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Abstract. The stochastic dual dynamic programming (SDDP) algorithm has become one of
the main tools used to address convex multistage stochastic optimal control problems. Recently
a large amount of work has been devoted to improving the convergence speed of the algorithm
through cut selection and regularization, and to extending the field of applications to nonlinear,
integer, or risk-averse problems. However, one of the main downsides of the algorithm remains the
difficulty in giving an upper bound of the optimal value, usually estimated through Monte Carlo
methods and therefore difficult to use in the stopping criterion of the algorithm. In this paper we
present a dual SDDP algorithm that yields a converging exact upper bound for the optimal value
of the optimization problem. As an easy consequence of our approach, we show how to compute
an alternative control policy based on an inner approximation of Bellman value functions instead of
the outer approximation given by the standard SDDP algorithm. We illustrate the approach on an
energy production problem involving zones of production and transportation links between the zones.
The numerical experiments we carry out on this example show the effectiveness of the method.
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1. Introduction. In this paper, we consider a risk neutral multistage stochastic
optimization problem with continuous decision variables. We adopt the stochastic
optimal control point of view; that is, we work with explicit control and state variables
in order to deal with an explicit dynamics of the system.

1.1. Stochastic optimization problem in discrete time. Let (\Omega ,\scrA ,\BbbP ) be a
probability space, where \Omega is the set of possible outcomes, \scrA the associated \sigma -field, and
\BbbP the probability measure. We denote by J0, T K the discrete time span \{ 0, 1, . . . , T\} ,
and we define upon it three processes, \bfitX =

\bigl\{ 
\bfitX t

\bigr\} 
t\in J0,T K, \bfitU =

\bigl\{ 
\bfitU t

\bigr\} 
t\in J1,T K, and

\bfitxi =
\bigl\{ 
\bfitxi t
\bigr\} 
t\in J1,T K, where for all t, \bfitX t : \Omega \rightarrow \BbbR nx , \bfitU t : \Omega \rightarrow \BbbR nu , and \bfitxi t : \Omega \rightarrow \BbbR n\xi 

are random variables representing, respectively, the state, the control, and the noise
variables. The state process \bfitX is assumed to follow the linear dynamics

\bfitX 0 = x0, \bfitX t+1 = At\bfitX t +Bt+1\bfitU t+1 + Ct+1\bfitxi t+1 \forall t \in J0, T  - 1K ,

where x0 is the given initial state at time 0 and where At \in \BbbR nx\times nx , Bt+1 \in \BbbR nx\times nu ,
and Ct+1 \in \BbbR nx\times n\xi are given deterministic matrices. Moreover we assume that both
control and state variables are subject to bound constraints, that is, ut+1 \leq \bfitU t+1 \leq 
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1224 LECL\`ERE ET AL.

ut+1 and xt+1 \leq \bfitX t+1 \leq xt+1 for all t \in J0, T  - 1K, and satisfy a linear coupling
constraint Dt\bfitX t + Et+1\bfitU t+1 + Gt+1\bfitxi t+1 \leq 0, where Dt \in \BbbR nc\times nx , Et+1 \in \BbbR nc\times nu ,
and Gt+1 \in \BbbR nc\times n\xi are given deterministic matrices.

We assume that the problem has a hazard-decision1 information structure; that
is, the decision at time t is taken knowing the noise that affects the system between t
and t+1. Accordingly, the decision \bfitU t+1 is a function of the uncertainties up to time
t+ 1, which means that \bfitU t+1 has to be measurable with respect to the \sigma -field \scrF t+1

generated by the uncertainties (\bfitxi 1, . . . , \bfitxi t+1). We write this nonanticipativity con-
straint as \bfitU t+1 \preceq \scrF t+1 for all t \in J0, T  - 1K.

Finally, the cost incurred at each time t \in J0, T  - 1K is a linear function a\top t \bfitX t +
b\top t+1\bfitU t+1 with at \in \BbbR nx and bt+1 \in \BbbR nu , and the cost incurred at the final time T
is K(\bfitX T ), where K is a polyhedral, hence convex lower semicontinuous, function.
Note that the results obtained in this paper for a polyhedral final cost function can
be adapted to the case where K is a convex lower semicontinuous function, Lipschitz-
continuous on its domain.

Gathering all these elements, we get the following stochastic optimization prob-
lem:

min
\bfitX ,\bfitU 

\BbbE 
\biggl[ T - 1\sum 

t=0

(a\top t \bfitX t + b\top t+1\bfitU t+1) +K(\bfitX T )

\biggr] 
(1.1a)

s.t. \bfitX 0 = x0, \bfitX t+1 = At\bfitX t +Bt+1\bfitU t+1 + Ct+1\bfitxi t+1 \forall t \in J0, T  - 1K ,(1.1b)

ut+1 \leq \bfitU t+1 \leq ut+1, xt+1 \leq \bfitX t+1 \leq xt+1 \forall t \in J0, T  - 1K ,(1.1c)

Dt\bfitX t + Et+1\bfitU t+1 +Gt+1\bfitxi t+1 \leq 0 \forall t \in J0, T  - 1K ,(1.1d)

\bfitU t+1 \preceq \scrF t+1 \forall t \in J0, T  - 1K .(1.1e)

We make the following assumption throughout the paper.

Assumption 1.1 (discrete white noise). The noise sequence
\bigl\{ 
\bfitxi t
\bigr\} 
t\in J1,T K is assumed

to be a sequence of independent random variables with finite support.

As is well known, independence is of paramount importance in obtaining dynamic
programming equations, while finiteness of the support is required both to be able to
compute exactly the expectation and for theoretical convergence reasons.

1.2. Stochastic dual dynamic programming and its weaknesses. Thanks
to white noise Assumption 1.1, we can solve problem (1.1) by the dynamic program-
ming approach (see the two reference books [3] and [4] for further details). This
approach leads to the so-called Bellman value functions Vt, where Vt(x) is the opti-
mal value of the problem when starting at time t with state \bfitX t = x. These functions
are obtained by solving the following recursive Bellman equation:

VT (x) = K(x) ,(1.2a)

\^Vt(x, \xi t+1) = inf
ut+1,xt+1

a\top t x+ b\top t+1ut+1 + Vt+1(xt+1)(1.2b)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1\xi t+1 ,(1.2c)

ut+1 \leq ut+1 \leq ut+1, xt+1 \leq xt+1 \leq xt+1 ,(1.2d)

Dtx+ Et+1ut+1 +Gt+1\xi t+1 \leq 0 ,(1.2e)

Vt(x) = \BbbE 
\bigl[ 
\^Vt(x, \bfitxi t+1)

\bigr] 
.(1.2f)

1``Wait-and-see"" in stochastic programming terminology.
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EXACT BOUNDS FOR SDDP VIA FENCHEL DUALITY 1225

When the state variable takes a finite number of possible values, we can solve the
Bellman equation by exhaustive exploration of the state, yielding the exact solution
of the problem. In the continuous linear-convex case, we can rely on polyhedral ap-
proximations. At each iteration k, the stochastic dual dynamic programming (SDDP)
algorithm builds polyhedral approximations V k

t of the functions Vt by using a sam-
pled nested Benders decomposition (see [18, 10, 11, 12, 13] for the convergence of
this approach). The polyhedral value functions V k

t computed by SDDP are outer
approximations of the functions Vt at each stage, that is, V k

t \leq Vt, so that the value
v0 = V k

0(x0) is a true2 lower bound on the optimal value V0(x0) of problem (1.1).
Note that by providing a sequence of approximate value functions \{ \~Vt\} t\in J1,T K, we

are able to define an admissible strategy for problem (1.1). Indeed, solving problem
(1.2b)--(1.2e) when replacing Vt+1 by its approximation \~Vt+1 gives the control to be
applied for any initial condition (x, \xi ). Thus, functions V k

t can be used to derive
an admissible strategy, whose associated expected cost vk0 gives an upper bound of
the optimization problem value. Unfortunately, computing the expectation is usually
out of reach, and we need to rely on some approximate computation. The most
common way to perform that task is based on the Monte Carlo approach: it consists
of simulating the control strategy induced by functions V k

t along a (large) number M
of noise scenarios, and then computing the arithmetic mean \widehat vM0 of the scenarios cost
and the associated empirical standard deviation \widehat \sigma M

0 . The value \widehat vM0 is an approximate
(statistical) upper bound of the optimal value of problem (1.1). Moreover, it is easy to
obtain an asymptotic \alpha -confidence interval [\widehat vM0  - z\alpha \widehat \sigma M

0 , \widehat vM0 +z\alpha \widehat \sigma M
0 ]. Here 1 - \alpha \in [0, 1]

is a chosen confidence level and z\alpha = \Phi  - 1(1 - \alpha ), \Phi being the cumulative distribution
function of the standard normal distribution.

The classical way to use this statistical upper bound in SDDP, as presented in
[16], consists in testing at each iteration of the algorithm whether the available exact
lower bound v0 is greater than the \alpha -confidence lower bound \widehat vM0  - z\alpha \widehat \sigma M

0 , and to stop
the algorithm in that case. Such a stopping criterion raises at least two difficulties:
the Monte Carlo simulation increases the computational burden of SDDP, and the
stopping test does not give any guarantee of convergence of the algorithm.

The first difficulty can be tackled by parallelizing the M simulations involved in
the evaluation of the upper bound, and also by calculating the empirical mean \widehat v0 over
the last k iterations of the algorithm, thus enlarging the sample size from M to kM
without additional computation (see [23, section 3.2]). The second difficulty induced
by this stopping criterion was analyzed in [21]: the larger the standard deviation\widehat \sigma 0 and the confidence (1  - \alpha ) are, the sooner the algorithm will be stopped. The
author proposes another criterion based on the difference between the \alpha -confidence
upper bound \widehat v0 + z\alpha \widehat \sigma 0 and the exact lower bound v0 up to a prescribed accuracy
level \varepsilon . Note that this stopping test is not necessarily convergent, in the sense that
the stopping criterion might not be met in finite time, for example, if \varepsilon < z\alpha \widehat \sigma 0. An
interesting view on the class of stopping criteria in terms of statistical hypothesis
tests was given in [14]; the authors compare different hypothesis tests of optimality3

and so they find the stopping criteria proposed by [16, 21], as well as another one
which ensures an upper bound on the probability of incorrectly claiming convergence
(type II error). Moreover, the simulation scenarios are obtained using quasi--Monte
Carlo or Latin hypercube sampling rather than raw Monte Carlo, so that the accuracy
of the upper bound is increased. Nevertheless, all these stopping criteria are based on

2In particular this lower bound does not rely on a statistical approach.
3Such as (H0: v0 = v0) against (H1: v0 \not = v0).
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1226 LECL\`ERE ET AL.

a statistical evaluation and thus give a probabilistic guarantee that the gap is smaller
than some \varepsilon , not an almost sure one.

A different approach consists in building polyhedral inner approximations V t of
the Bellman functions Vt at each stage t, that is, V t \geq Vt. A deterministic upper
bound V 0(x0) of the optimal value of problem (1.1) thus becomes available, and it is
then possible to perform a stopping test of the SDDP algorithm on the almost-sure
gap V 0(x0)  - V 0(x0). This path is followed in [17]. More precisely, starting from a
polyhedral inner approximation V t+1 at time t+1 and choosing an arbitrary sequence
of points \{ xj

t\} j\in J1,JtK, the authors show how to compute a value qjt at each point xj
t

such that qjt \geq Vt(x
j
t ). The inner polyhedral approximation V t is then obtained from

the pairs \{ (xj
t , q

j
t )\} j\in J1,JtK. A delicate issue when devising this inner approximation is

the choice of the points xj
t defining the polyhedral function V t. The authors suggest

using points generated by some other algorithm, such as SDDP. They compute the
upper bound only once the algorithm ends, and hence this upper bound is not used
inside a stopping test. Moreover, they use the inner approximations V t to devise a
policy and show that the expected value of this policy is less than the upper bound
V 0(x0). Another approach involving inner and outer approximations of the Bellman
functions is described in [1], where both a lower and an upper bound are updated at
each stage and each iteration of the SDDP algorithm. Further, they use the differ-
ence between upper and lower bounds to select a specific noise trajectory (instead of a
random noise selection, as is typical in SDDP). The convergence of the resulting fully
deterministic algorithm is proved. A deterministic method involving inner and outer
approximations of Bellman functions was also developed in [9] for the robust dynamic
optimization framework. The main difference compared with SDDP is that [9] uses
an inner approximation to determine a worst-case scenario for the forward pass, while
computing a state trajectory and updating the lower approximation as usual. The in-
ner approximation is updated directly from a primal perspective, which is equivalent
to the dual update presented in this paper. Ultimately, let us mention the approach
described in [5], using inner and outer approximations to alleviate the curse of dimen-
sionality of dynamic programming by relaxing the demand for optimality so that the
distance to the optimal solution is kept within prespecified bounds.

