∈P

P
[
P
]
Q
(
x,E

[
ξ|P

])
. (4)

Let x̌ ∈ dom(V ). We say that a P-partition P is
adapted to x̌ if VP(x̌) = V (x̌) := E

[
Q(x̌, ξ)

]
.
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The following lemma shows that, by convexity,
a finer partition yields a larger expected cost-to-go
function.

Lemma 2. Let P and R two P-partitions of Ξ then

P 4P R =⇒ VP > VR. (5)

Moreover,

VP∧R > max(VP , VR). (6)

In particular,

Q
(
·,E

[
ξ
])

6 VP 6 V. (7)

Proof. Since P is a P-partition 1ξ∈R =∑
P∈P 1ξR∩P almost surely. For any measur-

able set E ⊂ Ξ, E
[
ξ1ξ∈E

]
= P

[
E
]
E
[
ξ|E

]
. We

then have,

P
[
R
]
E
[
ξ|R

]
= E

[
ξ1ξ∈R

]
=

∑
P∈P

E
[
ξ1ξR∩P

]
=

∑
P∈P

P
[
R ∩ P

]
E
[
ξ|R ∩ P

]
When P

[
R
]
> 0, by dividing this equation by P

[
R
]
,

we obtain that E
[
ξ|R

]
is equal to the convex combi-

nation
∑
P∈P

P[R∩P ]
P[R] E

[
ξ|R ∩ P

]
. Finally, consider

x̌ ∈ X, the convexity of ξ 7→ Q(x̌, ξ) yields

Q
(
x̌,E

[
ξ|R

])
6

∑
P∈P

P
[
P ∩R

]
P
[
R
] Q

(
x̌,E

[
ξ|P ∩R

])
.

Then, if P 4P R,

VR(x̌) =
∑
R∈R

P
[
R
]
Q
(
x̌,E

[
ξ|R

])
6

∑
P∈P

∑
R∈R

P
[
P ∩R

]
Q
(
x̌,E

[
ξ|P ∩R

])
=

∑
P∈P

P
[
P
]
Q
(
x̌,E

[
ξ|P

])
= VP(x̌)

The last line follows from the fact, that for P ∈ P,
with P

[
P > 0

]
and P 4P R, there exists a unique

R ∈ R such that P
[
P ∩R

]
= P

[
P
]
, all other R ∈ R

being such that P
[
P ∩R

]
= 0.

Eq. (6) is a direct consequence of VP∧P′ > VP
and VP∧P′ > VP′ . Thus, VP∧P′ > max(VP , VP′).
Coupling this result with P 4P {Ξ} yield the left
inequality of Eq. (7) while the other can be found
in [11, Prop. 1].

With those definitions we present in Algorithm 1
a generic framework for APM methods.

1 k ← 0, z0U ← +∞, z0L ← −∞, P0 ← {Ξ} ;
2 while zkU − zkL > ε do
3 k ← k + 1;
4 Solve zkL ← minx∈X c

>x+ VPk−1(x) and
let xk be an optimal solution ;

5 Call the oracle on xk yielding Pxk ;
6 Pk ← Pk−1 ∧ Pxk ;
7 zkU ← min

(
zk−1
U , c>xk + VPk(xk)

)
;

8 end
Algorithm 1: Generic framework for APM.

2.2. Coarsest adapted partition

In this section, we define Rx̌, a particular P-
partition, and prove that it is, in a generic case, the
coarsest partition adapted to x̌ ∈ X, i.e., the only
partition adapted to x̌ that refines Rx̌ is Rx̌ itself.
Indeed, we are looking for partitions that yields a
precise approximation of recourse cost (exact at x̌
in the adapted case), while having the smallest pos-
sible number of elements.

When the distributions have finite support, [9]
characterized the partitions adapted to x̌. Building
on this result, a sufficient condition for continuous
distribution can be found in [11, Prop. 2]. We
now prove that, for any distribution, a partition is
adapted to x̌ if and only if it refines the collection
Rx̌ defined in (10b). Unfortunately, Rx̌ is not nec-
essarily a P-partition, thus we also provide a parti-
tion Rx̌ 4 Rx̌ (see Figure 1 for an illustration).

