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a b s t r a c t 

We are interested in optimally controlling a discrete time dynamical system that can be influenced by 

exogenous uncertainties. This is generally called a Stochastic Optimal Control (SOC) problem and the Dy- 

namic Programming (DP) principle is one of the standard ways of solving it. Unfortunately, DP faces 

the so-called curse of dimensionality: the complexity of solving DP equations grows exponentially with 

the dimension of the variable that is sufficient to take optimal decisions (the so-called state variable). 

For a large class of SOC problems, which includes important practical applications in energy manage- 

ment, we propose an original way of obtaining near optimal controls. The algorithm we introduce is 

based on Lagrangian relaxation, of which the application to decomposition is well-known in the deter- 

ministic framework. However, its application to such closed-loop problems is not straightforward and an 

additional statistical approximation concerning the dual process is needed. The resulting methodology is 

called Dual Approximate Dynamic Programming (DADP). We briefly present DADP, give interpretations 

and enlighten the error induced by the approximation. The paper is mainly devoted to applying DADP 

to the management of large hydro valleys. The modeling of such systems is presented, as well as the 

practical implementation of the methodology. Numerical results are provided on several valleys, and we 

compare our approach with the state of the art SDDP method. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Large-scale systems and energy applications 

Consider a controlled dynamical system over a discrete and fi-

nite time horizon. This system may be influenced by exogenous

noises that affect its behavior. Assume that, at every instant t , the

decision maker designs a control based on all the observations of

noises available up to time t . We are thus looking for strategies (or

policies), that is, feedback functions that map every instant and ev-

ery possible history of the system to a decision to be made. 

We can find typical applications in the field of energy man-

agement. Consider a power producer that owns a certain number

of power units. Each unit has its own local characteristics such

as physical constraints that restrain the set of feasible decisions,

and induces a production cost or a revenue. The power producer
∗ Corresponding author. 
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ontrol the power units so that an overall goal is met. A classi-

al example is the so-called unit commitment problem (see Takriti,

irge, & Long, 1996 ) where the producer has to satisfy a global

ower demand at every instant. The power demand, as well as

ther parameters such as unit breakdowns, are random. The pro-

ucer is looking for strategies that minimize the overall expected

roduction cost, over a given time horizon. Another application,

hich is considered in this paper, is the management of a large-

cale hydro valley: here the power producer manages a cascade

f dams, and maximizes the revenue obtained by selling the en-

rgy produced by turbinating the water inside the dams. Both nat-

ral inflows in water reservoirs and energy prices are random. In

ll these problems, the number of power units and the number

f time steps are usually large (see de Matos, Philpott, & Finardi,

015 ). 

.2. Standard resolution methods 

One classical approach when dealing with stochastic dynamic

ptimization problems is to discretize the random inputs of

he problem using a scenario tree. Such an approach has been

https://doi.org/10.1016/j.ejor.2018.05.025
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idely studied within the stochastic programming community

see Heitsch & Römisch, 2009; Shapiro, Dentcheva, & Ruszczy ́nski,

009 ), and used to model and solve energy problems, e.g. by Pflug

nd Pichler (2014) . One of the advantages of such a technique

s that, as soon as the scenario tree is drawn, the derived prob-

em can be treated by classical mathematical programming tech-

iques. Thus, a number of decomposition methodologies have been

roposed (see for instance Carpentier, Cohen, Culioli, & Renaud,

996; Rockafellar & Wets, 1991; Ruszczy ́nski, 1997, Ruszczy ́nski &

hapiro, 2003 , Chap. 3) and applied to energy planning problems

see Bacaud, Lemaréchal, Renaud, & Sagastizábal, 2001 ). Ways to

ombine the discretization of the expected value together with the

iscretization of information in a general setting have been pre-

ented in Heitsch, Römisch, and Strugarek (2006) , Pflug and Pich-

er (2014) and Carpentier, Chancelier, Cohen, and De Lara (2015) ).

owever, in a multi-stage setting, this methodology suffers from

he drawback that arises with scenario trees: as it was pointed out

y Shapiro (2006) , the number of scenarios needed to achieve a

iven accuracy grows exponentially with the number of time steps

f the problem. 