1.3. Contents of the paper. In section 2, we introduce the formalism of linear
Bellman operators for a large class of stochastic optimization problems, we define its
dual linear Bellman operator, and we enlighten the relationship between them thanks
to Fenchel conjugacy. We also present an abstract SDDP algorithm that applies to
a sequence of functions recursively defined through linear Bellman operators. In sec-
tion 3, we use the conjugacy results obtained in section 2 to obtain a recursion on the
dual value functions, on which we apply the abstract SDDP algorithm, yielding a dual
SDDP algorithm for solving problem (1.1). The main result of this section is that we
eventually obtain a converging exact upper bound over the value of problem (1.1).
In section 4, we show how to build inner approximations of Bellman functions asso-
ciated with problem (1.1) thanks to the outer approximations computed by the dual
SDDP algorithm. These inner approximations induce a control strategy converging
toward an optimal one (see Theorem 4.4). Furthermore, the expected cost incurred by
this strategy is shown to be lower than the exact upper bound obtained in section 3.
Ultimately, in section 5, we illustrate all the presented methodology on an energy
management problem inspired by \'Electricit\'e de France, at the European scale. The
results show, on the one hand, that having at our disposal an exact upper bound in
SDDP allows us to devise a more efficient stopping test for SDDP than the usual ones
based on a Monte Carlo approach and, on the other hand, that the strategy based
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EXACT BOUNDS FOR SDDP VIA FENCHEL DUALITY 1227

on the inner approximations of the Bellman functions outperforms the usual strategy
obtained using standard outer approximations.

1.4. Notation.
\bullet Ji, jK denotes the set of integers between i and j.
\bullet \Omega denotes a finite set of cardinality | \Omega | supporting a probability distribution \BbbP :
\Omega = \{ \omega 1, . . . , \omega | \Omega | \} and \BbbP (\{ \omega i\} ) = \pi i for all i \in J1, | \Omega | K.

\bullet Random variables are denoted using bold uppercase letters (such as \bfitZ : \Omega \rightarrow 
\BbbZ ), and their realizations are denoted using lowercase letters (z \in \BbbZ ).

\bullet \bfitX : \Omega \rightarrow \BbbX corresponds to the state, \bfitU : \Omega \rightarrow \BbbU to the control, \bfitxi : \Omega \rightarrow \Xi 
to the noise.

\bullet [R]
 \star 
denotes the Fenchel transform of an extended real-valued function R.

\bullet Vt : \BbbX t \rightarrow \BbbR is the Bellman value function associated to problem (1.1) at time
t.

\bullet Ft = [Vt]
 \star 
is the dual value function associated with problem (1.1) at time t.

\bullet \scrB is the Bellman operator associated with a generic linear problem, with
associated solution operator \scrS , and dual operator denoted \scrB \ddagger .

\bullet \scrT is the Bellman operator associated with problem (1.1), its dual being de-
noted \scrT \ddagger .

\bullet Underlined notation (e.g., V ) corresponds to a lower approximation of a func-
tion (e.g., V ). Overlined notation (e.g., V ) denotes an upper approximation.

\bullet \BbbI x\in X is the indicator function with value 0 if x \in X and +\infty otherwise.
\bullet dom(R) := \{ x \in \BbbR n | R(x) < +\infty \} is the (effective) domain of R : \BbbR n \rightarrow \=\BbbR .

2. Linear Bellman operators. This self-contained section is devoted to the
definition and properties of linear Bellman operators (LBOs). In subsection 2.1 we
present the abstract formalism of LBOs that allows us to write our subsequent dy-
namic programming equations in a compact manner. In subsection 2.2 we show that
the Fenchel transform of an LBO is also an LBO. In subsection 2.3 we present an
abstract version of the SDDP algorithm adapted to the LBO formulation.

2.1. The formalism of linear Bellman operators. We first introduce the
notion of linear Bellman operator, which is a particular class of Bellman operators
(see, e.g., the mappings defined in [4, section 1.1]) associated with stochastic optimal
control problems where costs and constraints are linear.

We consider an abstract probability space (\Omega ,\scrA ,\BbbP ). Recall that \Omega is a finite set
(see Assumption 1.1) and assume that the \sigma -field \scrA is generated by all the singletons
of \Omega . We denote by \scrL 0(\BbbR nx ;\BbbR ) the set of functions defined on \BbbR nx and taking values
in [ - \infty ,+\infty ], and by \scrL 0(\Omega ,\scrA ;\BbbR nx) the space of \BbbR nx -valued measurable functions
defined on (\Omega ,\scrA ,\BbbP ).

Definition 2.1. An operator \scrB : \scrL 0(\BbbR nx ;\BbbR )\rightarrow \scrL 0(\BbbR nx ;\BbbR ) is said to be a linear
Bellman operator (LBO) if for all R \in \scrL 0(\BbbR nx ;\BbbR ), we have

(2.1) \scrB (R) : x \mapsto \rightarrow inf
(\bfitU ,\bfitY )\in \scrG (x)

\BbbE 
\Bigl[ 
\bfitC \top \bfitU +R(\bfitY )

\Bigr] 
,

where \scrG : \BbbR nx \rightrightarrows \scrL 0(\Omega ,\scrA ;\BbbR nu+nx) is the set-valued mapping defined by

(2.2) \scrG (x) :=
\bigl\{ 
(\bfitU ,\bfitY ) \in \scrL 0(\Omega ,\scrA ;\BbbR nu+nx) | Tx+\scrW u(\bfitU ) +\scrW y(\bfitY ) \leq \bfitH 

\bigr\} 
.

In (2.2),\scrW u : \scrL 0(\Omega ,\scrA ;\BbbR nu)\rightarrow \scrL 0(\Omega ,\scrA ;\BbbR nc) and\scrW y : \scrL 0(\Omega ,\scrA ;\BbbR nx)\rightarrow \scrL 0(\Omega ,\scrA ;\BbbR nc)
are two linear operators. Here, \bfitU and \bfitY are two decision random variables tak-
ing values on \BbbR nu and \BbbR nx , respectively. The two random variables \bfitC : \Omega \rightarrow \BbbR nu
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1228 LECL\`ERE ET AL.

and \bfitH : \Omega \rightarrow \BbbR nc are exogenous uncertainties in problem (2.1), and we note that
\bfitxi = (\bfitC ,\bfitH ). The deterministic matrix T \in \BbbR nc\times nx is given data.

We define the domain dom(\scrG ) :=
\bigl\{ 
x \in \BbbR nx | \scrG (x) \not = \emptyset 

\bigr\} 
and say that \scrB is

compact if \scrG is compact-valued with nonempty compact domain.
Finally, for any R \in \scrL 0(\BbbR nx ;\BbbR ), we denote by \scrS (R) the set-valued mapping

giving, for any x \in \BbbR nx , the set of optimal solutions \bfitY of problem (2.1), that is,
\scrS (R) : \BbbR nx \rightrightarrows \scrL 0(\Omega ,\scrA ;\BbbR nx), with
(2.3)

\scrS (R) : x \rightrightarrows argmin
\bfitY \in \scrL 0(\Omega ,\scrA ;\BbbR nx )

\biggl( 
inf

\bfitU \in \scrL 0(\Omega ,\scrA ;\BbbR nu )

\Bigl\{ 
\BbbE 
\Bigl[ 
\bfitC \top \bfitU +R(\bfitY )

\Bigr] \bigm| \bigm| (\bfitU ,\bfitY ) \in \scrG (x)
\Bigr\} \biggr) 

.

From this very definition, we deduce the following inclusion:

(2.4) dom
\bigl( 
\scrB (R)

\bigr) 
\subset dom(\scrG ) .

Example 2.2. We give some classical examples of operators \scrW u and \scrW y involved
in Definition 2.1 of \scrB . We stress that \scrW : \scrL 0(\Omega ,\scrA ;\BbbR nx) \rightarrow \scrL 0(\Omega ,\scrA ;\BbbR nc) is a linear
operator over a space of random variables, and we describe the associated adjoint
operator, that is, the linear operator \scrW \dagger such that

\bigl\langle 
\bfitX ,\scrW (\bfitY )

\bigr\rangle 
=

\bigl\langle 
\scrW \dagger (\bfitX ) ,\bfitY 

\bigr\rangle 
,

with
\bigl\langle 
\bfitX ,\bfitY 

\bigr\rangle 
= \BbbE 

\bigl[ 
\bfitX \top \bfitY 

\bigr] 
.

\bullet Linear pointwise operator: \scrW 
\bigl( 
\omega \mapsto \rightarrow \bfitY (\omega )

\bigr) 
=

\bigl( 
\omega \mapsto \rightarrow A\bfitY (\omega )

\bigr) 
. Such an opera-

tor allows us to encode a pointwise constraint, and \scrW \dagger (\bfitX ) = A\top \bfitX .
\bullet Linear expected operator: \scrW 

\bigl( 
\omega \mapsto \rightarrow \bfitY (\omega )

\bigr) 
=

\bigl( 
\omega \mapsto \rightarrow A\BbbE [\bfitY ]

\bigr) 
. Such an opera-

tor allows us to encode a constraint in expectation, and \scrW \dagger (\bfitX ) = A\top \BbbE [\bfitX ].
\bullet Linear conditional operator: \scrW 

\bigl( 
\omega \mapsto \rightarrow \bfitY (\omega )

\bigr) 
=

\bigl( 
\omega \mapsto \rightarrow A\BbbE [\bfitY | \scrF ](\omega )

\bigr) 
, where

\scrF is a sub-\sigma -field of \scrA . Such an operator allows us to encode, for example, a
measurability constraint and \scrW \dagger (\bfitX ) = A\top \BbbE [\bfitX | \scrF ].

Of course, any linear combination of these three kinds of operator is also linear.

We recall the key notion of relatively complete recourse introduced in [20].

Definition 2.3. Let R \in \scrL 0(\BbbR nx ;\BbbR ) and let \scrB be an LBO. We say that the pair
(\scrB , R) satisfies the relatively complete recourse (RCR) assumption if

(2.5) \forall x \in dom(\scrG ) , \exists (\bfitU ,\bfitY ) \in \scrG (x) such that \bfitY (\omega ) \in dom(R) \forall \omega \in \Omega .

Note that if the pair (\scrB , R) satisfies the RCR assumption, then

(2.6) dom
\bigl( 
\scrB (R)

\bigr) 
= dom(\scrG ) .

If, in addition, \scrB is compact, then \scrB (R) is finite at some point x0. We introduce the
seemingly stronger notion of R-compatibility. These two notions are in fact equiva-
lent (for polyhedral functions), as Lemma 2.5 shows that if (\scrB , R) satisfies the RCR

assumption, then there exists an equivalent R-compatible \widetilde \scrB operator.

Definition 2.4. Let R \in \scrL 0(\BbbR nx ;\BbbR ) be a polyhedral function and \scrB an LBO.
We say that \scrB is R-compatible if

(2.7) \forall x \in dom(\scrG ) , \forall (\bfitU ,\bfitY ) \in \scrG (x) , \bfitY (\omega ) \in dom(R) \forall \omega \in \Omega .

Lemma 2.5. Consider R \in \scrL 0(\BbbR nx ;\BbbR ) a polyhedral function and \scrB an LBO. We

define the LBO \widetilde \scrB as follows: for all Q \in \scrL 0(\BbbR nx ;\BbbR ),

\widetilde \scrB (Q) : x \mapsto \rightarrow inf
(\bfitU ,\bfitY )\in \widetilde \scrG (x)\BbbE 

\Bigl[ 
\bfitC \top \bfitU +Q(\bfitY )

\Bigr] 
,
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with \widetilde \scrG (x) := \bigl\{ 
(\bfitU ,\bfitY ) \in \scrL 0(\Omega ,\scrA ;\BbbR nu+nx) | Tx +\scrW u(\bfitU ) +\scrW y(\bfitY ) \leq \bfitH and \bfitY \in 

dom(R)
\bigr\} 
.

If the pair (\scrB , R) satisfies an RCR assumption, then the LBO \widetilde \scrB is R-compatible,

with dom
\bigl( 
\scrG 
\bigr) 
= dom

\bigl( \widetilde \scrG \bigr) , and \scrB (R) = \widetilde \scrB (R).

Proof. By construction, \widetilde \scrB is R-compatible and dom
\bigl( \widetilde \scrG \bigr) \subset dom

\bigl( 
\scrG 
\bigr) 
. Let x \in 

dom
\bigl( 
\scrG 
\bigr) 
. The RCR assumption implies that x \in dom

\bigl( \widetilde \scrG \bigr) . Moreover, the con-
straint \bfitY \in dom(R) is implicit in the definition of \scrB (R) since \bfitC \top \bfitU + R(\bfitY ) = +\infty 
if \bfitY /\in dom(R), hence the result.

