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a b s t r a c t

We consider relaxation of almost sure constraint in dynamic stochastic optimization problems and
their convergence. We show an epiconvergence result relying on the Kudo convergence of σ -algebras
and continuity of the objective and constraint operators. We present classical constraints and objective
functions with conditions ensuring their continuity. We are motivated by a Lagrangian decomposition
algorithm, known as Dual Approximate Dynamic Programming, that relies on relaxation, and can also
be understood as a decision rule approach in the dual.
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1. Introduction

Stochastic optimization problems often consist in minimizing
a cost over a set of random variables belonging to an infinite
dimensional space. Consequently, there is a need for approxi-
mation. We are interested in the approximation of almost sure
constraints, say θ (u) = 0 almost surely (a.s.), by a conditional
expectation constraint like E

[
θ (u)

⏐⏐ Fn
]

= 0 a.s.
Consider the following problem,

min
u∈U

J(u) , (1a)

s.t. θ (u) = 0 a.s. , (1b)

where the set of controls U is a set of random variables over
a probability space (Ω,F,P), and J(u) :=

∫
Ω
j(u(ω))dP(ω). If

Ω is not finite, U may be of infinite dimension. Moreover the
constraint (1b) is a functional constraint that can roughly be seen
as an infinite number of constraints. For tractability purposes,
we consider approximations of this problem. In order to give
theoretical results for the approximations of Problem (1) the
right notion of convergence is epi-convergence. Indeed, under
some additional technical conditions, the epi-convergence en-
sures the convergence of both the optimal value and the optimal
solutions.

One way of approximating Problem (1) consists in approxi-
mating the probability P. Roughly speaking the Sample Average
Approximation procedure consists in drawing a set of scenarios
under the true probability P. We then solve Problem (1) un-
der the empirical probability on the set of drawn scenarios. In
this literature (see [7,10]) the authors are interested in prob-
lems where the controls are deterministic. However other epi-
convergence results have been shown for more general spaces of
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controls, including spaces of random variables or random pro-
cesses (see [27] and references therein, as well as Pennanen
[15],Pennanen and Koivu [17], Pennanen [16]). More generally,
the idea of discretizing or quantizing the set Ω , for example by
use of finite scenario tree has been largely studied in the field of
Stochastic Programming (see [26] for a thorough presentation).

Instead of approximating the probability space we propose
a way to approximate constraints, especially almost sure con-
straints. The main idea is to replace a constraint by its conditional
expectation with respect to (w.r.t.) a σ -algebra B. This is in some
sense an aggregation of constraints. This approximation appears
when considering Lagrangian duality schemes with dual linear
decision rules for dynamic stochastic optimization problem [5,14,
19].

More precisely, we relax the almost sure constraint (1b) by
replacing it by its conditional expectation, i.e.

E
[
θ (u)

⏐⏐ B
]

= 0 . (2)

If λ is an integrable optimal multiplier for Constraint (1b), then
λB = E

[
λ

⏐⏐ B
]
is an optimal multiplier for Constraint (2). This

leads to look for B-measurable multiplier, which may authorize
decomposition–coordination methods where the sub-problems
are easily solvable. More precisely if we replace an almost sure
constraint by its conditional expectation with respect to (w.r.t.)
a σ -algebra B, then if there exists an optimal Lagrange multi-
plier, then there is an optimal Lagrange multiplier measurable
w.r.t. the σ -algebra B. Consequently if B is well chosen then a
decomposition–coordination approach can be used to solve the
approximated problem. In this case, the approximation can be
seen as a decision rule approach in the dual, where we choose
to restrict the multiplier in the class of B-measurable random
variables. Works using a decision rule approach on the dual
problem are found in Kuhn et al. [12].
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The paper is organized as follows. Section 2 presents the
general form of the problem considered and its approximation.
Section 3 shows, after a few recalls on convergence notions
of random variables, functions and σ -algebras, conditions on
the sequence of approximate problems guaranteeing its conver-
gence toward the initial problem. The main assumptions are
the Kudo’s convergence of σ -algebra, and the continuity – as
operators – of the constraint function Θ and objective function
J . Section 4 gives some examples of continuous objective and
constraint functions that represent usual stochastic optimization
problems. Finally Section 5 quickly presents a Lagrangian de-
composition algorithm using this type of relaxation. The results
presented here show consistency of this method: if we refine the
approximation, the solution obtained converges toward solution
of the original problem.

Notation

Bold letters are used for random variables. IA(x) = 0 if x ∈ A,
and IA(x) = +∞ otherwise. We denote by Ja, bK the set of all
integers between a and b. θ is used for the constraint function
mapping Euclidean space U into V, whereas Θ is used for the
constraint operator generally mapping a set of functions on U into
function a set of function on V.

2. Problem statement

We consider a probability space (Ω,F,P) and a topological
space of controls U . Let V be the spaces of random variables with
value in a Banach V with finite moment of order p ∈ [1, ∞),
denoted V = Lp(Ω,F,P;V).