Recall that D = {λ ∈ R` | W>λ 6 q} and that
the normal cone of D at λ is the set ND(λ) :=
{ψ ∈ R` |ψ>(λ′ − λ) 6 0,∀λ′ ∈ D}. We denote
by ri(N) the relative interior of a cone N . Let
N (D) := {ND(λ) |λ ∈ D} be the normal fan of
D, i.e., the (finite) collection of all normal cones of
D (see [12] for an introduction on normal fans and
their use in stochastic programming). We denote
by N (D)max := {N ∈ N (D) | ∀N ′ ∈ N (D), N ⊂
N ′ ⇒ N = N ′} the collection of the maximal el-
ements of N (D) (i.e., full dimensional cones up-to
lineality spaces).

Theorem 3. Fix x̌ ∈ dom(V ) and N a cone in
Rm. We define EN,x̌ and EN,x̌, subsets of Ξ, as

EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ ri(N)} (9a)
EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ N} (9b)
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We define Rx̌ and Rx̌ as

Rx̌ :=
{
EN,x̌ | N ∈ N (D)

}
(10a)

Rx̌ :=
{
EN,x̌ | N ∈ N (D)max

}
. (10b)

Then,

P 4P Rx̌ =⇒ VP(x̌) = V (x̌)

P 4P Rx̌ ⇐⇒ VP(x̌) = V (x̌).

ξ1

ξ2

•

(a) Rx̌

ξ1

ξ2

••

(b) Rx̌

ξ1

ξ2

•

(c) P

ξ1

ξ2

•

(d) P′

Figure 1: Rx̌ is a partition of Ξ into 6 elements, Rx̌ is not a
partition, P and P ′ are two distinct coarsest partitions (into
2 elements) with Rx̌ 4 P 4 Rx̌ and Rx̌ 4 P ′ 4 Rx̌.

Remark 4. When the distribution of ξ is absolutely
continuous with respect to the Lebesgue measure of
Ξ, Rx̌ ∼P Rx̌, thus Rx̌ is the coarsest partition
adapted to x̌ ∈ dom(V ).

If ξ does not admit a density, Rx̌ is still an
adapted partition but not necessarily the coarsest,
which might not exist (see Fig. 1). Nevertheless,
any adapted partition should refine Rx̌. Unfortu-
nately, we cannot use Rx̌ in Algorithm 1, as we
cannot guarantee that Rx̌ is a P-partition.

Remark 5. Note that Proposition 2 of [11] implies
that all partition oracle returning partitions satis-
fying assumption (7) of [11] must be refinements
of Rx̌ by Theorem 3. In the finite scenario case,
our adaptedness condition is equivalent to Song and
Luedtke’s condition [9].

We preclude the proof by a technical lemma.

Lemma 6. Consider a set P ⊂ Ξ such that P(P ) >
0, and a first-stage control x̌ ∈ dom(V ). Then,

∃R ∈Rx̌, P ⊂P R

=⇒ Q(x̌,E
[
ξ|P

]
) = E

[
Q(x̌, ξ)|P

]
,

∃R ∈Rx̌, P ⊂P R

⇐⇒ Q(x̌,E
[
ξ|P

]
) = E

[
Q(x̌, ξ)|P

]
.

Proof. Since ∃R ∈ Rx̌, P ⊂P R implies ∃R ∈
Rx̌, P ⊂P R, we only need to prove the second
equivalence.

(⇒) Let P be such that there exists N ∈ N (D)
with P ⊂P EN,x̌. By definition of N (D), there
exists a dual point λN ∈ D such that N is the
normal cone of D at λN . By definition of a normal
cone, for all ψ ∈ N and all λ ∈ D, ψ>(λ−λN ) 6 0.
In other words ψ>λN = maxλ∈D ψ

>λ.
As P ⊂ EN,x̌, for P-almost-all ξ ∈ P , we have

h − T x̌ ∈ N . Recall that Q(x̌, ξ) = supλ∈D(h −
T x̌)>λ, thus, Q(x̌, ξ) = (h− T x̌)>λN . Hence,

E
[
Q(x̌, ξ)|P

]
= E

[
(h− T x̌)>λN |P

]
= E

[
h− T x̌|P

]>
λN = Q(x̌,E

[
ξ|P

]
)

as N is convex and E
[
h− T x̌|P

]
∈ N .

(⇐) For ψ ∈ R`, we denote the face Dψ :=
argmaxλ∈D ψ

>λ. Note that, for all ψ,ψ′ ∈ ri(N),
with N ∈ N (D), we have DN := Dψ = Dψ′ .