We now give some properties of LBOs and polyhedral functions, whose proofs are
given in Appendix A. First, following [19, section 19], we recall some results about
polyhedral functions. A convex extended real-valued function is proper if it never
takes the value  - \infty and is not identically equal to +\infty . A polyhedral subset of \BbbR n

is a finite intersection of closed half spaces, and a polyhedral function is a function
whose epigraph is a polyhedral set. In particular a polyhedral function is convex lower
semicontinuous, but not necessarily proper. A nonproper polyhedral function takes
the value  - \infty on a polyhedral set, and +\infty elsewhere. The proofs of the next two
propositions are given in Appendix A.

Proposition 2.6. Let R be a function of \scrL 0(\BbbR nx ;\BbbR ), and let \scrB be an LBO. Then
we have the following properties:

1. If R is convex, then \scrB (R) is convex.
2. If R is polyhedral, then \scrB (R) is polyhedral.
3. If R \geq \~R, then \scrB (R) \geq \scrB ( \~R).

Remark 2.7. Assume that function R is proper and polyhedral. Then if \scrB (R) is
finite at some point, \scrB (R) is a proper polyhedral function. Furthermore, if \scrB (R)(x) is
finite, solving its (linear programming) dual generates a supporting hyperplane of the
function \scrB (R) at point x, that is, a pair (\lambda , \beta ) \in \BbbR nx\times \BbbR such that

\bigl\langle 
\lambda , \cdot 

\bigr\rangle 
+\beta \leq \scrB (R)(\cdot )

and
\bigl\langle 
\lambda , x

\bigr\rangle 
+ \beta = \scrB (R)(x). Such hyperplanes, or cuts, are of paramount importance

for the SDDP algorithm.

The next proposition establishes a link between the Lipschitz constants of R and
\scrB (R). It can be proved similarly to Proposition 2.7 in [22].

Proposition 2.8. Let R be a proper polyhedral function of \scrL 0(\BbbR nx ;\BbbR ), and let
\scrB be an LBO. Assume that (\scrB , R) satisfies the RCR assumption and that \scrB (R) is
finite at some point. If R is Lipschitz (for the L1-norm) with constant LR, then \scrB (R)
is also Lipschitz on its domain (which is dom(\scrG )) with constant \phi (LR) = (\| \bfitC \| \infty +
LR)\kappa W \| T\| \infty , where \kappa W is a constant associated with the linear operator (\scrW u,\scrW y).

2.2. Fenchel transform of a linear Bellmen operator. Let f be an extended
real-valued function. Its Fenchel conjugate f \star and its concave conjugate f \star are defined
as

(2.8) f \star (\lambda ) := sup
x\in \BbbR n

\langle \lambda , x\rangle  - f(x) and f \star (\lambda ) := inf
x\in \BbbR n

\langle \lambda , x\rangle  - f(x) .

We recall the following theorem (see [19, section 31]).

Theorem 2.9 (Fenchel's duality theorem). Let f and  - g be proper polyhedral
functions defined on \BbbR n. If dom(f) \cap dom( - g) \not = \emptyset , then we have

inf
x\in \BbbR n

f(x) - g(x) = sup
\lambda \in \BbbR n

g \star (\lambda ) - f \star (\lambda ) .

D
ow

nl
oa

de
d 

07
/0

1/
20

 to
 1

44
.1

73
.6

.9
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1230 LECL\`ERE ET AL.

We now define the dual linear Bellman operator \scrB \ddagger of an LBO \scrB .

Definition 2.10. Let \scrB be an LBO (see Definition 2.1). We denote by \scrB \ddagger the
dual LBO of \scrB , defined for a given function Q \in \scrL 0(\BbbR nx ;\BbbR ) by

(2.9) \scrB \ddagger (Q) : \lambda \mapsto \rightarrow inf
(\mu ,\nu )\in \scrG \ddagger (\lambda )

\BbbE 
\Bigl[ 
 - \bfitmu \top \bfitH +Q(\bfitnu )

\Bigr] 
,

where
(2.10)
\scrG \ddagger (\lambda )=

\bigl\{ 
(\bfitmu ,\bfitnu )\in \scrL 0(\Omega ,\scrA ;\BbbR nc+nx) | T\top \BbbE 

\bigl[ 
\bfitmu 
\bigr] 
+\lambda =0,\scrW \dagger 

u(\bfitmu )=\bfitC ,\scrW \dagger 
y(\bfitmu )=\bfitnu ,\bfitmu \leq 0

\bigr\} 
,

\scrW \dagger 
u (resp., \scrW \dagger 

y) being the adjoint operator of \scrW u (resp., \scrW y).

Note that straightforward computations show that (\scrB \ddagger )\ddagger = \scrB .
Calling \scrB \ddagger the dual of \scrB is justified by the following theorem.

Theorem 2.11. Let R be a proper polyhedral function, and let \scrB be a compact
LBO (see Definition 2.1), such that the pair (\scrB , R) satisfies the RCR assumption.
Then \scrB (R) is a proper polyhedral function and its Fenchel transform is given by

(2.11) [\scrB (R)]
 \star 
= \scrB \ddagger 

\bigl( 
[R]

 \star \bigr) 
.

Proof. First note that as \scrB is compact, \scrG has a nonempty compact domain, and
thus \scrB (R) is finite at some point by the RCR assumption. We denote

\bigl\langle 
\bfitX ,\bfitY 

\bigr\rangle 
=

\BbbE 
\bigl[ 
\bfitX \top \bfitY 

\bigr] 
, and

\scrR (\bfitY ) = \BbbE 
\bigl[ 
R(\bfitY )

\bigr] 
, \scrK (x,\bfitY ) = min

\bfitU 

\bigl\{ \bigl\langle 
\bfitC ,\bfitU 

\bigr\rangle 
| Tx+\scrW u(\bfitU ) +\scrW y(\bfitY ) \leq \bfitH 

\bigr\} 
.

By definition, we have \scrB (R)(x) = inf\bfitY \scrK (x,\bfitY ) +\scrR (\bfitY ). Thus, for any \lambda \in \BbbR nx , we
have

[\scrB (R)]
 \star 
(\lambda ) = sup

x\in \BbbR nx

\Bigl\{ 
x\top \lambda  - inf

\bfitY 

\bigl\{ 
\scrK (x,\bfitY ) +\scrR (\bfitY )

\bigr\} \Bigr\} 
=  - inf

\bfitY 

\Bigl\{ 
\scrR (\bfitY ) - sup

x\in \BbbR nx

x\top \lambda  - \scrK (x,\bfitY )
\Bigr\} 
.

As R is a proper polyhedral function, so is \scrR . By construction, \scrK is polyhedral. Since
\scrB is a compact LBO, the minimization in \bfitU is over a compact set, so that \scrK is never
equal to  - \infty . Furthermore, \scrK is proper as dom(\scrB (R)) = dom(\scrG ) \not = \emptyset .

Let \Phi (\bfitY ) := supx\in \BbbR nx x\top \lambda  - \scrK (x,\bfitY ). Note that, for x /\in dom(\scrG ), we have
\scrK (x,\bfitY ) = +\infty , and thus \Phi (\bfitY ) = supx\in dom(\scrG ) x

\top \lambda  - \scrK (x, Y ). Consequently, as
dom(\scrG ) is a compact set, we deduce that  - \Phi is a proper polyhedral function. Finally,
the RCR assumption ensures that dom( - \Phi ) \cap dom(\scrR ) \not = \emptyset . Now, using Fenchel
duality (see Theorem 2.9), we have that

[\scrB (R)]
 \star 
(\lambda ) = - sup

\bfitnu 
\Phi  \star (\bfitnu ) - \scrR  \star (\bfitnu ) = inf

\bfitnu 
\scrR  \star (\bfitnu ) - \Phi  \star (\bfitnu ) ,
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where \scrR  \star (\bfitnu ) = \BbbE 
\bigl[ 
R \star (\bfitnu )

\bigr] 
and

\Phi  \star (\bfitnu ) = inf
\bfitY 

\bigl\langle 
\bfitnu ,\bfitY 

\bigr\rangle 
 - \Phi (\bfitY )

= inf
\bfitY 

\bigl\langle 
\bfitnu ,\bfitY 

\bigr\rangle 
 - sup

x

\bigl\{ 
x\top \lambda  - \scrK (x,\bfitY )

\bigr\} 
= inf

x,\bfitY ,\bfitU 

\bigl\{ \bigl\langle 
\bfitnu ,\bfitY 

\bigr\rangle 
 - x\top \lambda +

\bigl\langle 
\bfitC ,\bfitU 

\bigr\rangle \bigm| \bigm| Tx+\scrW u(\bfitU ) +\scrW y(\bfitY ) \leq \bfitH 
\bigr\} 

= inf
x,\bfitY ,\bfitU 

\bigl\langle 
\bfitnu ,\bfitY 

\bigr\rangle 
 - x\top \lambda +

\bigl\langle 
\bfitC ,\bfitU 

\bigr\rangle 
+ sup

\bfitmu \leq 0

\bigl\langle 
 - \bfitmu , Tx+\scrW u(\bfitU ) +\scrW y(\bfitY ) - \bfitH 

\bigr\rangle 
.

As dom(\scrG ) is nonempty and compact, there exists a primal feasible solution to the
above linear program, and by duality we have

\Phi  \star (\bfitnu ) = sup
\bfitmu \leq 0

\bigl\langle 
\bfitmu ,\bfitH 

\bigr\rangle 
+ inf

x

\bigl\{ 
 - x\top \lambda  - 

\bigl\langle 
T\top \bfitmu , x

\bigr\rangle \bigr\} 
+ inf

\bfitY 

\bigl\{ \bigl\langle 
\bfitnu ,\bfitY 

\bigr\rangle 
 - 

\bigl\langle 
\scrW \dagger 

y(\bfitmu ) ,\bfitY 
\bigr\rangle \bigr\} 

+ inf
\bfitU 

\bigl\{ \bigl\langle 
\bfitC ,\bfitU 

\bigr\rangle 
 - 
\bigl\langle 
\scrW \dagger 

u(\bfitmu ) ,\bfitU 
\bigr\rangle \bigr\} 

= sup
\bfitmu \leq 0

\bigl\{ \bigl\langle 
\bfitmu ,\bfitH 

\bigr\rangle 
| T\top \BbbE (\bfitmu ) + \lambda = 0 , \scrW \dagger 

u(\bfitmu ) = \bfitC , \scrW \dagger 
y(\bfitmu ) = \bfitnu 

\bigr\} 
.

Finally,

[\scrB (R)]
 \star 
(\lambda )= inf

\bfitnu ,\bfitmu \leq 0

\Bigl\{ 
\BbbE 
\bigl[ 
 - \bfitmu \top \bfitH +R \star (\bfitnu )

\bigr] \bigm| \bigm| \bigm| T\top \BbbE 
\bigl[ 
\bfitmu 
\bigr] 
+\lambda =0 , \scrW \dagger 

u(\bfitmu )=\bfitC , \scrW \dagger 
y(\bfitmu )=\bfitnu 

\Bigr\} 
,

which ends the proof.

2.3. An abstract SDDP algorithm. We now consider a sequence of functions\bigl\{ 
Rt

\bigr\} 
t\in J0,T K that follows the Bellman backward recursion

(2.12)

\Biggl\{ 
RT = K,

Rt = \scrB t(Rt+1) \forall t \in J0, T  - 1K ,

where K is a proper polyhedral function, and where
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K is a sequence of

LBOs defined as in Definition 2.1, with the associated random variables (\bfitC t+1,\bfitH t+1),
linear operators (\scrW u

t+1,\scrW 
y
t+1), and mappings (\scrG t,\scrS t) indexed by t.

The notion of R-compatibility given in Definition 2.4 is extended to the dynamic
case as follows.

Definition 2.12. Let
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K be a sequence of LBOs such that dom(\scrG t) \not =

\emptyset for all t \in J0, T  - 1K, and let
\bigl\{ 
Rt

\bigr\} 
t\in J0,T K be defined by the Bellman recursion (2.12).

We say that the sequence
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K is K-compatible if

(2.13)
\forall t \in J0, T  - 1K, \forall x \in dom(\scrG t), \forall (\bfitU t+1,\bfitY t+1) \in \scrG t(x),
\bfitY t+1(\omega ) \in dom(\scrG t+1) \forall \omega \in \Omega ,

where by convention dom(\scrG T ) = dom(K).

A direct consequence of this definition is that, for all t \in J0, T K, dom(Rt) =
dom(\scrG t).
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Remark 2.13. A natural extension of the RCR assumption (2.5) to a sequence
of pairs \{ (\scrB t, Rt+1)\} t\in J0,T - 1K would be asking that, for all t \in J0, T  - 1K, the pair
(\scrB t, Rt+1) satisfies the RCR assumption, that is,

(2.14)
\forall t \in J0, T  - 1K, \forall x \in dom(\scrG t), \exists (\bfitU t+1,\bfitY t+1) \in \scrG t(x),
\bfitY t+1(\omega ) \in dom(\scrG t+1) \forall \omega \in \Omega .