We consider now a stochastic optimization problem

min
u∈U

J(u) , (3a)

s.t. Θ(u) ∈ C , (3b)

with J mapping U into R ∪ {+∞}, and Θ mapping U into V . We
assume that C ⊂ V is a subset of V , and that V is a separable
Banach space with separable dual.

To give an example of cost operator, assume that U ⊂

L1
(
Ω,F,P;U

)
, where U is a Banach space. The usual choice for

the objective function is the expected cost J(u) := E
[
j(u)

]
, for

a suitable cost function j : U → R. Other choices could be risk
measures (see [2] for example) like Average-Value-at-Risk, worst-
case or robust approaches. The constraint operator Θ covers
various cases, for example

• almost sure constraint: Θ
(
u
)
(ω) := θ

(
u(ω)

)
, where θ maps

U into V and θ
(
u
)

∈ C is realized almost surely, where C is
a closed convex set;

• measurability constraint: Θ
(
u
)

:= E
[
u

⏐⏐ B
]

− u, with
C = {0}, expresses that u is measurable with respect to the
σ -algebra B, that is, E

[
u

⏐⏐ B
]

= u;
• risk constraint: Θ

(
u
)

:= ρ(u) − a, where ρ is a conditional
risk measure, and C is the cone of negative random variables.

We introduce a stability assumption of the set C that will be
made throughout this paper.

Definition 1. We consider a sequence (Fn)n∈N of sub-fields of
F . The set C is said to be stable w.r.t.

(
Fn

)
n∈N, if there exists a

set-valued mapping S from Ω to V which is closed-convex valued
and measurable with respect to F and all (Fn)n∈N.

In particular if C is stable, we have for all n ∈ N and all v ∈ C ,
E[v | Fn] ∈ C .

We now consider the following relaxation of Problem (3)

min
u∈U

J(u) , (4a)

s.t. E
[
Θ(u)

⏐⏐ Fn
]

∈ C , (4b)

where C is assumed to be stable w.r.t. the sequence
(
Fn

)
n∈N.

We denote the set of admissible controls of Problem (3)

Uad
:=

{
u ∈ U

⏐⏐ Θ(u) ∈ −C
}

, (5)

and the corresponding set of admissible controls of Problem (4)

Uad
n :=

{
u ∈ U

⏐⏐ E[
Θ(u)

⏐⏐ Fn
]

∈ −C
}

. (6)

Problems (3) and (4) can also be written as

min
u∈U

J(u) + IUad (u)  
:=J̃(u)

, (7)

and

min
u∈U

J(u) + IUad
n
(u)  

:=J̃n(u)

. (8)

Since Fn ⊂ F , and C is stable w.r.t. (Fn)n∈N, we have Uad
⊂

Uad
n : Problem (4) is a relaxation of the original Problem (3).
Replacing an almost sure constraint by a conditional expec-

tation constraint is similar to an aggregation of constraints. For
example consider a finite set Ω = {ωi}i∈J1,NK, with a probability
P such that, for all i ∈ J1,NK, we have P(ωi) = pi > 0. Consider a
partition B = {Bl}l∈J1,|B|K of Ω , and the σ -algebra FB generated
by the partition B. Assume that C = {0}, then the relaxation
presented consists in replacing the constraint θ (u) = 0 almost
surely, which is equivalent to N constraints θ (u(ωi)) = 0 for
i ∈ J1,NK, by the collection of |B| ≤ N (where |B| is the number
of sets in the partition B) constraints∑
i∈Bl

piθ (u(ωi)) = 0 ∀l ∈ J1, |B|K .

3. Epiconvergence result

In this section we show the epiconvergence of the sequence of
approximated cost functions (J̃n)n∈N toward J . We start with some
useful recalls.

3.1. Preliminaries

Assume that p ∈ [1, +∞) and denote q ∈ (1, +∞] such
that 1/q + 1/p = 1. Recall that V is a separable Banach space
with separable dual V∗. We denote Lp = Lp(Ω,F,P;V) and
Lq = Lq(Ω,F,P;V∗).

Convergence of random variables
A sequence (Xn)n∈N of Lp is said to converge strongly toward

X ∈ Lp, and denoted Xn →Lp X if limn→∞ E
[
∥Xn − X∥

p
V

]
=

0. A sequence (Xn)n∈N of Lp is said to weakly converge toward
X ∈ Lp, and denoted Xn ⇀Lp X if for all X ′

∈ Lq, we have
limn→∞ E

[
⟨Xn − X,X ′

⟩V,V∗

]
= 0. For more details we refer the

reader to Rudin [23].

Epiconvergence of functions
Let E be a topological space and consider a sequence (An)n∈N

of subsets of E. Then the inner limit of (An)n∈N, denoted limnAn, is
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the set of accumulation points of any sequence (xn)n∈N such that
xn ∈ An, and the outer limit of (An)n∈N denoted limnAn, is the set of
accumulation points of any sub-sequence (xnk )k∈N of a sequence
(xn)n∈N such that xn ∈ An. We say that (An)n∈N converges toward
A in the Painlevé–Kuratowski sense if A = limnAn = limnAn.