Assume that there is no R ∈ Rx̌ such that P ⊂P
R. Then, for all R ∈ Rx̌, P

[
P ∩ R

]
< P

[
P
]
. Since

P
[
P
]
6

∑
R∈Rx̌

P
[
P ∩R

]
, there exist R1 and R2 in

Rx̌ such that P
[
P∩R1

]
> 0 and P

[
P∩R2

]
> 0. Let

λ ∈ D such that Q(x̌,E
[
ξ|P

]
) = E

[
h − T x̌|P

]>
λ

i.e., λ ∈ DE[h−T x̌|P ]. Let N1 and N2 ∈ N (D)max

be such that R1 = EN1,x̌ and R2 = EN2,x̌. Since
N1 6= N2 are maximal, DN1∩DN2 = ∅. Thus, there
exists at least one i ∈ {1, 2} such that λ 6∈ DNi .
Then, E

[
Q(x̌, ξ)|P ∩Ri

]
> E

[
h− T x̌|P ∩Ri

]>
λ.

Note that Q(x̌, ξ) = σD(h−T x̌), where σD is the
support function of the polyhedron D, thus ξ 7→
Q(x̌, ξ) is a polyhedral function. Further, its affine
regions are the elements of Rx̌.

By convexity, for any measurable set A,
E
[
Q(x̌, ξ)|P∩A

]
> Q

(
x̌,E

[
ξ|P∩A

])
which is equal

to maxλ′∈D E
[
h− T x̌|P ∩A

]>
λ′. Since λ ∈ D, we

have E
[
Q(x̌, ξ)|P ∩A

]
> E

[
h− T x̌|P ∩A

]>
λ.

Thus, E
[
Q(x̌, ξ)|P

]
> Q

(
x̌,E

[
ξ|P

])
.

Proof of Theorem 3. By definition P 4P Rx̌, if and
only if, for all P ∈ P there exists a cell R ∈ Rx̌ such
that P ⊂P R. By Lemma 6 this is equivalent to, for
all P ∈ P, Q(x̌,E

[
ξ|P

]
) = E

[
Q(x̌, ξ)|P

]
. Now, by

Jensen’s inequality, this equality (for all P ∈ P) is
equivalent to the equality of a convex sum like∑
P∈P

Q
(
x̌,E

[
ξ|P

])
P
[
P
]
=

∑
P∈P

E
[
Q(x̌, ξ)|P

]
P
[
P
]
.

Law of total expectation yields (11).
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Remark 7. Let x? be an optimal solution of

min
x∈X

c>x+ VP?(x)

where P? 4P Rx? . Then, x? is also a solution
of Problem (2SLP). In other words, P? is a 0-
sufficient partition according to [9, Def. 1.2].

3. Comparison with other algorithms and
convergence

In this section, we show that the partition-based
methods can be seen as an acceleration of the cut-
ting plane method. It then gives us a finite conver-
gence proof with a bound on the number of steps.

3.1. Adapted partition and subdifferential
We show that, for any first stage control x ∈ X,

if the partition is adapted to x, then the subdiffer-
ential of approximate expected recourse cost coin-
cides with the subdifferential of the true expected
recourse cost.

Lemma 8. Let x̌ ∈ dom(V ) and P be a refinement
of Rx̌, i.e. P 4 Rx̌, then

∂VRx̌
(x̌) ⊂ ∂VP(x̌) ⊂ ∂V (x̌)

Furthermore, if x̌ ∈ ri(dom(V )),

∂VRx̌
(x̌) = ∂VP(x̌) = ∂V (x̌)

Proof. Let g ∈ ∂VRx̌(x̌) then for all x, VRx̌(x) >
VRx̌

(x̌) + g>(x − x̌). By monotonicity (see (5))
VP(x) > VRx̌

(x) and as Rx̌ is adapted to x̌, we
have VRx̌

(x̌) = V (x̌) = VP(x̌). Thus, VP(x) >
VP(x̌) + g>(x − x̌) and g ∈ ∂VP(x̌). The proof for
the second inclusion is similar.