As seen in the static case, this seemingly weaker assumption is in fact equivalent
to Definition 2.12. Without loss of generality, we will assume K-compatibility in-
stead of (2.14) by adding in the definition of the LBO \scrB t the (implicit) constraint
\bfitY t+1 \in dom(Rt+1) \BbbP -a.s. This last assumption proves useful in ensuring that all states
generated in the forward pass of the SDDP algorithm are admissible.

SDDP is an algorithm that iteratively constructs finite lower polyhedral approxi-
mations of the sequence of functions

\bigl\{ 
Rt

\bigr\} 
t\in J0,T - 1K given by (2.12). Starting from an

initial point x0 \in \BbbR nx , the algorithm determines in a forward pass a sequence of states
\{ xk

t \} t\in J0,T K at which the approximations of the sequence
\bigl\{ 
Rt

\bigr\} 
t\in J0,T - 1K will be refined

in the backward pass. More precisely, a pseudocode describing the abstract SDDP
algorithm is given in Algorithm 2.1. In the initialization of the algorithm, setting R0

t

to  - \infty is shorthand for saying that the first forward pass is arbitrary.

Algorithm 2.1 Abstract SDDP algorithm.

Data: Initial point x0

R0
t \leftarrow  - \infty 

for k : 0, 1, . . . do
// Forward Pass : compute a set of trial points

\bigl\{ 
xk
t

\bigr\} 
t\in J0,T K

xk
0 \leftarrow x0

for t : 0 to T - 1 do
select \bfitX k

t+1 \in \scrS t(R
k
t+1)

\bigl( 
xk
t

\bigr) 
// see Definition 2.1

Randomly select \omega k
t \in \Omega 

xk
t+1 \leftarrow \bfitX k

t+1(\omega 
k
t )

end for
// Backward Pass : refine the lower approximations at the trial points
Rk+1

T \leftarrow K
for t : T - 1 to 0 do

\theta k+1
t \leftarrow \scrB t(Rk+1

t+1 )(x
k
t ) ; select \lambda k+1

t \in \partial 
\Bigl[ 
\scrB t(Rk+1

t+1 )
\Bigr] 
(xk

t ) // see Remark 2.7

\beta k+1
t \leftarrow \theta k+1

t  - 
\bigl\langle 
\lambda k+1
t , xk

t

\bigr\rangle 
Rk+1

t \leftarrow max
\bigl\{ 
Rk

t ,
\bigl\langle 
\lambda k+1
t , \cdot 

\bigr\rangle 
+ \beta k+1

t

\bigr\} 
// update lower approximation

end for
STOP if some stopping test is satisfied

end for

Lemma 2.14. Assume that R0(x0) is finite and that
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K is a K-com-

patible sequence of LBOs. Then the abstract SDDP Algorithm 2.1 is well defined
and there exists a real sequence

\bigl\{ 
Lt

\bigr\} 
t\in J0,T - 1K such that each Rt given by (2.12) is

Lt-Lipschitz on its domain. Moreover, for all t \in J0, T  - 1K and all k \in \BbbN , the \lambda 
(k)
t

produced by the algorithm satisfies \| \lambda (k)
t \| \infty \leq Lt.

From Lemma 2.14, proven in Appendix B, we have the boundedness of \lambda 
(k)
t , from
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which we can easily adapt the proof of [10] in order to obtain the following convergence
result.

Proposition 2.15. Assume that R0(x0) is finite and that
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K is a K-

compatible sequence of LBOs. Assume furthermore that, for each t \in J0, T K, there ex-
ists a compact set Xt such that xk

t \in Xt for all k (this will be the case if
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K

is a sequence of compact LBOs).
Then the abstract SDDP Algorithm 2.1 generates a nondecreasing sequence

\bigl\{ 
Rk

t

\bigr\} 
k\in \BbbN 

of lower approximations of Rt, such that limk\rightarrow +\infty Rk
0(x0) = R0(x0).

This algorithm is abstract in the sense that it only requires a sequence of LBOs.
In the following section, we show how it can be applied to approximate the Bellman
value functions

\bigl\{ 
Vt

\bigr\} 
t\in J0,T K, or to approximate the Fenchel transforms of these Bellman

functions.

3. Primal and dual SDDP. In this section we recall the usual SDDP algorithm
applied to problem (1.1). Next, leveraging the results of section 2, we introduce a
dual SDDP algorithm, which is the abstract SDDP algorithm applied to the dual value
functions. This eventually gives an exact upper bound of the value of problem (1.1).
We denote by Vt the primal value functions, and by Ft = [Vt]

 \star 
the dual value functions

obtained by the Fenchel transform.

3.1. Primal SDDP. We first recall the standard (primal) SDDP algorithm.

3.1.1. Primal dynamic programming equations. Thanks to the discrete
white noise Assumption 1.1, we can solve problem (1.1) through dynamic program-
ming, computing backward the value functions

\bigl\{ 
Vt

\bigr\} 
t\in J0,T K given by

(3.1)

\Biggl\{ 
VT = K ,

Vt = \scrT t
\bigl( 
Vt+1

\bigr) 
,

where the primal Bellman operator \scrT t : \scrL 0(\BbbR nx ;\BbbR )\rightarrow \scrL 0(\BbbR nx ;\BbbR ) is defined as follows:

\scrT t(R) : x \mapsto \rightarrow inf
\bfitU 

t+1
,\bfitX 

t+1

\BbbE 
\Bigl[ 
a\top t x+ b\top t+1\bfitU t+1

+R(\bfitX 
t+1

)
\Bigr] 

(3.2a)

s.t. \bfitX 
t+1

= Atx+Bt+1\bfitU t+1
+ Ct+1\bfitxi t+1 ,(3.2b)

Dtx+ Et+1\bfitU t+1
+Gt+1\bfitxi t+1 \leq 0 ,(3.2c)

ut+1 \leq \bfitU t+1 \leq ut+1 , xt \leq x \leq xt ,(3.2d)

\bfitX t+1 \in Xt+1 ,(3.2e)

where

Xt =
\bigl\{ 
x \in \BbbR nx | \exists \bfitU t+1, such that (x,\bfitU t+1) satisfy (3.2c)--(3.2d)

\bigr\} 
,(3.3a)

XT = dom(K) .(3.3b)

We assume that the final cost function K has a compact domain, and thus all
Xt are compact. Constraint (3.2d) ensures that if x does not satisfy xt \leq x \leq xt,
then \scrT t(R)(x) = +\infty . Constraints (3.2d) and (3.2e) ensure that the operator \scrT t is a
compact LBO (see Definition 2.1). The associated set-valued mapping \scrG t is defined
by

\scrG t(x) :=
\bigl\{ 
(\bfitU t+1,\bfitX t+1) satisfying (3.2b)--(3.2e)

\bigr\} 
.
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For notational simplicity, we assume in the following that constraint (3.2e) is induced
by constraint (3.2c). This is always possible if one introduces \bfitU t+2 and \bfitxi t+2 in
problem (3.2) and then replaces (3.2e) by, for all \xi t+2 \in supp(\bfitxi t+2),

Dt+1X
\xi t+2

t+1 + Et+2U
\xi t+2

t+2 +Gt+2\xi t+2 \leq 0 ,

ut+2 \leq U
\xi t+2

t+2 \leq ut+2, xt+1 \leq X
\xi t+2

t+1 \leq xt+1 .

Therefore, by introducing the new variables Ut+2 and Xt+2 as shown above, we can
always induce constraint (3.2e) by constraint (3.2c). Note that in most practical
cases we can provide a simpler description of Xt than (3.3).

We make the following assumptions.

Assumption 3.1.
1. The function K is polyhedral with compact domain such that for all x \in 

dom(K) we have xT \leq x \leq xT .
2. The sequence of LBOs

\bigl\{ 
\scrT t
\bigr\} 
t\in J0,T K is K-compatible.

3. Problem (1.1) is finite-valued.

The next lemma, whose proof can be found in Appendix B, gives the properties
of the sequence of LBOs

\bigl\{ 
\scrT t
\bigr\} 
t\in J0,T - 1K.

Lemma 3.2. Under Assumption 3.1, for any t \in J0, T  - 1K, we have

(3.4) \scrT t(R) : x \mapsto \rightarrow \BbbE 
\bigl[ \widehat \scrT t(R)(x, \bfitxi t+1)

\bigr] 
,

where

\widehat \scrT t(R) : (x, \xi ) \mapsto \rightarrow inf
ut+1,xt+1

a\top t x+ b\top t+1ut+1 +R(xt+1)(3.5a)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1\xi ,(3.5b)

Dtx+ Et+1ut+1 +Gt+1\xi \leq 0 ,(3.5c)

ut+1 \leq ut+1 \leq ut+1 , xt \leq x \leq xt .(3.5d)

To recover the optimal state trajectories from Bellman functions, we introduce
for each t the set-valued mapping associated with \widehat \scrT t(R):

\widehat \scrS t(R) : (x, \xi ) \rightrightarrows argmin
xt+1

\Bigl( 
inf
ut+1

a\top t x+ b\top t+1ut+1 +R(xt+1)
\Bigr) 

(3.6a)

s.t. xt+1 = Atx+Bt+1ut+1 + Ct+1\xi ,(3.6b)

Dtx+ Et+1ut+1 +Gt+1\xi \leq 0 ,(3.6c)

ut+1 \leq ut+1 \leq ut+1 , xt \leq x \leq xt .(3.6d)

3.1.2. Primal SDDP algorithm. We now apply the abstract SDDP algorithm
presented in subsection 2.3 to the primal Bellman operator given by (3.2). We denote

\pi \xi 
t := \BbbP (\bfitxi t = \xi ) for all t \in J1, T K and for all \xi \in supp(\bfitxi t). The associated pseudocode

is given in Algorithm 3.1.

Remark 3.3. Note that the primal Bellman operator (3.4) is a specialized version
of the abstract Bellman operator used in (2.12), which only involves a pointwise
operator in the constraints. Hence, in the forward pass we just have to compute\widehat \scrT t(V k

t+1)(x
k
t , \xi 

k
t+1) and do not need to compute \scrT t(V k

t+1)(x
k
t ), which would involve a

larger linear problem. Similarly, in the backward pass at time t, we have to solve a
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Algorithm 3.1 Primal SDDP algorithm.

Data: initial point x0, initial lower bounds V
0
t on Vt

V 0
t \leftarrow  - \infty 

for k : 0, 1, . . . do
// Forward Pass : compute a set of trial points

\bigl\{ 
xk
t

\bigr\} 
t\in J0,T K

Draw a noise scenario
\bigl\{ 
\xi kt
\bigr\} 
t\in J1,T K

xk
0 \leftarrow x0

for t : 0 to T - 1 do
select xk

t+1 \in \widehat \scrS t(V k
t+1)(x

k
t , \xi 

k
t+1) // see (3.6)

end for
// Backward Pass : refine the lower-approximations at the trial points
V k+1

T \leftarrow K
for t : T - 1 to 0 do

for \xi \in supp(\bfitxi t+1) do

\theta \xi ,k+1
t \leftarrow \widehat \scrT t(V k+1

t+1 )(x
k
t , \xi ) ; select \lambda \xi ,k+1

t \in \partial 
\Bigl[ \widehat \scrT t(V k+1

t+1 )
\Bigr] 
(xk

t , \xi )

end for
\lambda k+1
t \leftarrow 

\sum 
\xi \in supp(\bfitxi t+1)

\pi \xi 
t+1\lambda 

\xi ,k+1
t // taking expectation

\beta k+1

t
\leftarrow 

\sum 
\xi \in supp(\bfitxi t+1)

\pi \xi 
t+1

\Bigl( 
\theta \xi ,k+1
t  - 

\bigl\langle 
\lambda \xi ,k+1
t , xk

t

\bigr\rangle \Bigr) 
V k+1

t \leftarrow max
\bigl\{ 
V k

t ,
\bigl\langle 
\lambda k
t , \cdot 

\bigr\rangle 
+ \beta k+1

t

\bigr\} 
// update lower approximation

end for
STOP if some stopping test is satisfied

end for

| supp(\bfitxi t+1)| linear problem of the form \widehat \scrT t(V k+1
t+1 )(x

k
t , \xi 

s
t+1) instead of the larger linear

problem \scrT t(V k+1
t+1 )(x

k
t ), and then perform an expectation. We will show in what follows

that this is no longer the case in the dual SDDP algorithm.

The following proposition has been known since [18].