A sequence (Jn)n∈N of functions taking value into R ∪ {+∞}

is said to epi-converge toward a function J if the sequence
of epigraphs of Jn converges toward the epigraph of J , in the
Painlevé–Kuratowski sense. For more details and properties of
epi-convergence, see Rockafellar and Wets [22] in finite dimen-
sion, and Attouch [3] for infinite dimension.

Convergences of σ -algebras
Let F be a σ -algebra and (Fn)n∈N a sequence of sub-fields of F

(not necessarily finite nor a filtration). It is said that the sequence
(Fn)n∈N Kudo-converges toward the σ -algebra F∞, and denoted
Fn → F∞, if for each set F ∈ F ,

(
E
[
1F

⏐⏐ Fn
])

n∈N
converges in

probability toward E
[
1F

⏐⏐ F∞

]
.

It is shown by Kudo [11] that Fn → F∞ if and only if for each
integrable random variable x, E

[
x

⏐⏐ Fn
]
converges in L1 toward

E
[
x

⏐⏐ F∞

]
. Piccinini [18] extends this result to the convergence

in Lp (where p < +∞) in the strong or weak sense with the
following lemma.

Lemma 1. Let
(
Ω,F,P

)
be a probability space and

(
Fn

)
n∈N be

a sequence of sub-σ -algebras of F . The following statements are
equivalent:

1. Fn → F∞,
2. ∀X ∈ Lp, E

[
X

⏐⏐ Fn
]

→Lp E
[
X

⏐⏐ F∞

]
,

3. ∀X ∈ Lp, E
[
X

⏐⏐ Fn
]

⇀Lp E
[
X

⏐⏐ F∞

]
.

We have the following useful proposition where both the
random variable and the σ -algebra are parametrized by n.

Proposition 2. Assume that Fn → F∞, and Xn →Lp X (resp.
Xn ⇀Lp X) then E

[
Xn

⏐⏐ Fn
]

→Lp E
[
X

⏐⏐ F∞

]
(resp. E

[
Xn

⏐⏐ Fn
]

⇀Lp

E
[
X

⏐⏐ F∞

]
).

Proof. The weak-limit case is detailed in Piccinini [18]. We show
the strong convergence case. If Xn →Lp X , then

∥E
[
Xn

⏐⏐ Fn
]
− E

[
X

⏐⏐ F
]
∥Lp ≤ ∥E

[
Xn

⏐⏐ Fn
]
− E

[
X

⏐⏐ Fn
]
∥Lp

+ ∥E
[
X

⏐⏐ Fn
]
− E

[
X

⏐⏐ F
]
∥Lp

As the conditional expectation is a contraction and by Lemma 1
we have the result. □

We end with a few properties on the Kudo-convergence of
σ -algebras (for more details we refer to Kudo [11] and Cotter [6]):

1. the topology associated with the Kudo-convergence is
metrizable;

2. the set of σ -fields generated by the partitions of Ω is dense
in the set of all σ -algebras;

3. if a sequence of random variables (xn)n∈N converges in
probability toward x and for all n ∈ N we have σ (xn) ⊂

σ (x), then we have the Kudo-convergence of
(
σ (xn)

)
n∈N

toward σ (X).

3.2. Main result

Denote τ the topology of U , and recall that V = Lp, with
p ∈ [1, ∞).

Theorem 3. Let V be endowed with the strong or weak topology.
Assume that C is closed and stable w.r.t. (Fn)n∈N. If the two mappings
Θ and J are continuous, and if (Fn)n∈N Kudo-converges toward F ,
then (J̃n)n∈N (defined in (7)) epi-converges toward J̃ (defined in (8)).

Note that (Fn)n∈N is not assumed to be a filtration and that Fn
is not assumed to be finite.

Proof. To prove the epi-convergence of (J̃n)n∈N toward J̃ it
is sufficient to show that Uad

n (defined in (6)) converges to-
ward Uad (defined in (5)) in the Painlevé–Kuratowski sense.
Indeed it implies the epi-convergence of (IUad

n
)n∈N toward IUad ,

and adding a continuous function preserves the epi-convergence
(Attouch [3, Th 2.15]).

By stability of C w.r.t. (Fn)n∈N we have that, for all n ∈ N,
Uad

⊂ Uad
n and thus Uad

⊂ lim infn Uad
n (for any x ∈ Uad take

the constant sequence equal to x).
We now show that Uad

⊃ lim supn Uad
n . Let u be an element

of lim supn Uad
n . By definition of outer-limit of sets, there exists a

sequence (unk )k∈N that τ -converges to u, such that for all k ∈ N,
E
(
Θ(unk )|Fnk

)
∈ C. As Θ is continuous, we have Θ(unk ) → Θ(u)

strongly (resp. weakly) in Lp. Since Fnk → F , by Proposition 2,

E
(
Θ(unk )|Fnk

)
→Lp E

(
Θ(u)|F

)
= Θ(U) .

Thus Θ(u) is the limit of a sequence in C. By closedness of C, we
have that Θ(u) ∈ −C and thus u ∈ Uad. □

The practical consequences for the convergence of the approx-
imation (4) toward the original (3) are given in the following
Corollary.