Let x̌ ∈ ri(dom(V )), we now prove that
∂VRx̌(x̌) = ∂V (x̌). Recall that DN = Dψ =
argmaxλ∈D ψ

>λ, for ψ ∈ ri(N) where N ∈ N (D).
By [4, Prop 2.8 p.37], ∂V (x̌) = E

[
− T>Dh−T x̌

]
+

Ndom(V )(x̌). Thus, since x̌ ∈ ri(dom(V )),

∂V (x̌) = E
[
− T>Dh−T x̌

]
= E

[ ∑
N∈N (D)

−1h−T x̌∈ri(N)T
>DN

]
= E

[ ∑
N∈N (D)

−1ξ∈EN,x̌
T>DN

]

Further,

E
[
1ξ∈EN,x̌

T>DN
]

= P
[
EN,x̌

]
E
[
T |EN,x̌

]>
DN

= P
[
EN,x̌

]
E
[
T |EN,x̌

]>
DE[h−T x̌|EN,x̌]

And by definition of Rx̌ in (10a) , we get

∂V (x̌) =
∑
P∈Rx̌

−P
[
P
]
E
[
T |P

]>
DE[h−T x̌|P ]

=
∑
P∈Rx̌

P
[
P
]
∂xQ(x̌,E

[
ξ|P

]
)

= ∂VRx̌
(x̌)

3.2. Link with L-shaped and Benders decomposition
The classical L-shaped method (see e.g. [2, Chap-

ter 5]) is a specification of Benders decomposition
to 2SLP with finitely supported distributions. The
core idea consists in representing the expected re-
course cost in (2SLP), by a lift variable

min
x∈X,θ∈R

{
c>x+ θ | (x, θ) ∈ epi(V )

}
.

We then relax the epigraphical representation
(x, θ) ∈ epi(V ), replacing it by a set of valid in-
equalities called cuts, i.e.

min
x∈X,θ∈R

c>x+ θ

s.t. g>x+ v 6 θ, ∀(g, v) ∈ O,
f>x 6 f, ∀(f, f) ∈ F .

More precisely, assume that we have such a re-
laxation of (2SLP). Let xk be an optimal first stage
control of this relaxation. If it is admissible, mean-
ing that for all scenario ξ there exists an admissible
recourse control yξ, we compute, through duality,
a subgradient gk ∈ ∂V (xk). This yields a new op-
timality cut θ > (gk)>(x − xk) + V (xk), which is
added to O. If xk is not admissible we can add a
feasibility cut to F instead by using dual optimal
extreme ray (see [2, §5.1.b]). We then solve our
strengthened relaxation to obtain xk+1.

The L-Shaped method specifies that the subgra-
dient gk can be obtained as an average over ξ of
subgradients gk,ξ ∈ ∂xQ(xk, ξ). In particular, it
means that, to compute the subgradient, we can
solve | supp(ξ)| smaller LP instead of a large one.
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Remark 9 (L-shaped for continuous distribution).
When the distribution are non-finitely supported, we
cannot apply naively this method as there is a non-
finite number of scenarios. Nevertheless, we can
still approximate epi(V ) with cuts. We can com-
pute θ = VRx̌

(x̌) and a subgradient g ∈ ∂VRx̌
(x̌) by

solving |Rx̌| linear problems of the form (2) through
exact quantization. By Theorem 3, θ = VRx̌(x̌) =
V (x̌). Further, g ∈ ∂VRx̌

(x̌) ⊂ ∂V (x̌) by Lemma 8.
Then (θ, g) define an optimality cut.

Lemma 8 shows that, at each step k of Algo-
rithm 1, we add a collection of valid cuts which
are exact at xk to our collection of cuts. This
means that APM methods can be seen as a Ben-
der’s decomposition method where we add more
than one exact cut per iteration. In particular,
when xk ∈ ri(dom(V )) we add the whole tangent
cone of epi(V ) at x instead of a single cut.

3.3. Convergence of APMs
We start by showing that the bounds generated

in Algorithm 1 are monotonic.

Lemma 10. Assume that the partition oracle used
is adapted. For every computed step k we have

zk−1
L 6 zkL 6 val (2SLP) 6 zkU 6 zk−1

U

Proof. Since Pk 4P Pk−1, by Lemma 2, we have,
for all x ∈ X,

c>x+ VPk−1(x) 6 c>x+ VPk(x)

6 c>x+ V (x)

Minimizing over x yields zk−1
L 6 zkL 6 val (2SLP).

For any k, we have that Pk is adapted to xk ∈
X, hence VPk(xk) = V (xk), thus val (2SLP) 6
c>xk + VPk(xk). Further, by definition of zUk in
Algorithm 1, zUk = minκ6k c

>xκ + VPκ(xκ), yield-
ing val (2SLP) 6 zkU 6 zk−1

U .

We now prove finite convergence of any APM.

Theorem 11. Assume that the partition oracle
used is adapted. If X ⊂ Rn+ has a finite diameter
M ∈ R+ and x 7→ c>x+V (x) is Lipschitz with con-
stant L then the partition based Algorithm 1 finds
an ε-solution in at most

(
LM
ε + 1

)n iterations.