Proposition 3.4. Under Assumptions 1.1 and 3.1, the primal SDDP algorithm
yields a converging lower bound for the value of problem (1.1), i.e., for all k \in \BbbN ,
V k

0(x0) \leq V0(x0) and limk\rightarrow \infty V k
0(x0) = V0(x0). Further, the strategy induced by

V k
t is converging toward an optimal strategy. More precisely, using OA for ``outer

approximation,"" we consider \bfitX OA,k
t+1 \in \scrS t

\bigl( 
V k

t+1

\bigr) 
(\bfitX OA,k

t ) and denote by COA,k
0 (x0)

the expected cost of this strategy. Then we have limk\rightarrow +\infty COA,k
0 (x0) = V0(x0).

Proof. By Assumption 1.1 the sequence of value functions \{ Vt\} t\in J0,T K can be
obtained by dynamic programming and follows the backward recursion (3.1). By As-
sumption 3.1, we have the K-compatibility of the sequence of LBOs \{ \scrT t\} t\in J0,T - 1K.

Furthermore, as \scrT t is a compact LBO for any t \in J0, T  - 1K, the sequence \{ xk
t \} k\in \BbbN 

generated by the algorithm remains in a compact set. Hence, we can apply Proposi-

tion 2.15. The convergence proof of the strategy induced by V
(k)
t can be found in [10]

or [18].

3.2. Dual SDDP. We present here a dual SDDP algorithm, which leverages
the conjugacy results of subsection 2.2. We show that the Fenchel conjugates of the
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1236 LECL\`ERE ET AL.

primal value functions \{ Vt\} t\in J0,T K follow a recursive equation on which we apply the
abstract SDDP Algorithm 2.1.

3.2.1. Lipschitz regularization. Recall that, for any proper functions f and g
of \BbbR n, the infimal convolution of f and g is defined as f\square g : x \mapsto \rightarrow infy\in \BbbR n f(y)+g(x - y).
We have the following result (see [2, Chapter 12]).

Proposition 3.5. Let f be a proper function of \BbbR n, and let L be a positive num-
ber. Then fL := f\square (L\| \cdot \| 1) is the largest L-Lipschitz function that is lower than f .
The function fL is called the L-Lipschitz regularization4 of f .

3.2.2. Dual dynamic programming equations. Using Definition 2.10, we
can compute an explicit formulation of \scrT \ddagger 

t . Unfortunately the dual operators \scrT \ddagger 
t are

not necessarily compatible. Thus, we construct another sequence of LBO by, for all
Q,

(3.7) \scrT \ddagger 
t,Lt+1

\Bigl( 
Q
\Bigr) 
= \scrT \ddagger 

t

\Bigl( 
Q+ \BbbI B\infty (0,Lt+1)

\Bigr) 
,

where B\infty (0, Lt+1) is the L\infty -ball of radius Lt+1 centered in 0. We show that these
operators are compatible and can be used in the dynamic recursion.

Now, consider the primal Bellman operator \scrT t : \scrL 0(\BbbR nx ;\BbbR )\rightarrow \scrL 0(\BbbR nx ;\BbbR ) defined
by (3.2). Ignoring the constant term a\top t x and assuming that the last constraint (added
to allow the K-compatibility of \scrT t) has been embedded in constraint (3.2c), we can

rewrite \scrT \ddagger 
t as an LBO (see Definition 2.1) with the notation

Tt = [At  - At 0 0  - I I Dt]
\top ,

\scrW u
t+1(\bfitU ) = [Bt+1  - Bt+1  - I I 0 0 Et+1]

\top \bfitU ,

\scrW y
t+1(\bfitX ) = [ - I I 0 0 0 0 0]\top \bfitX ,

\bfitH t+1 = [ - Ct+1\bfitxi t+1 Ct+1\bfitxi t+1  - ut+1 ut+1  - xt+1 xt+1  - Gt+1\bfitxi t+1]
\top .

Definition 2.10 allows us to compute the dual LBO \scrT \ddagger 
t,Lt+1

(see (3.7)). Denot-

ing by \bfitmu = (\bfitmu 1, . . . ,\bfitmu 7) the multiplier associated to the constraints of the primal
problem (3.2), we obtain

\scrT \ddagger 
t,Lt+1

\bigl( 
Q
\bigr) 
(\lambda ) = inf

\bfitmu ,\bfitnu 
\BbbE 
\Bigl[ 
 - \bfitmu \top \bfitH t+1 +Q(\bfitnu )

\Bigr] 
s.t. A\top 

t \BbbE 
\bigl[ 
\bfitmu 1  - \bfitmu 2

\bigr] 
 - \BbbE 

\bigl[ 
\bfitmu 5  - \bfitmu 6

\bigr] 
+D\top 

t \BbbE 
\bigl[ 
\bfitmu 7

\bigr] 
+ \lambda = 0 ,

B\top 
t+1

\bigl( 
\bfitmu 1  - \bfitmu 2

\bigr) 
 - 
\bigl( 
\bfitmu 3  - \bfitmu 4

\bigr) 
+ E\top 

t+1\bfitmu 7  - bt+1 = 0 ,

 - 
\bigl( 
\bfitmu 1  - \bfitmu 2

\bigr) 
= \bfitnu ,

\bfitnu \in B\infty (0, Lt+1) ,

\bfitmu \leq 0 .

The following proposition gives the compatibility property of the dual LBOs.

Proposition 3.6. Under Assumption 3.1, the sequence
\bigl\{ 
\scrT \ddagger 
t,Lt+1

\bigr\} 
t\in J0,T - 1K of LBOs

defined by (3.7) is [K]
 \star 
-compatible.

Proof. Let \lambda be any element of \BbbR n, let \bfitmu 7 be an arbitrary nonpositive random vari-
able, and let \bfitmu 1, \bfitmu 2 be nonpositive random variables such that \bfitmu 1 - \bfitmu 2 \in B\infty (0, Lt+1).

4Also called the Pasch--Hausdorff envelope.
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We define5

\bfitmu 3=
\Bigl( 
B\top 

t+1

\bigl( 
\bfitmu 1  - \bfitmu 2

\bigr) 
+ E\top 

t+1\bfitmu 7  - bt+1

\Bigr)  - 
, \bfitmu 4= - 

\Bigl( 
B\top 

t+1

\bigl( 
\bfitmu 1  - \bfitmu 2

\bigr) 
+ E\top 

t+1\bfitmu 7  - bt+1

\Bigr) +

,

\bfitmu 5 =
\Bigl( 
A\top 

t \BbbE 
\bigl[ 
\bfitmu 1  - \bfitmu 2

\bigr] 
+D\top 

t \BbbE 
\bigl[ 
\bfitmu 7

\bigr] 
+ \lambda 

\Bigr)  - 
, \bfitmu 6 =  - 

\Bigl( 
A\top 

t \BbbE 
\bigl[ 
\bfitmu 1  - \bfitmu 2

\bigr] 
+D\top 

t \BbbE 
\bigl[ 
\bfitmu 7

\bigr] 
+ \lambda 

\Bigr) +

,

\bfitnu = \bfitmu 2  - \bfitmu 1 .

Then \bfitmu = (\bfitmu 1, . . . ,\bfitmu 7) is a nonpositive random variable by construction, and the

pair
\bigl( 
\bfitmu ,\bfitnu 

\bigr) 
satisfies all the constraints in the definition of \scrT \ddagger 

t,Lt+1

\bigl( 
Q
\bigr) 
(\lambda ). Such a

pair (\bfitmu ,\bfitnu ) exists for all possible values of \lambda . Moreover, \bfitnu \in B\infty (0, Lt+1) \subset \BbbR n.

We thus deduce that the domain of the dual constraint set-valued mapping \scrG \ddagger t,Lt+1

(defined by (2.10)) is equal to the whole space \BbbR n, so that the sequence of dual linear

Bellman operators
\bigl( 
\scrT \ddagger 
t,Lt+1

\bigr) 
t\in J0,T - 1K is compatible as dom

\bigl( 
[K]

 \star \bigr) 
= \BbbR n.

Theorem 3.7. We assume that Assumption 3.1 holds true. For any t \in J0, T K,
we denote Ft := [Vt]

 \star 
, where Vt is the Bellman value function obtained by (3.1). For

all t \in J0, T K, let Lt > 0 be such that Vt is Lt-Lipschitz (for the L1-norm) on its
domain. Then the sequence of dual value functions

\bigl\{ 
Ft

\bigr\} 
t\in J0,T K satisfies the following

backward recursion:

FT = [K]
 \star 
,(3.8a)

Ft = \scrT \ddagger 
t,Lt+1

(Ft+1) \forall t \in J0, T  - 1K .(3.8b)

Proof. By Assumption 3.1, we have that
\bigl\{ 
\scrT t
\bigr\} 
t=J0,T - 1K is a K-compatible se-

quence of compact LBOs, with the associated sequence
\bigl\{ 
Vt

\bigr\} 
t=J0,T K of Bellman func-

tions defined by (3.1). Let t \in J0, T  - 1K. As Vt+1 is Lt+1-Lipschitz continuous on

dom(Vt+1), Vt+1 and V
Lt+1

t+1 coincide on dom(Vt+1), and dom(Vt+1) = dom(\scrG t+1) by

the K-compatibility property (see Definition 2.12). We thus deduce that \scrT t
\bigl( 
V

Lt+1

t+1

\bigr) 
=

\scrT t
\bigl( 
Vt+1

\bigr) 
= Vt. Theorem 2.11 applies, so that [Vt]

 \star 
= \scrT \ddagger 

t

\bigl( \bigl[ 
V

Lt+1

t+1

\bigr]  \star \bigr) 
. As Vt+1 and

Lt+1\| \cdot \| 1 take values in ( - \infty ,+\infty ], we have
\bigl[ 
V

Lt+1

t+1

\bigr]  \star 
= [Vt+1]

 \star 
+ \BbbI B\infty (0,Lt+1) (see [2,

Corollary 13.24]). Thus we obtain Ft = \scrT \ddagger 
t

\bigl( 
Ft+1 + \BbbI B\infty (0,Lt+1)

\bigr) 
.

Remark 3.8. Lemma 2.14 shows how to find such a sequence of Lipschitz con-
stants

\bigl\{ 
Lt

\bigr\} 
t\in J0,T K. But in some cases we can directly derive a Lipschitz constant on

the value functions and plug it into (3.8).

3.2.3. Dual SDDP algorithm. By Theorem 3.7, the dual value functions\bigl\{ 
Ft

\bigr\} 
t\in J0,T K are solutions of a Bellman recursion involving linear Bellman operators\bigl\{ 

\scrT \ddagger 
t,Lt+1

\bigr\} 
t\in J0,T - 1K, thus opening the door to the computation of outer approximations\bigl\{ 

F k
t

\bigr\} 
t\in J0,T K of

\bigl\{ 
Ft

\bigr\} 
t\in J0,T K by SDDP (see Algorithm 3.2 below).

Lemma 3.9. For all t \in J0, T  - 1K,
\bigl\{ \bigl[ 
F k

t

\bigr]  \star \bigr\} 
k\in \BbbN is a decreasing sequence of upper

approximations of the primal value function Vt:
\bigl[ 
F k

t

\bigr]  \star \geq Vt.

Proof. The sequence of functions F k
t is obtained by applying SDDP to the dual

recursion (3.8), which is an increasing sequence of lower approximations of the function
Ft by Proposition 2.15. By the conjugacy property, we obtain a decreasing sequence
of functions

\bigl[ 
F k

t

\bigr]  \star 
which are upper approximations of the function [Ft]

 \star 
= Vt.

5Note that \bfitmu 5 and \bfitmu 6 are constant random variables.
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Algorithm 3.2 Dual SDDP algorithm.

Data: Initial primal point x0, Lipschitz bounds
\bigl\{ 
Lt

\bigr\} 
t\in J0,T K

F 0
t \leftarrow  - \infty 

for k : 0, 1, . . . do

// Forward Pass : compute a set of trial points
\bigl\{ 
\lambda 
(k)
t

\bigr\} 
t\in J0,T K

Select \lambda k
0 \in argmax\| \lambda 0\| \infty \leq L0

\Bigl\{ 
x\top 
0 \lambda 0  - F k

0(\lambda 0)
\Bigr\} 

// Fenchel transform

for t : 0 to T - 1 do
select \bfitlambda k

t+1 \in argmin \scrT \ddagger 
t,Lt+1

(F k
t+1)(\lambda 

k
t )

draw a realization \lambda k
t+1 of \bfitlambda k

t+1

end for
// Backward Pass : refine the lower-approximations at the trial points
F k

T \leftarrow K \star .
for t : T - 1 to 0 do

\theta 
k+1

t \leftarrow \scrT \ddagger 
t,Lt+1

(F k+1
t+1 )(\lambda 

k
t ) ; select xk+1

t \in \partial 
\Bigl[ 
\scrT \ddagger 
t,Lt+1

(F k+1
t+1 )

\Bigr] 
(\lambda k

t )

// computing cut

\beta 
k+1

t \leftarrow \theta 
k+1

t  - 
\bigl\langle 
\lambda k
t , xk+1

t

\bigr\rangle 
F k+1

t \leftarrow max
\bigl\{ 
F k

t ,
\bigl\langle 
xk+1
t , \cdot 

\bigr\rangle 
+ \beta 

k+1

t

\bigr\} 
// update lower approximation

end for
STOP if some stopping test is satisfied

end for

We have the following convergence theorem.