The other natural approach to solve SOC problems is to rely

n the Dynamic Programming (DP) principle (see Bellman, 1957;

uterman, 1994 ). The core of the DP approach is the definition

f a state variable that is, roughly speaking, the variable that, in

onjunction with the time variable, is sufficient to take an op-

imal decision at every instant. It does not have the drawback

f the scenario trees concerning the number of time steps since

trategies are, in this context, depending on a state variable whose

pace dimension does not grow with time (usually linked to the

umber of power units in the case of power management). How-

ver, DP suffers from another drawback which is the so-called

urse of dimensionality : the complexity of solving the DP equation

rows exponentially with the state space dimension. Hence, solv-

ng the DP equation by brute force is generally intractable when

he state space dimension goes beyond several units. In Vezolle,

ialle, and Warin (2009) , the authors were able to solve DP on

 10 state variables energy management problem, using parallel

omputation coupled with adequate data distribution, but the DP

imits are around 5 state variables in a straightforward use of the

ethod. 

Another popular idea is to represent the value functions (solu-

ions of the DP equation) as a linear combination of a priori cho-

en basis functions (see Bertsekas & Tsitsiklis, 1996 ). This approach,

alled Approximate Dynamic Programming (ADP) has become very

opular and the reader is referred to Powell (2011) and Bertsekas

2012) for a precise description of ADP. This approximation drasti-

ally reduces the complexity of solving the DP equation. However,

n order to be practically efficient, such an approach requires some

 priori information about the problem, in order to define a well

uited functional subspace. Indeed, there is no systematic means to

hoose the basis functions and several choices have been proposed

n the literature (see Tsitsiklis & Van Roy, 1996 ). 

Last but not least is the popular DP-based method called

tochastic Dual Dynamic Programming (SDDP). Starting with the

eminal work of Van Slyke and Wets (1969) , the SDDP method has

een designed in Pereira and Pinto (1991) . It has been widely used

n the energy management context and lately regained interest

n the Stochastic Programming community (see Shapiro, 2011 and

eferences therein). The idea is to extend Kelley’s cutting plane

ethod to the case of multi-stage stochastic problems. Alterna-

ively it can be seen as a multistage Benders (or L-shaped) de-

omposition method with sampling. It consists of a succession of

orward (trajectory computation) and backward (Bellman function

efining) passes that ultimately aims at approaching the Bellman

unction as the supremum of affine hyperplanes (cuts) generated

uring the backward passes. 
.3. Decomposition approach 

When dealing with large-scale optimization problems, the

ecomposition-coordination approach aims at finding a solution to

he original problem by iteratively solving subproblems of smaller

imension. In the deterministic case, several types of decompo-

ition have been proposed (e.g. by prices, by quantities or by

nteraction prediction) and unified in Cohen (1980) using a gen-

ral framework called Auxiliary Problem Principle. In the open-

oop stochastic case, i.e. when controls do not rely on any obser-

ation, it is proposed in Cohen and Culioli (1990) to take advan-

age of both decomposition techniques and stochastic gradient al-

orithms. The natural extension of these techniques to the closed-

oop stochastic case (see Barty, Roy, & Strugarek, 2009 ), i.e. when

he control is a function of the available observations, fails to pro-

ide decomposed state dependent strategies. Indeed, the optimal

trategy of a subproblem depends on the state of the whole sys-

em, and not only on the local state. 