Proof. We adapt the classical proof of Kelley’s cut-
ting plane algorithm to APMs. Let k ∈ N and 1 <
i < k, we have that V (xi) = VPk−1(xi) = VPi(xi).

Let g ∈ ∂VPk−1(xi) ⊂ ∂V (xi) such that ‖c + g‖ is
bounded by the Lipschitz constant L then

zkU − zkL 6 c>xi + VPi(xi)−
(
c>xk + VPk−1(xk)

)
= c>(xi − xk) + VPk−1(xi)− VPk−1(xk))

6 c>(xi − xk)− g>(xk − xi)
6 ‖c+ g‖2‖xi − xk‖2 6 L‖xi − xk‖2.

Then, for k such that, ε < zUk − zLk , we have
ε < L‖xi − xk‖, in particular ‖xi − xk‖ > ε/L. By
definition of M there are at most

(
LM
ε + 1

)n balls
of radius ε/L in X. An ε-solution being obtained
as soon as two points are in the same ball.

4. Numerical examples

In this section, we detail the actual computation
required by Algorithm 1 and illustrate the algo-
rithm on numerical examples.

4.1. Detailing computation
In the following two sections, we give more details

on how to compute the Lines 4 to 7 of Algorithm 1.

4.1.1. Master problem and subproblems
Once E

[
ξ |P

]
and P

[
P
]

have been computed for
P ∈ Pk−1, by Eq. (4) and Eq. (1), the problem of
Line 4 is reduced to the following linear problem

min
x∈X,(yP )∈(Rm

+ )Pk−1
c>x+

∑
P∈Pk

P
[
P
]
q>yP

s.t. E
[
T |P

]
x+WyP = E

[
h|P

]
∀P ∈ Pk.

Moreover, to compute the upper bound in Line 7,
we need to solve at most |Pk| linear problems of
dimension m

Q(xk,E
[
ξ|P

]
) := min

yP∈Rm
+

q>yP

s.t. E
[
T |P

]
xk +WyP = E

[
h|P

]
4.1.2. Refinement, expectation and probabilities

Recall that we can store a polyhedron E, either
as a family of constraints (M,β) such that E =
{x ∈ Rd |Mx 6 β} (H-representation) or as fam-
ilies of vertices (vi)i∈I and rays (rj)j∈J such that
E = Conv(vi)i∈I+Cone(rj)j∈J (V -representation).
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Both representation are implemented polymake, an
open source software and julia library [13]. We can
switch between representations through algorithms
such as the double description [14].

We can simultaneously compute conditional ex-
pectations, probabilities and refinement as detailed
in Algorithm 2.

Data: Pk−1 and Rxk the partition to refine,
second stage distributions T and h.

1 Set Pk := ∅;
2 for P ∈ Pk−1 and R ∈ Rxk do
3 Set P ′ := P ∩R;
4 if P

[
P ′] > 0 then

5 Store P
[
P ′], E[T |P ′] and E

[
h|P ′];

6 Set Pk := Pk ∪ {P ′};
7 end
8 end

Algorithm 2: Refinement procedure.

In this algorithm, the computation of probabili-
ties on polyhedra in Line 5 is a ]P -complete prob-
lem in the general case, although, for a large class
of distributions, formulas exists (see [12, Section 5]
for a review).

4.1.3. Explicit partition oracle
In this section, we explain how to compute, for

x̌ ∈ X, Rx̌ =
{
EN,x̌ |N ∈ N (D)

}
where EN,x̌ ={

(T, h) |h− T x̌ ∈ ri(N)
}

.
The computation of the normal fan N (D), al-

ready implemented in polymake, can be done
thanks to a double description and active constraint
sets. Note that if N ∈ N (D), then EN,x̌ is a rela-
tively open polyhedral cone of Ξ. In particular, if
N := {ψ |Mψ 6 0} is given in a non-redundant H-
representation where M ∈ Rp×l, we have ri(N) =
{ψ |Mψ � 0}. Then EN,x̌ = {ξ ∈ Ξ |Hxξ � 0},
with Hx = (−x1M · · · − xnM M).

Unfortunately, obtaining an H-representation of
the normal cone, from the usual V -representation,
requires a double-description which is numeri-
cally intractable in large dimension (see McMullen
bounds [15]).