Theorem 3.10. Under Assumptions 1.1 and 3.1,
\bigl[ 
F k

0

\bigr]  \star 
(x0) is a converging upper

bound to the value V (x0) of problem (1.1), that is, limk\rightarrow +\infty 
\bigl[ 
F k

0

\bigr]  \star 
(x0) = V0(x0).

Proof. We add a dummy time step t =  - 1 which allows for a varying initial state,
a feature not included in the abstract SDDP algorithm. We are thus able to compute
the Fenchel transform of F k

0 at x0. More precisely, we define \scrT \ddagger 
 - 1,L0

as

\scrT \ddagger 
 - 1,L0

(R) := min
\| \lambda 0\| \infty \leq L0

 - x\top 
0 \lambda 0 +R(\lambda 0) .

Then Algorithm 3.2 is the abstract SDDP Algorithm 2.1 applied to the dual Bellman
recursion FT = [K]

 \star 
and Ft = \scrT \ddagger 

t,Lt+1
(Ft+1) for t \in J - 1, T  - 1K. The initial point \lambda  - 1

is arbitrarily set to the value 0 as F - 1 is the constant function.
We check that \| \lambda k

t \| \infty \leq Lt by definition of \scrT \ddagger 
t,Lt

. Furthermore, as V0 is L0-

Lipschitz for the L1-norm, the supremum of x\top 
0 \lambda  - [V0]

 \star 
(\lambda ) is attained for some \lambda 0

such that \| \lambda 0\| \infty \leq L0; thus we deduce that F - 1(0) =  - [V ]
 \star  \star 

(x0) =  - V (x0) \in \BbbR .
Finally, note that

\bigl\{ 
\scrT \ddagger 
t,Lt+1

\bigr\} 
t\in J - 1,T K is a [K]

 \star 
-compatible sequence of LBOs.

Lemma 3.9 shows that, for any k \in \BbbN ,  - F k
 - 1(0) =

\bigl[ 
F k

0

\bigr]  \star 
(x0) is an upper bound

of V0(x0). Finally, the convergence of the abstract SDDP algorithm and the lower
semicontinuity of V0 at x0 yields the convergence of the upper bound.

Remark 3.11. Recall that in order to obtain an upper bound of the optimal value
of problem (1.1), the seminal method consists in computing the expected cost of
the SDDP algorithm's strategy with a Monte Carlo approach (see the discussion in
subsection 1.2). This approach has two weaknesses: it requires a large number M
of forward pass (simulation), and the obtained bound is only an upper bound with
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(asymptotic) probability \alpha , where the bound increases with \alpha as well. Furthermore,
the statistical upper bound is not converging toward the actual problem value, unless
we also increase the number of Monte Carlo simulations along the iterations.

In contrast to the Monte Carlo method, Theorem 3.10 shows that we obtain a
converging sequence of exact upper bounds for problem (1.1).

Remark 3.12. In the forward pass of Algorithm 3.2, we need to solve
\scrT \ddagger 
t,Lt+1

(F k
t+1)(\lambda 

k
t ). Note that drawing a realization of the random variable \bfitlambda k

t+1 con-
sists of drawing \xi with respect to the probability law of \bfitxi t+1, and then selecting the

associated value \lambda k,\xi 
t+1. In contrast with the primal SDDP algorithm (see Remark 3.3),

here we need to solve a linear problem coupling all possible outcomes of the random
variable \bfitxi t+1, both in the forward and in the backward pass. In particular it means
that we can also compute cuts during the forward pass, thus rendering the backward
pass optional.

4. Inner-approximation strategy. In section 3, we detailed how to use the
SDDP algorithm to get dual outer approximations

\bigl\{ 
F t

\bigr\} 
t\in J0,T K of the dual value func-

tions
\bigl\{ 
Ft

\bigr\} 
t\in J0,T K. We now explain how to build inner approximations of the primal

value functions
\bigl\{ 
Vt

\bigr\} 
t\in J0,T K using these dual outer approximations. We assume that

the real sequence
\bigl\{ 
Lt

\bigr\} 
t\in J0,T - 1K is given by Lemma 2.14.

4.1. Inner approximation of value functions. Let
\bigl\{ 
F k

t

\bigr\} 
t\in J0,T K be the outer

approximations of the dual value functions
\bigl\{ 
Ft

\bigr\} 
t\in J0,T K obtained at iteration k of the

dual SDDP algorithm. We denote by
\bigl\{ 
(x\kappa 

t , \beta 
\kappa 

t )
\bigr\} 
\kappa \in J1,kK the coefficients of the cuts

computed by the dual SDDP algorithm: F k
t (\lambda ) = max\kappa \leq k

\bigl\langle 
x\kappa 
t , \lambda 

\bigr\rangle 
+ \beta 

\kappa 

t .

We obtain the inner approximations
\bigl\{ 
V

k

t

\bigr\} 
t\in J0,T K of the primal value functions\bigl\{ 

Vt

\bigr\} 
t\in J0,T K by Lipschitz regularization of the Fenchel conjugates of the dual outer

approximations.

Definition 4.1. The inner approximation V
k

t of Vt is defined by

(4.1) V
k

t =
\bigl[ 
F k

t

\bigr]  \star 
\square 
\bigl( 
Lt\| \cdot \| 1

\bigr) 
\forall t \in J0, T K .

By definition of Lipschitz regularization, we have the following properties of the

functions V
k

t . The proof is given in Appendix C.

Proposition 4.2. For any t \in J0, T  - 1K, the following properties hold true.

(i) V
k

t \geq Vt on dom\scrG t.
(ii) The inner approximation V

k

t is such that

(4.2) V
k

t (x) = min
y\in \BbbR nx ,\sigma \in \Delta 

\Biggl\{ 
Lt\| x - y\| 1  - 

k\sum 
\kappa =1

\sigma \kappa \beta 
\kappa 

t

\bigm| \bigm| \bigm| k\sum 
\kappa =1

\sigma \kappa x
\kappa 
t = y

\Biggr\} 
,

where \Delta =
\bigl\{ 
\sigma \in \BbbR k | \sigma \geq 0 ,

\sum k
\kappa =1 \sigma \kappa = 1

\bigr\} 
is the simplex of \BbbR k.

(iii) The inner approximation V
k

t can be computed by solving

V
k

t (x) = sup
\lambda ,\theta 

x\top \lambda  - \theta (4.3a)

s.t. \theta \geq 
\bigl\langle 
xi
t , \lambda 

\bigr\rangle 
+ \beta 

\kappa 

t \forall \kappa \in J1, kK ,(4.3b)

\| \lambda \| \infty \leq Lt .(4.3c)
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x1 x2 x3

\lambda 3

\lambda 2
\lambda 1

V

V 3

V
3

x

Primal

x1
x2

x3

F

F 3

\lambda 

Dual

Fig. 1. On the left we represent the primal value function V as a function of x, while on the right
we represent the dual value function F as a function of \lambda (black curves). Primal SDDP computes
an outer approximation V k (in red, left) of V . Dual SDDP computes an outer approximation Fk

(in blue, right) of F . The (regularized) Fenchel transform of this dual outer approximation is V
k
,

an inner approximation of V (in blue, left). Note that the breakpoints of this inner approximation
are given by the slopes of the dual outer approximation (in blue, right). (Color available online.)

(iv) The Fenchel transform of the inner approximation V
k

t is given by
\bigl[ 
V

k

t

\bigr]  \star 
=

F k
t + \BbbI B\infty (0,Lt).

Figure 1 illustrates how to use the dual outer approximation of Ft to obtain a
primal inner approximation of the original value function Vt.

Remark 4.3. Consider a value function following Vt = \scrB t(Vt+1). Assuming that
we have an inner bound V t+1 \geq Vt+1, a primal way of computing an upper bound
of Vt(x) consists simply in computing v = \scrB t(V t+1)(x). If V t+1 =

\bigl[ 
F t+1

\bigr]  \star 
, this is

equivalent to computing the Fenchel transform of the outer approximation of the dual:

\scrB t(V t+1)(x) =
\bigl[ 
\scrB t(V t+1)

\bigr]  \star  \star 
(x) =

\Bigl[ 
\scrB \ddagger t (

\bigl[ 
V t+1

\bigr]  \star 
)
\Bigr]  \star 

(x) =
\Bigl[ 
\scrB \ddagger t (F t+1)

\Bigr]  \star 
(x).

This approach was used in [17, 1, 9] to construct inner approximation, the main
difference being in the choice of the primal point x at which to compute the upper
bound.

4.2. A bound on the inner approximation strategy value. Hence, we have
obtained inner approximations of the primal value functions. Such approximations
can be used to define an admissible strategy for the initial problem. We now study
the properties of such a strategy. The proof of the following theorem is given in Ap-
pendix C.

Theorem 4.4. Let
\bigl\{ 
\bfitU IA,k

t

\bigr\} 
t\in J1,T K be the strategy induced by the inner approxi-

mations V
k

t , and let
\bigl\{ 
\bfitX IA,k

t

\bigr\} 
t\in J0,T K be the associated state process, that is, \bfitX IA,k

t+1 \in 
\scrS t
\bigl( 
V

k

t+1

\bigr) 
(\bfitX IA,k

t ). Consider the expected cost of this strategy when starting from state
x at time t:

CIA,k
t (x) = \BbbE 

\Biggl[ 
T - 1\sum 
\tau =t

\Bigl( 
a\top \tau \bfitX 

IA,k
\tau + b\top \tau +1\bfitU 

IA,k
\tau +1

\Bigr) 
+K(\bfitX IA,k

T )
\bigm| \bigm| \bigm| \bfitX IA,k

t = x

\Biggr] 
.
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Then

(4.4) CIA,k
t (x) \leq V

k

t (x) .

Furthermore, the strategy induced by the inner approximations is converging in the
sense that limk\rightarrow +\infty CIA,k

0 (x0) = V0(x0).

Remark 4.5. The proposed inner approximation differs from the literature [1, 17]
mainly by relying on the dual formulation of the problem. In [17] the authors derive
an inner approximation from a given set of trajectories. They suggest using the
forward trajectories of a primal SDDP but, contrary to our approach, they do not
show any convergence results of the upper bound. Furthermore, computing the upper
bound is quite time consuming, and computation at iteration k cannot be used for
the computation at iteration k + 1, whereas computing our bound from dual SDDP
is fast.

In [1] the authors obtain a converging deterministic upper bound. However, in-
stead of sampling the noise in the forward phase, they select the random realization
leading to a state with the highest gap between lower and upper bound. This has the
advantage of having a fully deterministic algorithm which can sometimes get stuck.
In particular our approach should be more efficient if the support of \bfitxi t is large with
the probability mass concentrated around a few elements (e.g., binomial random vari-
ables).

We sum up the available inequalities for the values obtained when implementing
the primal and dual SDDP algorithms (iteration index k is omitted for the sake of
clarity):

V 0(x0) \leq V0(x0) \leq V 0(x0) ,(4.5a)

V 0(x0) \leq CIA
0 (x0) \leq V 0(x0) ,(4.5b)

V 0(x0) \leq COA
0 (x0) .(4.5c)

Equation (4.5a) shows that V 0(x0) and V 0(x0) are deterministic bounds on the value
of problem (1.1). Equation (4.5b) shows that V 0(x0) is also an upper bound on the
expected value of the strategy induced by the inner approximation. Unfortunately,
as we can see in Figure 2, there is no generic relation between COA

0 (x0) and V 0(x0),
except that both converge toward the true value of the problem.

5. Numerical results. In this section, we present some numerical results ob-
tained when applying dual SDDP and inner strategy evaluation to a stochastic op-
eration planning problem inspired by \'Electricit\'e de France (EDF, one of the main
European electricity producers). The problem is concerned with energy production
planning on a multiperiod horizon including a network of production zones, like in
the European Electricity Market. This results in a large-scale stochastic multistage
optimization problem, for which we need to determine strategies for the management
of the European water dams. Such strategies cannot be computed via dynamic pro-
gramming because of the state variable size, so that SDDP is the reference method
to compute the optimal Bellman functions.

5.1. Description of the problem. We consider an operation planning problem
at the European scale. Different countries are connected together via a network and
exchange energy with their neighbors. We formulate the problem on a graph where
each country is modeled as a node and each interconnecting line between two countries
as an edge.
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Every country uses a reservoir to store energy and must fulfill its own energy
demand. To do so, it can produce energy from its reservoir, with its local thermal
power plant, or it can import energy from the other countries. A very similar problem
has already been studied by [15]. Its formulation is close to the one given in [23]
concerning the Brazilian interconnected power system.