Corollary 4. Assume that Fn → F , and that J and Θ are continu-
ous. Then the sequence of Problems (4) approximates Problem (3) in
the following sense. If (un)n∈N is a sequence of controls such that for
all n ∈ N,

J̃n(un) < inf
u∈U

J̃n(u) + εn, where lim
n

εn = 0 ,

then, for every converging sub-sequence (unk )k∈N, we have

J̃
(
lim
k

unk

)
= min

u∈U
J̃(u) = lim

k
J̃nk

(
unk

)
.

Moreover if
(
Fn

)
n∈N is a filtration, then the convergences are

monotonous in the sense that the optimal value is non-decreasing
in n.

Proof. The convergence result is a direct application of Attouch
[3, Th. 1.10, p. 27]. Monotonicity is given by the fact that, if
(Fn)n∈N is a filtration, then for n > m then Uad

n ⊂ Uad
m . □

3.3. Dynamic problem

We cast Problem (3) into the following dynamic problem

min
u∈U

J(u) , (9a)

s.t. Θt (ut ) ∈ Ct ∀t ∈ J1, T K , (9b)

ut ⪯ Ft , (9c)

where ut ⪯ Ft stands for ‘‘ut is Ft-measurable’’. Here u is
a stochastic process of control (ut )t∈J1,TK defined on (Ω,F,P)
with value in a space U. We have T constraints operators Θt
taking values in Lp(Ω,Ft ,P;Vt ), where (Ft )t∈J1,TK is a sequence of
σ -algebra. Note that (Ft )t∈J1,TK is not necessarily a filtration.
Then, for each t ∈ J1, T K we define a sequence of approximating
σ -algebra (Fn,t )n∈N. For all t ∈ J1, T K, Ct is a closed convex cone
stable w.r.t.

(
Fn,t

)
n∈N. The interaction between the different time-

step is integrated into the objective function J (usually a sum over
time).

Finally, we consider the sequence of approximated problem

min J(u) , (10a)

s.t. E
[
Θ(ut )

⏐⏐ Fn,t
]

∈ Ct ∀t ∈ J1, T K . (10b)
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Furthermore we denote

Uad
t :=

{
ut ∈ Ut

⏐⏐ Θ(ut ) ∈ −Ct
}

,

and

Uad
n,t :=

{
ut ∈ Ut

⏐⏐ E[
Θ(ut )

⏐⏐ Fn,t
]

∈ −Ct
}

.

We define the set of admissible controls for the original prob-
lem

Uad
= Uad

0 × · · · × Uad
T ,

and accordingly for the relaxed problem

Uad
n = Uad

n,0 × · · · × Uad
n,T .

In order to show the convergence of the approximation proposed
here, we consider the functions

J̃(u) = J(u) + χUad (u) , and J̃n(u) = J(u) + χUad
n
(u) ,

and show the epi-convergence of J̃n to J̃ .

Theorem 5. Let U be endowed with a product topology τ , and
V = Lp

(
Ω,F,P;V

)
be endowed with the strong or weak topology

(p being in [1, ∞)). If Θ and J are continuous, and if for all t ∈

J1, T K, (Ft,n)n∈N Kudo-converges to Ft , then
(
J̃n
)
n∈N epi-converges

to J̃ .

Proof. The proof is deduced from the one of Theorem 3. By
following the same steps we obtain the Painlevé–Kuratowski
convergence of Uad

n,t to Uad
t , and thus the convergence of their

Cartesian products. □

4. Examples of continuous operators

The continuity of J and Θ as operators required in Theorem 3
is an abstract assumption. This section presents conditions for
some classical constraint and objective functions to be repre-
sentable by continuous operators. Before presenting those results
we prove a technical lemma that allows us to prove convergence
for the topology of convergence in probability by considering
sequences of random variables converging almost surely.

4.1. A technical lemma

Lemma 6. Let Θ : E → F , where (E, τP) is a space of random
variables endowed with the topology of convergence in probability,
and (F , τ ) is a topological space. Assume that Θ is such that if
(un)n∈N converges almost surely toward u, then Θ(un) →τ Θ(u).
Then Θ is a continuous operator from (E, τP) into (F , τ ).

Proof. Recall that if (xn)n∈N is a sequence in a topological space,
such that from any sub-sequence

(
xnk

)
k∈N we can extract a sub-

sub-sequence
(
xσ (nk)

)
k∈N converging to x∗, then (xn)n∈N converges

to x∗. Indeed suppose that (xn)n∈N does not converges toward x∗.
Then there exist an open set O containing x∗ and a sub-sequence(
xnk

)
k∈N such that for all k ∈ N, xnk /∈ O, and no sub-sub-sequence

can converges to x∗, hence a contradiction.
Let (un)n∈N be a sequence converging in probability to u.