We recently proposed a way to use price decomposition within

he closed-loop stochastic case. The coupling constraints, namely

he constraints preventing the problem from being naturally de-

omposed, are dualized using a Lagrange multiplier (price). At each

teration, the price decomposition algorithm solves each subprob-

em using the current price, and then uses the solutions to update

t. In the stochastic context, the price is a random process whose

ynamics is not available, so the subproblems do not in general fall

nto the Markovian setting. However, in a specific instance of this

roblem (see Strugarek, 2006 ), the author exhibited a dynamics for

he optimal multiplier and showed that these dynamics were in-

ependent from the decision variables. Hence it was possible to

ome down to the Markovian framework and use DP to solve the

ubproblems. Following this idea, it is proposed in Barty, Carpen-

ier, and Girardeau (2010) to choose a parameterized dynamics for

hese multipliers in such a way that solving subproblems using DP

ecomes possible. While the approach, called Dual Approximate

ynamic Programming (DADP), showed promising results on nu-

erical examples, it suffered from the fact that the induced re-

trained dual space is non-convex, leading to some numerical in-

tabilities. Moreover, it was not possible to give convergence re-

ults for the algorithm. The method has then been improved both

rom the theoretical and from the practical point of view. The core

dea is to replace the current Lagrange multiplier by its conditional

xpectation with respect to some information process , at every it-

ration. This information process has to be a priori chosen and

dapted to the natural filtration. Moreover, if the information pro-

ess is driven by a dynamic, the state in each subproblem then

onsists of the original state augmented by the information pro-

ess, making the resolution of the subproblem tractable by DP. In-

erestingly, approximating the multipliers by their conditional ex-

ectations is equivalent to solving a relaxed primal problem where

he almost-sure coupling constraint has been replaced by its condi-

ional expectation with respect to the information variable, yield-

ng a lower bound of the true optimal cost. Further, the solutions

btained by the DADP algorithm do not necessarily satisfy the ini-

ial almost-sure coupling constraint, so we must rely on a heuristic

rocedure to produce a feasible solution to the original problem. 

.4. Contents of the paper 

The main contribution of the paper is to give a practical algo-

ithm aiming at solving large scale stochastic optimal control prob-

ems and providing closed-loop strategies. The numerous approxi-

ations used in the algorithm, and especially the one allowing for

easible strategies, make difficult to theoretically assess the qual-

ty of the solution finally adopted. Nevertheless, numerical imple-

entation shows that the method is promising to solve large scale
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stochastic optimization problems such as those encountered in the

field of energy management. 

The paper is organized as follows. In Section 2 , we present the

hydro valley management problem, the corresponding general SOC

formulation and the DP principle. We then focus on spatial decom-

position of such a problem and the difficulties of using DP at the

subproblem level. In Section 3 , we present the DADP method and

give different interpretations. We then propose a way to recover

an admissible solution from the DADP results and we briefly dis-

cuss the theoretical and practical questions associated to the con-

vergence and implementation of the method. Finally, in Section 4 ,

we apply the DADP method to the management of hydro valleys.

Different exam ples, corresponding to either academic or realistic

valleys, are described. A comparison of the method with SDDP is

outlined. 

1.5. Notations 

We will use the following notations, considering a probability

space (�, A , P ) : 

• � i, j� is the set of integers between i and j ; 
• bold letters are used for random variables, normal font for their

realizations; 
• X � F t (resp. X �Y ) means that the random variable X is mea-

surable with respect to the σ -algebra F t (resp. with respect to

the σ -algebra generated by Y , denoted by σ ( Y )); 
• x generally stands for the state, u for the control, w for an exo-

geneous noise; 
• f t stands for a dynamics, that is, a transition function modeling

the system evolution along time, L t stands for a cost function at

time t , K stands for a final cost function; 
• V t represents a Bellman’s value function at time t ; 
• the notation X 

i (resp. U 

i and Z 

i ) stands for the discrete time

state process ( X 

i 
0 , . . . , X 

i 
T ) (resp. the two control processes

( U 

i 
0 , . . . , U 

i 
T −1 ) and ( Z 

i 
0 , . . . , Z 

i 
T −1 ) ). 