Let \scrG = (\scrN , \scrE ) be the graph modeling the European network. The number of
nodes in\scrN is denoted by n and the number of edges in \scrE by \ell . For each node i \in J1, nK,
we denote by vit the energy stored in the reservoir at time t. The reservoir's dynamics
is given by

(5.1) vit+1 = vit + ait+1  - qit+1  - sit+1 ,

where ait+1 is the (random) water inflow in the reservoir and qit+1 is the water flowing
through a turbine between time t and t + 1 in order to produce electricity. We add
a spillage sit+1 as a recourse variable to avoid reservoir overflow. Still at node i, the
load balance equation at stage t is written as

(5.2) qit + git +
\sum 
j\in Ni

f ji
t + rit = dit ,

where git is the thermal production, Ni \subset \scrN is the set of nodes connected to node
i, f ji

t is the energy exchanged between nodes j \in Ni and node i, dit is the (random)
demand of the node, and rit is a recourse variable added to ensure that the load
balance is always satisfied. The thermal production git and the exchanges f ji

t between
node i and nodes j \in Ni induce linear costs, and the cost of the recourse variable rit
is taken into account through a linear penalization. Hence the total cost attached to
node i at time t is

(5.3) citg
i
t + \delta itr

i
t +

\sum 
j\in Ni

pjit f
ji
t ,

where cit is the thermal price, \delta it is the recourse price, and pjit is the transportation
price between nodes j and i. To avoid empty stocks at the end of the time horizon, we
penalize the final stock at each node i if it is beyond a threshold vi0 using a piecewise
linear function:

(5.4) Ki(viT ) = \kappa i
T max(0, vi0  - viT ) + \BbbI 0\leq vi

T\leq vi .

Stocks and controls are bounded:
\bullet 0 \leq vit \leq vi, reservoir volume lower and upper bounds;
\bullet 0 \leq qit \leq qi, reservoir generation lower and upper bounds;
\bullet 0 \leq git \leq gi, thermal generation lower and upper bounds;
\bullet 0 \leq rit, recourse control lower bound;

\bullet f ji \leq f ji
t \leq f

ji
, energy flow lower and upper bounds.

This problem is formulated as a stochastic optimal control problem, where for all t,
\bullet the state is vt = (v1t , . . . , v

n
t ) (denoted xt in section 3);

\bullet the control is ut = (qt, st, gt, rt, ft), with qt = (qit)i\in J1,nK and likewise for st,
gt, rt, and ft;

\bullet the uncertainty is \xi t = (ait, d
i
t)i\in J1,nK.

The state has dimension n, the control ut dimension 4n + \ell , and the uncertainty \xi t
dimension 2n. We assume that the random variables \bfitxi t have a discrete finite support.
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5.2. Numerical implementation. The forward and backward passes of dual
SDDP are independent of the forward and backward passes of primal SDDP. Accord-
ingly, a first ``natural"" implementation of the whole algorithm runs primal and dual
SDDP in two independent processes, and thus enables us to compute primal and dual
value functions in parallel.

However, each backward pass of the primal SDDP algorithm computes a set of
cuts whose slopes are

\bigl\{ 
\lambda t

\bigr\} 
t\in J0,T K. As explained when commenting on Figure 1, these

slopes can be considered as state trajectories for the dual problem. When primal
SDDP has converged, these slopes are the optimal costates of the problem, because
of the Fenchel--Young equality. Therefore, it may prove useful to use these sequences
of slopes as state trajectories for the dual problem, along which we run afterward a
backward pass producing cuts for the dual problem. In this implementation, each
iteration of the algorithm consists of four steps:

1. Run a forward pass of primal SDDP Algorithm 3.1 and get a state trajectory\bigl\{ 
xt

\bigr\} 
t\in J0,T K.

2. Run a backward pass of primal SDDP Algorithm 3.1 along
\bigl\{ 
xt

\bigr\} 
t\in J0,T K and

obtain new slopes
\bigl\{ 
\lambda t

\bigr\} 
t\in J0,T K.

3. Run a backward pass of dual SDDP Algorithm 3.2 along
\bigl\{ 
\lambda t

\bigr\} 
t\in J0,T K and

obtain new cuts for the dual problem.
4. Run a forward pass of dual SDDP Algorithm 3.2, obtain a trajectory, and

simultaneously update the cuts along this trajectory.
The last step of this iteration ensures that we recover the convergence assumptions

of SDDP (as given in [10]).
This algorithm has the same number of forward and backward passes as the orig-

inal one (one forward pass and one backward pass in both primal and dual spaces).
However, this scheme proves to be numerically more efficient, in terms of both con-
vergence and computation time. That is why we use this implementation in all the
numerical experiments. Furthermore, in our example, this scheme is quite resilient to
an overestimation of the Lipschitz constant.

From the computational point of view, we implement primal and dual SDDP in
Julia 0.6, with the StochDynamicProgramming.jl package built on top of the JuMP
modeler of [8]. We use Gurobi 7.02 to solve the linear programming subproblems. All
experiments are run on an Intel Core i7-5500 CPU @2.4GHz, 64-bit computer. The
source code is currently available on Github.6

5.3. Results. We consider the problem described at subsection 5.1, with n = 8
and T = 12 or T = 36. We aim to compute the value functions

\bigl\{ 
Vt

\bigr\} 
t\in J0,T K with

monthly time steps. The uncertainties in the model are the inflows at in the reservoir
and the demands dt in every considered countries. Inflow and demand trajectories are
simulated using software provided by EDF, so that these data are realistic enough.
From these simulated samples, we use quantization methods to obtain the marginal
laws of the uncertainty \bfitxi t at each t \in J0, T K. The support of the quantized probability
laws is limited to 10 possible values for \bfitxi t at each time step t. To solve the problem,
we run primal and dual SDDP on 1,000 iterations, with a single forward pass in the
primal and in the dual.

5.3.1. Assessing convergence. To simplify the description of the results, we
denote by LB-P the primal lower bound V 0(x0) obtained by primal SDDP, and by UB-D

6https://github.com/frapac/DualSDDP.jl
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the upper bound [F 0]
 \star 
(x0) given by dual SDDP. The Monte Carlo cost evaluation

obtained by simulating the outer (resp., inner) strategy uses the procedure described
in subsection 3.1.2 and is denoted by MC OA (resp., MC IA). Confidence intervals (with
a confidence level \alpha = 97.5\%) are associated with these Monte Carlo approximations,
and we denote by MC OA UB and MC IA UB the associated upper bounds of these
intervals. Whereas LB-P and UB-D are deterministic values, MC OA, MC IA, MC OA UB,
and MC IA UB are statistical quantities.

Solving the problem over a one-year time horizon. First, we run dual and primal
SDDP on a twelve month problem, that is, with T = 12. Convergence of the optimal
costs given by dual and primal SDDP is detailed in Figure 2.

Iter. LB-P UB-D UB-P Gap LB-P UB-D

Unit \times 105 \times 105 \times 105 \% s s

50 7.850 11.37 18.58 44.8 2. 8.
100 7.971 8.046 8.475 9.43 3. 22.
200 7.994 7.999 8.103 1.20 8. 72.
300 7.996 7.998 8.030 0.40 13. 153.
400 7.996 7.998 8.017 0.23 20. 275.
500 7.996 7.997 8.012 0.17 29. 443.
600 7.996 7.997 8.009 0.14 38. 651.
700 7.996 7.997 8.007 0.12 49. 888.
800 7.996 7.997 8.005 0.11 61. 1191.
900 7.996 7.997 8.004 0.10 74. 1534.
1000 7.996 7.997 8.003 0.09 89. 1928.

Fig. 2. Convergence of primal and dual SDDP for T = 12. Time corresponds to cumulated
time along iterations.

In the table of Figure 2, UB-D is the upper bound obtained by dual SDDP, while
UB-P is the upper bound obtained as in [17] using the forward passes of primal SDDP.
We note that UB-D is slightly better. More importantly it is easily computed every
few iterations, while computing UB-P is more time consuming. The two last columns
in the table give the cumulative computation times needed to run both primal and
dual SDDP algorithms. We observe that the upper bound UB-D [F 0]

 \star 
(x0) given by

dual SDDP converges towards the primal lower bound LB-P V 0(x0) given by primal
SDDP, with a relative gap close to 0.09\% after 1,000 iterations. For this specific (with
few time steps) example, the convergence of dual SDDP proves to be effective and the
dual upper bound beat the primal exact upper bound. As noticed at Remark 3.12,
running dual SDDP is much more time consuming than running primal SDDP.

The outer and inner strategies are evaluated by Monte Carlo. We draw a ``large""
set of 10,000 scenarios on which evaluation is performed every 50 iterations. Both
evaluations MC OA and MC IA converge to the optimal value. We notice that MC IA is
below UB-D, thus illustrating the result stated by Theorem 4.4.

Solving the problem over a three-year time horizon. We now consider the same
problem, but over a three-year horizon, that is, with T = 36. The convergence of
primal and dual SDDP is shown in Figure 3. We have materialized the confidence
intervals (here very thin) of the inner and outer strategies by Monte Carlo simulations,
both estimated every 50 iterations on the given 10,000 scenarios. A first observation
is that both dual and primal SDDP exhibit a slower convergence than in the first
example: after 1,000 iterations, the gap between the primal lower bound LB-P and
the dual upper bound UB-D is equal to 0.20\%. This well-known behavior of SDDP
arises from the increasing number of time steps (36 instead of 12). Moreover, UB-D is
still significantly decreasing after iteration 500, and it seems that it converges more
slowly than LB-P.
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Iter. LB-P UB-D UB-P Gap LB-P UB-D

Unit \times 106 \times 106 \times 106 \% s s

50 2.748 3.456 8.453 25.76 5. 20.
100 2.788 3.004 4.365 7.75 11. 74.
200 3.814 2.888 3.011 2.61 27. 267.
300 2.837 2.865 2.944 1.01 46. 592.
400 2.843 2.858 2.895 0.54 75. 1113.
500 2.844 2.855 2.877 0.39 108. 1783.
600 2.844 2.854 2.864 0.33 144. 2601.
700 2.844 2.853 2.859 0.29 187. 3585.
800 2.845 2.852 2.856 0.26 235. 4751.
900 2.845 2.851 2.854 0.23 296. 6140.
1000 2.845 2.850 2.853 0.20 360. 7545.

Fig. 3. Convergence of primal and dual SDDP for T = 36. Time corresponds to cumulated
time along iterations.

A second observation is that the dual upper bound UB-D is better than the sta-
tistical cost value MC OA up to iteration 400. After the first 500 iterations, MC OA

is better than UB-D and fluctuates slightly above the primal lower bound LB-P (the
remaining gap being around 0.1\% after 1,000 iterations).

Finally, on this example, the inner approximation performs better than the outer
approximation by yielding a better value for most iterations and displaying a more
stable convergence. It would be interesting to be able to assess such behavior.

5.3.2. Using the dual upper bound in a stopping criterion. Consider
the problem over a three-year time horizon. The gap between the two deterministic
bounds (primal lower bound LB-P and dual upper bound UB-D) against the number
of iterations is given in Figure 3. To complete these results, we give the evolution of
the statistical upper bound MC OA UB obtained by the outer strategy in Table 1. We
aim at comparing two stopping tests.

Table 1
Statistical upper bound for T = 36.

Iter. LB-P Gap UB-D (\%) MC OA UB Gap MC OA UB (\%)

50 2.837 38.1 3.392 19.6
100 2.980 5.7 3.310 11.1
200 3.029 1.4 3.137 3.6
300 3.039 0.67 3.069 1.0
400 3.040 0.46 3.059 0.62
500 3.041 0.34 3.046 0.18
600 3.041 0.25 3.046 0.18
700 3.041 0.21 3.046 0.15
800 3.041 0.18 3.046 0.16
900 3.041 0.16 3.045 0.14
1000 3.041 0.13 3.044 0.08

Statistical stopping test: This is the stopping test proposed in [21] and which has
been detailed in subsection 1.2. We choose a confidence level \alpha = .975, and
we estimate the statistical upper bound MC OA UB every 50 iterations with a
given set of 10,000 scenarios.

Dual stopping test: This stopping test is just based on the gap between the avail-
able deterministic upper and lower bounds, namely, UB-D and LB-P.

For different accuracy levels \varepsilon , as described by [21] we compare the CPU times taken
by these two tests in order to stop the SDDP algorithm. Results are given in Table 2.
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Table 2
Dual and statistical stopping criteria for different accuracy levels \varepsilon .