We consider the sequence
(
Θ(un)

)
n∈N in F . We choose a sub-

sequence
(
Θ

(
unk

))
k∈N. By assumption

(
un

)
n∈N converges in prob-

ability toward u, thus we have unk →P u. Consequently there
exists a sub-sub-sequence uσ (nk) converging almost surely to u,
and consequently Θ

(
uσ (nk)

)
→ Θ

(
u
)
. Therefore Θ is sequentially

continuous, and as the topology of convergence in probability is
metrizable, Θ is continuous. □

Remark 1. This lemma does not imply the equivalence be-
tween convergence almost sure and convergence in probability
as one cannot endow U with the ‘‘topology of almost sure con-
vergence’’ as almost sure convergence is not generally induced by
a topology.

However note that (un)n∈N converges in probability toward u
iff from any sub-sequence of (un)n∈N we can extract a further
sub-sequence converging almost surely to u (see [8, Th 2.3.2]).

4.2. Objective function

Let U be a space of random variables on (Ω,F,P), with value
in a Banach space U.

The most classical objective function is given as J(u) :=

E
[
j(u)

]
, where j : U → R is a measurable, bounded cost function.

This objective function expresses a risk-neutral attitude; indeed
a random cost with high variance or a deterministic cost with the
same expectation are considered equivalent. Recently in order to
capture risk-averse attitudes, coherent risk measures (as defined
in Artzner et al. [2]), or more generally convex risk measures (as
defined in Föllmer and Schied [9]), have been prominent in the
literature.

Following Ruszczyński and Shapiro [25], we call convex risk
measure an operator ρ : X → R ∪ {+∞} verifying

• Convexity: for all λ ∈ [0, 1] and all X, Y ∈ X , we have

ρ
(
λX + (1 − λ)Y

)
≤ λρ

(
X
)
+ (1 − λ)ρ

(
Y
)
;

• Monotonicity: for all X, Y ∈ X such that X ≤ Y we have
ρ(X) ≤ ρ(Y );

• Translation equivariance: for all constant c ∈ R and all
X ∈ X , we have ρ(X + c) = ρ(X) + c ,

where X is a linear space of measurable functions. We focus on
the case where X = L∞(Ω,F,P;R).

Proposition 7. Let U be a set of random variables endowed with
the topology of convergence in probability, and J(u) := ρ

(
j(u)

)
,

where j : U → R is continuous and bounded, and ρ a proper
lower semi-continuous convex risk measure. Then, J : U → R is
continuous.

Proof. Note that as j is bounded, j(u) ∈ X for any u ∈ U . Then
we know that [25] there is a convex set of probabilities P such
that

ρ(x) = sup
Q∈P

EQ
(
x
)
− g(Q) ,

where g is convex and weak*-lowersemicontinuous on the space
of finite signed measures on (Ω,F). Moreover any probability in
P is absolutely continuous w.r.t. P.

Consider a sequence (un)n∈N of elements of U converging in
probability toward u ∈ U . Note that as j is bounded, we have
ρ
(
j(u)

)
< ∞ by monotonicity of ρ. By definition of ρ, for all ε > 0

there is a probability Pε ∈ P such that

EPε

(
j(u)

)
− g(Pε) ≥ ρ

(
j(u)

)
− ε .

As Pε is absolutely continuous w.r.t. P, the convergence in prob-
ability under P of (un)n∈N implies the convergence of probabil-
ity under Pε and in turn the convergence in law under Pε . By
definition of convergence in law we have that

lim
n

EPε

(
j(un)

)
− g(Pε) = EPε

(
j(u)

)
− g(Pε) .

Let η be a positive real, and set ε = η/2, and N ∈ N such that
for all n ≥ N ,

|EPε

(
j(un)

)
− EPε

(
j(u)

)
| ≤

η

2
. (11)
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Then, recalling that

ρ

(
j
(
u
))

≥ EP η
2

(
j(u)

)
− g(P η

2
) ≥ ρ

(
j
(
u
))

−
η

2
, (12)

we have that for all n ≥ N ,

ρ
(
j(un)

)
= sup

Q∈P
EQ

(
j(un)

)
− g(Q)

≥ EP η
2

(
j(un)

)
− g

(
P η

2

)
≥ EP η

2

(
j(u)

)
− g

(
P η

2

)
by (11),

≥ ρ

(
j(u)

)
− η by (12),

and thus

ρ

(
j
(
u
))

+
η

2
≥ ρ

(
j
(
un

))
≥ ρ

(
j
(
u
))

− η .

Thus limn ρ
(
j(un)

)
= ρ

(
j(u)

)
. Hence the continuity of J . □

The assumptions of this proposition can be relaxed in different
ways.

In the first place, if the convex risk measure ρ is simply the
expectation then we can simply endow U with the topology of
convergence in law. In this case the continuity assumption on j
can also be relaxed. Indeed if

(
un

)
n∈N converges in law toward

u, and if the set K of points where j is continuous is such that
P(u ∈ K ) = 1, then E

[
j(un)

]
converges toward E

[
j(u)

]
.

Otherwise assume that U is a set of random variables en-
dowed with the topology of convergence in probability and that
j continuous. Moreover, if we can ensure that j(u) is dominated
by some integrable (for all probability of P) random variable,
then J : U → R is continuous. Indeed we consider a sequence(
un

)
n∈N almost surely converging to u. We modify the proof of

Proposition 7 by using a dominated convergence theorem to show
that limn EPε

(
j(un)

)
= EPε

(
j(u)

)
, and end with Lemma 6.