The double-description can be avoided if the
technology matrix T ≡ T is fixed. Indeed, in this
case EN,x̌ ∼P {T} ×

(
T x̌ + ri(N)

)
. Thus, we can

compute, at the beginning of the algorithm, a V -
representation of all N ∈ N (D), and easily deduce
a V -representation of EN,x̌ by adding Tx to each
representant ray.

4.2. Numerical examples
We applied Algorithm 1with our geometric ora-

cle to the problems LanDs and CV@R of [11]. We
obtained the same partition, and thus the same
numerical results. Finally, we treat the problem
Prod-Mix for which no partition oracle were given
in the literature. Our code is available at https:
//github.com/maelforcier/GAPM.

4.2.1. Energy planing problem - LandS
We applied numerically our method to the LandS

problem and constated that our geometric oracle
returned the same partition as [11].

4.2.2. Conditional value-at-risk linear problems
For the conditional value-at-risk problem in [11],

note that our geometric oracle yields the same par-
tition:

QD(x̌, ξ) := max
λ∈R

(−x̌>rξ − τ)λ

s.t. 0 6 λ 6 1

Here D = [0, 1] and N (D) = {R−, {0},R+} Then,
if x̌ 6= 0, Rx̌ =

{
{r|x̌>r > −τ}, {r|x̌>r =

−τ}, {r|x̌>r < −τ}
}

.

4.2.3. Prod-Mix
We adapted the problem Prod-mix of

https://stoprog.org/SavedLinks/IBM_StoExt_
problems/node4.php as

min
x,y

− c>x+ E
[
q>y

]
s.t. Tx− y 6 h

x,y > 0,

where q> = (5, 10), c> = (12, 40), T fol-

lows the uniform law
(
U [3.5, 4.5] U [9, 11]
U [0.8, 1.2] U [36, 44]

)
and h> follows the uniform distribution(
U [5970, 6030], U [3979, 4021]

)
. Algorithm 1

gave the results summed up in Table 1

k zkL zkU zkU − zkL Total time |Pk|
1 -18666.67 -16939.71 1726.96 0.57 s 4
2 -17873.01 -17383.73 489.28 2.1 s 9
4 -17744.67 -17709.00 35.67 9.1 s 25
6 -17713.74 -17711.37 2.37 23.7 s 49
8 -17711.71 -17711.56 0.15 50.0 s 81
10 -17711.57 -17711.56 0.01 88.0 s 121

Table 1: Results of Algorithm 1 for Prod-Mix
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To compare our approach with SAA, we solved
the same problem 100 times, each with 10′000
scenarios randomly drawn, yielding a 95% confi-
dence interval centered in −17711, with length 4.4.
This statistical confidence interval required 2058s
of computation. By APM, an exact gap smaller
than 4.4 is obtained after iteration 6, that is in 23s,
which is here roughly the time required for solving
one SAA. Thus, Algorithm 1 can be useful to find
accurate values.

The most time-consuming parts of the algorithm
are the computations of volumes which take 85% of
the total time, because polymake only implement
exact computations, which was proven to be ]P -
complete [16]. To improve Algorithm 1, we could
use precise rapid approximation volume algorithms,
see e.g. [17].

5. Extensions and perspectives

We now provide an adapted partition oracle for
problems with finitely supported recourse matrix
W and cost q. The convergence results of Section 3
can directly be applied.

We denote the dual admissible set DW,q :=
{λ ∈ R` |W>λ 6 q} and Rx,W,q := {EN,x̌ |N ∈
N (DW,q)}, where N (DW,q) is the normal fan of
DW,q, and EN,x̌ defined in Eq. (9a). Then, by the
law of total expectation and Lemma 6, straightfor-
ward computations show that Px :=

{
{(W, q)} ×

R
∣∣ (W, q) ∈ supp(W , q), R ∈ Rx,W,q

}
is a P-

partition of R`×m×Rm×Ξ adapted to x.

Remark 12. Diving further into the polyhedral ge-
ometry of 2SLP we show in a forthcoming work that
q 7→ Rx,W,q is constant on S ∈ SW where SW is a
partition of R`×m (the collection of relative interi-
ors of the secondary fan of W cells (see e.g., [18,
Chapter 5])), hence theoretically enabling GAPM
methods for 2SLP with non-finitely supported q.

More precisely, we will show that Px̌ :=
{
{W} ×

S × R |W ∈ supp(W ), S ∈ SW , R ∈ Rx,W,S
}

is
an adapted P-partition to x̌, where Rx,W,S is the
common value of Rx,W,q for any q ∈ S.
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