Dual Statistical
\varepsilon (\%) n iter. CPU n iter. CPU
2.0 156 183s 250 618s
1.0 236 400s 300 787s
0.5 388 1116s 450 1429s
0.1 > 1000 . 1000 5519s

The given times correspond to the total time required to run SDDP (including
both the computation of cuts and the computation of the stopping test). We notice
that the dual stopping test gives better results than the statistical stopping test: for
\varepsilon \geq 0.45\%, it stops SDDP earlier and require less computation time. Compared with
the statistical test, the speed-up is between 3.3 for \varepsilon = 2\% and 1.3 for \varepsilon = 0.5\%.
However, the dual stopping test is penalized by the slow convergence of dual SDDP.
Indeed it cannot achieve a gap lower than 0.1 \%, thus penalizing the performance of
the dual stopping test for high accuracy levels \varepsilon .

As a conclusion of these numerical experiments, the deterministic dual stopping
test seems to be better than the statistical stopping test, especially if restrictions on
the CPU time impose performing a limited number of SDDP iterations (less than 500
in our case). Such a situation exists in the energy field, as shown by the description
of the Brazilian interconnected power system in [23]. A way to significantly reduce
the computation time of dual SDDP (as well as that of primal SDDP) would be to
implement a cut selection mechanism in the algorithm, which would limit the number
of constraints added to the problem; see, for example, [7] and [12] for further details.

Remark 5.1. We can also use the statistical upper bound MC IA UB obtained by
evaluating the inner strategy for statistical stopping tests. Indeed, in our numerical
experiments, this upper bound is always lower than the one given by the outer strat-
egy. However, this would require much longer computational time, as this approach
combines the computation of the dual cuts together with a Monte Carlo estimation.

Remark 5.2. We observe that the convergence of dual SDDP is penalized by dif-
ferent considerations.

\bullet It is well known from [21] that the convergence of SDDP highly depends on
the number of stages in the problem, as well as the size of the state vectors.
This issue impacts both primal and dual SDDP.

\bullet Furthermore, we notice that dual SDDP exhibits a slower convergence than
primal SDDP. In fact, primal SDDP computes its trajectories from a fixed
initial point x0, whereas, as explained at subsection 3.2.3, dual SDDP updates
its initial point \lambda 0 at each iteration, with

(5.5) \lambda k
0 \in argmin

\| \lambda 0\| \leq L0

 - x\top 
0 \lambda 0 + F k

0(\lambda 0) .

\bullet One iteration of dual SDDP takes longer than one iteration of primal SDDP.
Indeed, as already pointed out in Remarks 3.3 and 3.12, dual SDDP solves
bigger linear programming problems than primal SDDP, as it has to take into
account a coupling constraint between all samples.

6. Conclusion. In this paper, we have shown that dual SDDP allows us to
obtain a deterministic stopping criterion which proves to be effective compared to
the standard statistical stopping test. This stopping criterion uses an exact upper

D
ow

nl
oa

de
d 

07
/0

1/
20

 to
 1

44
.1

73
.6

.9
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT BOUNDS FOR SDDP VIA FENCHEL DUALITY 1247

bound, the computation of which relies on applying SDDP to the Fenchel transform
of Bellman value functions. Furthermore, dual SDDP computes cuts that can be
used to design an inner approximation strategy, which appears to be better than
the outer strategy as long as primal SDDP has not exactly converged. The method
provides a sequence of inner approximations

\bigl\{ 
V t

\bigr\} 
t\in J0,T K of the primal value functions\bigl\{ 

Vt

\bigr\} 
t\in J0,T K. The policy induced by inner approximations converges to an optimal

policy, with guaranteed performance of the associated expected cost.
We have tested dual SDDP and presented numerical results on a realistic sto-

chastic production planning problem, proving the effectiveness of dual SDDP and the
underlying inner strategy. Furthermore, we showed on this particular problem that
using a dual stopping test outperforms the classical statistical stopping test of SDDP,
in terms of both the number of iterations and the computational burden.

We plan to extend this study in several directions. First, an extension of dual
SDDP to risk-averse or distributionally robust problems remains to be investigated.
Second, the dual SDDP algorithm does not decompose the computation of the dual
LBOs by realizations of \bfitxi t. A means of effectively decomposing the dual subproblems
is still under study. Finally we want to explore the interactions between primal and
dual SDDP. For example, we think that the upper bounds given by dual SDDP might
be effective in regularizing SDDP, for instance, with the method introduced by [24].

Appendix A. LBO related proofs.

Proof of Proposition 2.6. The probability set \Omega being finite, we denote by u
(resp., y, c, h) the vectors concatenating all possible values of \bfitU (resp., \bfitY , \bfitC , \bfitH )
over the set \Omega , that is, u = (u1, . . . , u| \Omega | ). Then the extensive formulation of con-

straint (2.2) is \widetilde Tx+ \widetilde Wuu+ \widetilde Wyy \leq h , where \widetilde T , \widetilde Wu, and \widetilde Wy are adequate matrices
deduced from T ,\scrW u, and\scrW y. Problem (2.1) rewrites \scrB (R)(x) = infu,y J(R)(x, u, y),
with

J(R)(x, u, y) =

| \Omega | \sum 
\omega =1

\pi \omega 

\Bigl( 
c\top \omega u\omega +R(y\omega )

\Bigr) 
+ \BbbI \{ \widetilde Tx+\widetilde Wuu+\widetilde Wyy\leq h\} (x, u, y) .

1. If R is convex, then J(R) is jointly convex in (x, u, y), so that \scrB (R) is a
convex function.

2. If R is polyhedral, then J(R) is polyhedral in (x, u, y), and thus \scrB (R) is a
polyhedral function (see [6, Proposition 5.1.8]).

3. From R \geq \~R, we deduce that J(R) \geq J( \~R), and thus \scrB (R) \geq \scrB ( \~R).
The proof is complete.

Appendix B. SDDP related proofs.

Proof of Lemma 2.14. We prove by induction that the points x
(k)
t are well defined

during the forward passes of SDDP. Let t = 0. By assumption, xk
0 \in dom(\scrG 0). So

xk
1 = \bfitX 

(k)
1 (\omega k) exists as a solution of a finite-valued linear program. Let t \geq 1. By

the induction hypothesis, we suppose that xk
t is well defined and belongs to dom(\scrG t).

We set xk
t+1 = \bfitX 

(k)
t+1(\omega 

k), which is well defined as a solution of a finite-valued linear

program. By assumption the sequence
\bigl\{ 
\scrB t

\bigr\} 
t\in J0,T - 1K is K-compatible, and hence

xk
t+1 \in dom(\scrG t+1), thus proving the result at time t+ 1.

We now prove by backward induction that \lambda 
(k)
t is well defined during the backward

passes of SDDP, and that there exists Lt such that \| \lambda (k)
t \| \infty \leq Lt. As K is a given
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LT Lipschitz-continuous function, the property holds true for t = T . Let t \leq T  - 1.
Assume that the induction hypothesis holds for t + 1. Then, by Proposition 2.8,
we know that \scrB t(Rk+1

t+1 ) is Lt-Lipschitz. We set \lambda k+1
t \in \partial \scrB t(Rk+1

t+1 )(x
k
t ), which is

well defined as subgradient of a finite-valued polyhedral function. As \scrB t(Rk+1
t+1 ) is

Lt-Lipschitz on its domain, we are able to choose \lambda k+1
t such that \| \lambda (k+1)

t \| \infty \leq Lt.

Proof of Lemma 3.2. As problem (1.1) is finite valued, the domain of each set-
valued mapping \scrG t is nonempty. Further, as \scrG t is compact valued with compact
domain, each LBO \scrT t is compact (see Definition 2.1). Then the reformulation as
(3.4) and (3.5) is a direct consequence of the measurability properties of the pair
(\bfitU t+1,\bfitX t+1) allowing the interchange between minimization and expectation.

Appendix C. Inner approximation related proofs.

Proof of Proposition 4.2. Let Xt be dom(\scrG t).
(i) Lemma 3.9 proves that

\bigl[ 
F k

t

\bigr]  \star \geq Vt for all t \in J0, T K. Thus V
k

t \geq Vt\square (Lt\| \cdot \| 1),
which is equal to Vt on Xt as Vt is Lt-Lipschitz on its domain.

(ii) Furthermore, the Fenchel conjugate
\bigl[ 
F k

t

\bigr]  \star 
reads\Bigl[ 

F k
t

\Bigr]  \star 
(x) = sup

\lambda ,\theta 

\Bigl\{ 
x\top \lambda  - \theta | \theta \geq 

\bigl\langle 
xi
t , \lambda 

\bigr\rangle 
+ \beta 

\kappa 

t \forall \kappa \in J1, kK
\Bigr\} 
,

which is a linear program admitting an admissible solution; hence by strong
duality

\Bigl[ 
F k

t

\Bigr]  \star 
(x) = min

\sigma \in \Delta 

\Biggl\{ 
 - 

k\sum 
\kappa =1

\sigma \kappa \beta 
\kappa 

t

\bigm| \bigm| \bigm| k\sum 
\kappa =1

\sigma \kappa x
\kappa 
t = x

\Biggr\} 
.

Taking the inf-convolution with Lt\| \cdot \| yields problem (4.2).
(iii) The right-hand side of (4.3) is simply

\bigl[ 
F k

t + \BbbI B\infty (0,Lt)

\bigr]  \star 
(x), which is equal to\bigl[ 

F k
t

\bigr]  \star 
\square 
\bigl[ 
\BbbI B\infty (0,Lt)

\bigr]  \star 
(x) by finite polyhedrality, hence the result.

(iv) Finally,
\bigl[ 
V

k

t

\bigr]  \star 
=

\bigl[ 
F k

t

\bigr]  \star  \star 
+ \BbbI B\infty (0,Lt).

Lemma C.1. We have, for all t \in J0, T K, \scrT \ddagger 
t,L

\bigl( 
F k

t+1

\bigr) 
\geq F k

t .

Proof. The relation is satisfied for k = 0. Assume that this holds true at iter-
ation k. On the one hand, by definition of \scrC k+1 in Algorithm 3.2, we have \scrC k+1 \leq 
\scrT \ddagger 
t,Lt+1

(F k+1
t+1 ). On the other hand, by monotonicity of \scrT \ddagger 

t,Lt+1
, since F k+1

t+1 \geq F k
t+1,

we have \scrT \ddagger 
t,Lt+1

\bigl( 
F k+1

t+1

\bigr) 
\geq \scrT \ddagger 

t,Lt+1

\bigl( 
F k

t+1

\bigr) 
, which is greater than F k

t by the induction

hypothesis. Thus, \scrT \ddagger 
t,Lt+1

\bigl( 
F k+1

t+1

\bigr) 
\geq max

\bigl\{ 
F k

t , \scrC k+1
\bigr\} 
= F k+1

t .

Lemma C.2. Let V
k

t be the inner approximation of the value function Vt gener-
ated at iteration k of the dual SDDP algorithm. Then, for all t \in J0, T K, we have

\scrT t(V
k

t+1)(x) \leq V
k

t (x).

Proof. We have\Bigl[ 
\scrT t(V

k

t+1)
\Bigr]  \star 

= \scrT \ddagger 
t

\Bigl( \Bigl[ 
V

k

t+1

\Bigr]  \star \Bigr) 
(by Theorem 2.11)

= \scrT \ddagger 
t

\bigl( 
F k

t+1 + \BbbI B\infty (0,Lt+1)

\bigr) 
(by Proposition 4.2)

= \scrT \ddagger 
t,L

\bigl( 
F k

t+1

\bigr) 
\geq F k

t . (by Lemma C.1)
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Furthermore, as \scrT t(V
k

t+1) is polyhedral, we have \scrT t(V
k

t+1) =
\bigl[ 
\scrT t(V

k

t+1)
\bigr]  \star  \star \leq \bigl[ 

F k
t

\bigr]  \star 
,

and as V
k

t+1 is Lt+1-Lipschitz, then \scrT t(V
k

t+1) is Lt-Lipschitz, and thus \scrT t(V
k

t+1) \leq \bigl[ 
F k

t

\bigr]  \star 
\square (Lt\| \cdot \| ).

Proof of Theorem 4.4. We proceed by backward induction on time t. The prop-

erty holds for t = T . Assume that CIA
t+1 \leq V

k

t+1. We have

CIA
t (x) = \BbbE 

\bigl[ 
a\top t x+ b\top t+1\bfitU 

IA
t+1 + CIA

t+1(\bfitX 
IA
t+1)

\bigr] 
\leq \BbbE 

\bigl[ 
a\top t x+ b\top t+1\bfitU 

IA
t+1 + V

k

t+1(\bfitX 
IA
t+1)

\bigr] 
(by induction)

= \scrT t
\bigl( 
V

k

t+1

\bigr) 
(x) (by definition of \bfitU IA

t+1)

\leq V
k

t (x) . (by Lemma C.2)

Finally, the convergence of the strategy is easily obtained. By definition of V0(x0),

we have CIA,k
0 (x0) \geq V0(x0). Furthermore, V0(x0) \leq CIA,k

0 (x0) \leq V
k

0(x0). By Theo-

rem 3.10, we know that limk(V
k

0)(x0) = V0(x0). Hence the result.
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