4.3. Constraint operator

We present some usual constraints and how they can be
represented by an operator Θ that is continuous and take values
into V .

4.3.1. Almost sure constraint
From Lemma 6, we obtain a first important example of contin-

uous constraints, which can also be obtained and extended from
results on Nemytskii operators (see, e.g. [1]).

Proposition 8. Suppose that U is the set of random variables on(
Ω,F,P

)
, with value in U, endowed with the topology of conver-

gence in probability. Assume that θ : U → V is continuous and
bounded. Then the operator Θ

(
u
)
(ω) := θ

(
u(ω)

)
maps U into V

and is continuous.

Proof. The function θ being continuous, is also Borel measurable.
Thus for all u ∈ U , for all Borel set V ⊂ V, we have(
Θ(u)

)−1(V ) = {ω ∈ Ω | u(ω) ∈ θ−1(V )} ∈ B ,

thus Θ(u) is F-measurable. Boundedness of θ ensure the exis-
tence of moment of all order of Θ(u). Thus Θ is well defined.

Suppose that
(
un

)
n∈N converges to u almost surely. Then

by boundedness of θ , we have that
(θ

(
un

)
− θ

(
u
)p

V

)
n∈N

is
bounded, and thus by dominated convergence theorem we have
that

lim
n→∞

θ
(
un

)
= θ

(
u
)

in Lp(Ω,F,P;V) ,

which is exactly

lim
n→∞

Θ
(
un

)
= Θ

(
u
)

.

Consequently by Lemma 6 we have the continuity of Θ . □

We note that boundedness of θ is only necessary in order to
use the dominated convergence theorem. Thus an alternative set
of assumptions is given in the following proposition.

Proposition 9. Let B be a sub-field of F . If U = Lp
′(

Ω,B,P
)
, with

the topology of convergence in probability, and if θ is γ -Hölder, with
γ ≤ p′/p then Θ

(
u
)
(ω) := θ

(
u(ω)

)
is well defined and continuous

as an operator mapping U into V .

Proof. By definition a function θ mapping U into V is γ -Hölder if
there exists a constant M > 0 such that for all u, u′ in U we haveθ (u) − θ (u′)


V ≤ M

u − u′
γ

U ,

in particular the 1-Hölder continuity is the Lipschitz continuity.
Following the previous proof we just have to check that the se-

quence
(θ

(
un

)
− θ

(
u
)p

V

)
n∈N

is dominated by some integrable
variable. The Hölder assumption impliesθ

(
unk

)
− θ

(
u
)p

V ≤ Cp
unk − u

pγ
U .

And as pγ ≤ p′, and un and u are elements of Lp
′

(Ω,F,P),unk − u
pγ
U is integrable. □

4.3.2. Measurability constraint
When considering a dynamic stochastic optimization problem,

measurability constraints are used to represent the nonanticipa-
tivity constraints. They can be expressed by stating that a random
variable and its conditional expectation are equal.

Proposition 10. We set U = Lp
′(

Ω,F,P;U
)
, with p′

≥ p. Assume
that

• either U is equipped with the strong topology, and V is
equipped with the strong or weak topology,

• or U and V are equipped with the weak topology.

If B is a sub-field of F , then Θ
(
u
)

:= E
[
u

⏐⏐ B
]
− u, is well defined

and continuous.

Proof. In a first place note that as p′
≥ p, and F ′

⊂ F , U ⊂ V;
and if v ∈ V then E

[
v

⏐⏐ B
]

∈ V as the conditional expectation is
a contraction. Thus for all u ∈ U , we have Θ(u) ∈ V .

Consider a sequence (un)n∈N of U strongly converging in Lp
′

toward u ∈ U . We have

∥Θ
(
un

)
− Θ

(
u
)
∥p ≤ ∥un − u∥p + ∥E

[
un − u

⏐⏐ B
]
∥p

≤ 2∥un − u∥p ≤ 2∥un − u∥p′ → 0 .

Thus the strong continuity of Θ is proven.
Now consider (un)n∈N converging weakly in Lp

′

toward u ∈ U .
We have, for all y ∈ Lq,

E
[
E
[
un

⏐⏐ B
]
· Y

]
= E

[
unE

[
Y

⏐⏐ B
]]

,

−→
n

E
[
uE

[
Y

⏐⏐ B
]]

,

= E
[
E
[
u

⏐⏐ B
]
Y
]

.

Thus we have the weak convergence of the conditional expecta-
tion and therefore of Θ . Finally, as the strong convergence implies
the weak convergence we have the continuity from U-strong into
V-weak. □
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Until now the topology of convergence in probability has been
largely used. If we endow U with the topology of convergence in
probability in the previous proposition we will obtain continuity
of Θ on a subset of U . Indeed if a set of random variables Uad such
that there exists a random variable in Lp

′(
Ω,F,P

)
dominating

every random variable in Uad, then a sequence converging almost
surely will converge for the Lp

′

norm and we can follow the
previous proof to show the continuity of Θ on Uad.