2. Mathematical formulation 

In this section, we present the modeling of a hydro valley and

the associated optimization framework. 

2.1. A generic formulation 

We are interested in solving a multistage stochastic optimal

control problem over a discrete-time horizon � 0 , T � . In this prob-

lem we consider multiple stochastic systems indexed by i ∈ � 1 , N� ,

that follow independent dynamics but that must satisfy a coupling

constraint. 

More precisely, we want to address the following problem 

min 

( X i , U i ) i ∈ � 1 ,N� 

E 

[ N ∑ 

i =1 

( T −1 ∑ 

t=0 

L i t ( X 

i 
t , U 

i 
t , W t ) + K 

i ( X 

i 
T ) 

)] 
, (1a)

s.t. X 

i 
t+1 = f i t ( X 

i 
t , U 

i 
t , W t ) , X 

i 
0 given , (1b)

 

i 
t � σ ( W 0 , . . . , W t ) , (1c)

N ∑ 

i =1 

�i 
t ( X 

i 
t , U 

i 
t , W t ) = 0 . (1d)

Constraints (1b) represent the dynamics and constraints (1c) are

the non-anticipativity constraints, that is, the fact that each con-

trol U 

i 
t at time t , considered as a random variable, has to be mea-

surable with respect to the sigma-field σ ( W , . . . , W t ) generated
0 
y noises up to time t . The last constraints (1d) express the inter-

ctions between the production units i . They represent an additive

oupling with respect to the different production units, which is

ermed the “spatial coupling of the problem”. Such a general mod-

ling covers other cases than the cascade problem, such that the

nit commitment problem, or the problem of exchanging energy

n a smart grid. 

.2. Dams management problem 

We consider a hydro valley constituted of N cascaded dams as

epresented in Fig. 1 . The water turbinated at a dam produces en-

rgy which is sold on electricity markets, and then enters the near-

st downstream dam. The overall goal of the decision maker is to

aximize the profit obtained by selling the produced energy on a

arket. We consider that the hydro valley manager acts as a price

ollower, in the sense that energy prices are independent of the

nergy produced by the hydro valley. Note that the valley geome-

ry may be more complicated than a pure cascade: see for example

he valleys represented at Fig. 4 . 

The representative variables of dam i at time t are u i t for the

urbinated water, x i t for the current water volume, a i t for the nat-

ral water inflow entering dam i , p i t for the market value of the

ater at dam i . The randomness is given by w 

i 
t = (a i t , p 

i 
t ) . The mod-

ling of a dam takes into account a possible overflow: the spilled

ater does not produce electricity, but enters the next downstream

am. 

We now cast the problem in the generic framework presented

t Section 2.1 , with a slight abuse of notation ( U 

i 
t stands for

( U 

i 
t , Z 

i 
t ) here). 

• The dam dynamics (corresponding to Eq. (1b) ) reads 

x i t+1 = x i t − u 

i 
t + a i t + z i t − s i t = f i t (x i t , (u 

i 
t , z 

i 
t ) , w 

i 
t ) , (2a)

where s i t is the volume of water spilled by overflowing the

dam: 

s i t = max 
{

0 , x i t − u 

i 
t + a i t + z i t − x 

i 
}
. (2b)

The constant value x i stands for the maximal capacity of dam i .

The outflow of dam i , that is, the sum of the turbinated water

and of the spilled water, is denoted by z i +1 
t : 

z i +1 
t = u 

i 
t + s i t = g i t (x i t , (u 

i 
t , z 

i 
t ) , w 

i 
t ) . (2c)

This last equation corresponds to Eq. (1d) in the general frame-

work. Note that the dynamic Eq.(2a) are nonlinear because of

the max operator in definition (2b) of the spilled water volume.