4.3.3. Risk constraints
Risk attitude can be expressed through the objective function

or through constraints. We have seen that a risk measure can be
chosen as the objective function, we now show that conditional
risk measure can used as constraints.

Let ρ be a conditional risk mapping as defined in Ruszczyński
and Shapiro [24], and more precisely ρ maps U into V where
U = Lp

(
Ω,F,P;U

)
and V = Lp

(
Ω,B,P;V

)
, with B ⊂ F , and

verifies the following properties

• Convexity: for all λ ∈ U , λ ∈ [0, 1] and all X, Y ∈ V , we have

ρ
(
λX + (1 − λ)Y

)
≤ λρ

(
X
)
+ (1 − λ)ρ

(
Y
)
;

• Monotonicity: for all X, Y ∈ V such that X ≤ Y we have
ρ(X) ≤ ρ(Y );

• Translation equivariance: for all c ∈ V and all X ∈ U , we
have ρ(X + c) = ρ(X) + c .

Proposition 11. Let U be endowed with the topology of convergence
in probability, and V endowed with the strong topology. If ρ is a
conditional risk mapping, θ is a continuous bounded cost function
mapping U into R, and a ∈ V , then Θ

(
u
)

:= ρ

(
θ
(
u
))

− a is
continuous.

Proof. Consider a sequence of random variables
(
un

)
n∈N con-

verging in probability toward u∞. Let π : Lp(Ω,B,P;U) →

Lp(Ω,B,P;U) be a selector of V = Lp(Ω,B,P;U), i.e. for any x ∈

Lp(Ω,F,P;U), π (X) ∈ x. For any ω ∈ Ω , any x ∈ Lp(Ω,F,P;U)
we define

ρω(u) := π (ρ
(
u
)
)(ω) .

Note that for P-almost all ω ∈ Ω , the function Θω(u) := ρω

(
θ (u)

)
,

satisfies the conditions of Proposition 7. Thus for P-almost all
ω ∈ Ω ,

(
Θω(un)

)
n∈N converges toward Θω(u∞). Thus we have

shown that
(
Θ(un)

)
n∈N converges almost surely toward Θ

(
u∞

)
.

By boundedness of θ and monotonicity of ρ we obtain the bound-
edness of

(
Θ(un)

)
n∈N. Thus almost sure convergence and domi-

nated convergence theorem ensure that
(
Θ(un)

)
n∈N converges in

Lp toward Θ
(
u∞

)
, hence the continuity of Θ . □

Another widely used risk measure, even if it has some serious
drawbacks, is the Value-at-Risk. If X is a real random variable its
value at risk of level α can be defined as VaRα(X) := inf{F−1

X (α)}
where FX (x) := P(X ≤ x).

Proposition 12. If θ : U → R is continuous, and if U is such that
every u ∈ U has a continuous distribution function, then Θ(u) :=

VaRα

(
θ
(
u
))

is continuous if we have endowed U with the topology
of convergence in law, and a fortiori for the topology of convergence
in probability.

Proof. By definition of convergence in law, if un → u in law, then(
θ
(
un

))
n∈N converges in law toward θ

(
u
)
and we have, for all x ∈

R, Fθ (un)(x) → Fθ (u)(x). Thus
(
Θ(un)

)
n∈N converges almost surely

toward Θ(u), and as Θ(u) is deterministic, Θ is continuous. □

Note that in Proposition 12 the constraint function takes de-
terministic values. Thus considering the conditional expectation
of this constraint yields exactly the same constraint. However
consider a constraint Θ1 : U → R of this form, and another
constraint Θ2 : U → V . Then if Θ1 and Θ2 are continuous, then
so is the constraint Θ = (Θ1, Θ2) → R × V . Thus we can apply
Theorem 3 on the coupled constraint.

5. Dual approximate dynamic programming

In this section, we say a few words about how the approxi-
mation of an almost sure constraint by a conditional expectation
– as presented in Section 3 – can be used. More details and
numerical experiment of this algorithm can be found in
Barty et al. [4], Leclère [13], Carpentier et al. [5], Ramakrishnan
and Luedtke [19].

5.1. Presentation of the problem

We are interested in an electricity production problem with N
power stations coupled by an equality constraint. At time step t ,
each power station i has an internal state X i

t , and is affected by
a random exogenous noise ξit . For each power station, and each
time step t , we have a control qi

t ∈ Qad
t,i that must be measurable

with respect to Ft where Ft is the σ -algebra generated by all
past noises: Ft = σ

(
ξis

)
1≤i≤n,0≤s≤t . Moreover, there is a coupling

constraint expressing that the total production must be equal to
the demand. This constraint is represented as

∑N
i=1θ

i
t (qi

t ) = 0,
where θ i

t is a continuous bounded function from Qad
t,i into V, for

all i ∈ J1, nK. The cost to be minimized is a sum over time and
power stations of all current local cost Lit

(
xit , qi

t , ξ
i
t

)
.