We assume the Hazard-Decision information structure: the con-

trol u i t applied at time t is chosen once the noise w 

i 
t at time t

has been observed. It is thus possible to ensure that the dam

always remains above its minimal admissible volume x i by lim-

iting the control range: u i ≤ u i t ≤ min 

{
u i , x i t + a i t + z i t − x i 

}
. 

Remark 1. As will be seen in Section 4 , the typical time step

length we use is the month (with a time horizon of one year).

It is thus reasonable to assume the Hazard-Decision framework,

the control applied for a given month being in fact imple-

mented each day taking into account the observed information

on a daily basis. 

• The objective function of dam i is the sum of different terms. 
• The cost at each time t ∈ � 0 , T − 1 � is: L i t (x i t , (u i t , z 

i 
t ) , w 

i 
t ) =

−p i t u 
i 
t + ε(u i t ) 

2 . The first linear term corresponds to the op-

posite of the profit when selling the energy produced by

the turbinated water on the energy market. The second

term ε(u i t ) 
2 models the operating cost of the turbine as a

quadratic term, and is usually small. This last term ensures

the strong convexity of the cost function. 
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Fig. 1. Operating scheme of a hydro valley with 3 dams. 
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• The final cost at time T is: K 

i 
(
x i 

T 

)
= αi min { 0 , ̂  x i − x i 

T 
} 2 . It

corresponds to a quadratic penalization around a target

value ̂ x i representing the desired water volume in the dam

at the end of the time horizon. 

Both functions appear in the cost (1a) in the generic problem

formulation. 

.3. Dynamic Programming like approaches 

In the remainder of the paper, we assume that we are in the

o-called white noise setting. 

ssumption 1. Noises W 0 , . . . , W T −1 are independent over time. 

This assumption can be alleviated, in the case where it is possi-

le to identify a dynamics in the noise process (such as an ARMA

odel), and by incorporating this new dynamics in the state vari-

bles (see Maceira & Damazio, 2006 on this topic). 

Under Assumption 1 , Dynamic Programming (DP) applies to

roblem (1): there is no optimality loss to seek each control U 

i 
t at

ime t as a function of both the state and the noise at time t . Then,

he Bellman functions V t are obtained by solving the Dynamic Pro-

ramming equation backwards in time: 

 T (x T ) = 

N ∑ 

i =1 

K 

i (x i T ) , (3a) 

 t (x t ) = E 

(
min 

u 1 t , ... ,u 
N 
t 

N ∑ 

i =1 

L i t (x i t , u 

i 
t , W t ) + V t+1 

(
f t (x t , u t , W t )) 

))
. (3b) 

here x t = (x 1 t , . . . , x 
N 
t ) , u t = (u 1 t , . . . , u 

N 
t ) and f t ( x t , u t , W t ) is the

ollection of new states f i t (x i t , u 
i 
t , W t ) . 

The DP equation is agnostic to whether the state and control

ariables are continuous or discrete, whether the constraints and

he cost functions are convex or not, etc. However, in order to ex-

austively solve the DP equation, we need to have discrete state,

nd to be able to solve each equation to optimality. In practice,

he method is subject to the curse of dimensionality and cannot

e used for large-scale optimization problems. For example, apply-

ng DP to dams management problems is practically untractable for

ore than five dams (see the results given at Section 4.3 ). 

Another way to compute the Bellman functions associated to

roblem (1) is to use the Stochastic Dual Dynamic Programming

SDDP) method. The method has been first described in Pereira and

into (1991) , and its convergence has been analyzed in Philpott

nd Guan (2008) for the linear case and in Girardeau, Leclere, and

hilpott (2015) for the general convex case. SDDP recursively con-

tructs an approximation of each Bellman function as the supre-
um of a number of affine functions, thus exploiting the convex-

ty of the Bellman functions (arising from the convexity of the

ost and constraint functions). SDDP has been used for a long

ime for solving large-scale hydrothermal problems (see de Matos

t al., 2015 and the references therein) and allows to push the

imits of DP in terms of state dimension (see the results given

t Section 4.4 ). 