Finally the problem reads

min
x,q

E
[ N∑

i=1

T∑
t=0

Lit
(
xit , q

i
t , ξ

i
t

)]
(13a)

s.t. xit+1 = f it (x
i
t , q

i
t , ξ

i
t ) ∀t, ∀i, (13b)

xi0 = xi0 ∀i, (13c)

qi
t ∈ Qad

t,i ∀t, ∀i, (13d)

qi
t ⪯ Ft ∀t, ∀i, (13e)
N∑
i=1

θ i
t (q

i
t ) = 0 ∀t, ∀i. (13f)

For the sake of brevity, we denote by A the set of random
processes (X, q) verifying constraints (13b)–(13d).

Let us assume that all random variables are in L2 spaces and
dualize the coupling constraint (13f). We do not study here the
relation between the primal and the following dual problem (see
[20,21] for an alternative formulation involving duality between
L1 and its dual).

max
λ∈L2

min
(x,q)∈A

E
[ N∑

i=1

T∑
t=0

Lit
(
xit , q

i
t , ξ

i
t

)
+ λtθ

i
t (q

i
t )
]

(14a)

s.t. qi
t ⪯ Ft ∀t, ∀i. (14b)

Note that, for fixed λ, the inner minimization problem is
decomposable. Thus for a fixed λ(k) we have to solve N prob-
lems of smaller size than Problem (14), λ(k) being updated in a
gradient-like scheme.

(P) min
(x,u)∈A

E
[ T∑

t=0

Lit
(
xit , q

i
t , ξ

i
t

)
+ λ

(k)
t θ i

t (q
i
t )
]

(15a)

s.t. qi
t ⪯ Ft ∀t, ∀i. (15b)
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Note that the process λ(k) has no given dynamics but can be
chosen to be adapted to the filtration (Ft )t=1,...,T . Consequently
solving Problem (15) by Dynamic Programming is possible but
numerically difficult as we need to keep all the past realiza-
tions of the noises in the state. In fact, the so-called curse of
dimensionality prevents us to solve numerically this problem.

Nevertheless it has been proposed in Barty et al. [4] to replace
λt by E

[
λt

⏐⏐ Y t
]
, where Y t is a random variable measurable with

respect to (yt−1, ξt ) instead of λt . This is similar to a decision
rule approach for the dual as we are restraining the control to
a certain class, the Y t-measurable λ in our case. Thus Problem
(15) can be solved by Dynamic Programming with the augmented
state (xit , yt ). It has also been shown that, under some non-trivial
conditions, replacing λt by its conditional expectation E

[
λt

⏐⏐ Y t
]

is equivalent to solving

min
(x,q)∈A

E
[ N∑

i=1

T∑
t=0

Lit
(
xit , q

i
t , ξ

i
t

)]
(16a)

s.t. qi
t ⪯ Ft ∀t, ∀i, (16b)

E
[ N∑

i=1

θ i
t (q

i
t )

⏐⏐⏐ Yt

]
= 0 ∀t, ∀i. (16c)

Problem (16) is a relaxation of Problem (13) where the al-
most sure constraint (13f) is replaced by the constraint (16c).
Now consider a sequence of information processes (Y (n))n∈N each
generating a σ -algebra Fn, and their associated relaxation (Pn)
(as specified in Problem (16)) of Problem (13) (denoted (P)).
Those problems correspond to Problems (9) and (10) with J(u) =

E
[∑N

i=1
∑T

t=0 L
i
t

(
xit , qi

t , ξ
i
t

)]
, where u = (q(i))i∈J1,NK and xit follow

the dynamic equation (13b). We also have Θt (ut ) =
∑N

i=1 θ i
t (qi

t )
and Ct = {0}.

Assume that for all t ∈ J1, T K, and all i ∈ J1,NK the cost
functions Lit , dynamic functions ft and constraint functions θ i

t are
continuous, and that Qad

t,i is a compact subset of a Euclidean space.
Moreover we assume that the noise variables ξit are essentially
bounded. Finally we endow the space of control processes with
the topology of convergence in probability. Then by induction
we have that the state processes and the control processes are
essentially bounded, thus so is the cost Lit

(
xit , ui

t , ξ
i
t

)
. Thus the

cost function can be effectively replaced by bounded functions.
Consequently Proposition 7 ensures that J is continuous if U
is equipped with the topology of convergence in probability.
Similarly Proposition 8 ensures that Θ is continuous. Theorem 5
implies that our sequence of approximated problems (Pn) con-
verges toward the initial problem (P). Thus, let (un)n∈N be a
sequence of εn-optimal solution of Pn, i.e. un verifying constraint
(16c) and J(un) < infu∈Uad

n
J(u) + εn, with (εn)n∈N a sequence

of positive real number converging to 0. Then we can extract
a subsequence (unk )k∈N converging almost surely to an optimal
solution of (P), and the limit of the approximated value of (Pn)
converges to the value of (P).

Remark 2. To get an idea of the numerical interest of such an
approach fix all discretization (in space, control, time and number
of units) to 10, frontal dynamic programming requires 1031 oper-
ations, whereas, in the decomposed approach, each subgradient
iteration requires only 106 iterations. The subgradient method
being applied in R10 requires a few thousand iterations to give
a reasonable solution, hence the approximated problem can be
solved in around 1010 operations.
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