.4. Spatial coupling and approach by duality 

A standard way to tackle large-scale optimization problems is

o use Lagrange relaxation in order to split the original problem

nto a collection of smaller subproblems by dualizing coupling con-

traints. As far as Problem (1) is concerned, we have in mind to use

P for solving the subproblems and thus want to dualize the spa-

ial coupling constraints (1d) in order to formulate subproblems,

ach incorporating a single dam. The associated Lagrangian L is

ccordingly 

 

(
X , U , λ

)
= E 

[
N ∑ 

i =1 

( T −1 ∑ 

t=0 

L i t ( X 

i 
t , U 

i 
t , W t ) + K 

i ( X 

i 
T ) 

+ 

T −1 ∑ 

t=0 

λt · �i 
t ( X 

i 
t , U 

i 
t , W t ) 

)]
, 

here the multiplier λt associated to Constraint (1d) is a random

ariable. From the measurability of the variables X 

i 
t , U 

i 
t and W t ,

e can assume without loss of optimality that the multipliers λt 

re σ ( W 0 , . . . , W t ) -measurable random variables. 

In order to be able to apply duality theory to the problem

which is mandatory for algorithmic resolution), we make the two

ollowing assumptions. 

ssumption 2. A saddle point of the Lagrangian L exists. 

ssumption 3. The Uzawa algorithm applies to compute a saddle-

oint of L (see (Ekeland & Temam, 1999, Chap. VII) for a complete

resentation). 

Assumption 2 corresponds to a Constraint Qualification con-

ition and ensures the existence of an optimal multiplier.

ssumption 3 allows to use a (dual) gradient ascent algorithm to

ompute the optimal multiplier. An important question in order

o be able to satisfy these two assumptions is the choice of the

paces where the various random variables of the problem are liv-

ng in. Duality theory and associated algorithms have been exten-

ively studied in the framework of Hilbert spaces (see Ekeland &

emam, 1999 ), but the transition to the framework of stochastic

ptimal control poses difficult challenges ( Rockafellar, 1968; 1971 ),
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Fig. 2. DADP flowchart. 

Fig. 3. Decomposition by dam. 
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which will be briefly presented at Section 3.4 . One way to get rid

of these difficulties is to assume that the space � is finite, assump-

tion also required for convergence of SDDP. 1 

When using the Uzawa algorithm to compute a saddle-

point of the Lagrangian, the minimization step with respect

to ( X 

i , U 

i ) i ∈ � 1 ,N� splits in N independent subproblems each de-

pending on a single pair ( X 

i , U 

i ), and therefore allows for a dam by

dam decomposition. More precisely, the k th iteration of the Uzawa

algorithm consists of the two following steps. 
1 Recall that the aim of the present paper is mainly to present numerical results. 

The reader is referred to Leclère (2014) for these difficult theoretical questions. 

3

 

t  

c  
1. Solve Subproblem i , i ∈ � 1 , N� , with fixed λ( k ) : 

min 

X i , U i 
E 

[ T −1 ∑ 

t=0 

L i t ( X 

i 
t , U 

i 
t , W t ) + λ(k ) 

t · �i 
t ( X 

i 
t , U 

i 
t , W t ) + K 

i ( X 

i 
T ) 

] 
(4a)

s.t. X 

i 
t+1 = f i t ( X 

i 
t , U 

i 
t , W t ) , X 

i 
0 given (4b)

U 

i 
t � σ ( W 0 , . . . , W t ) , (4c)

whose solution is denoted ( U 

i , ( k ) , X 

i , ( k ) ). 

2. Use a gradient step to update the multipliers λt : 

λ(k +1) 
t = λ(k ) 

t + ρt 

( N ∑ 

i =1 

�i 
t 

(
X 

i, (k ) 
t , U 

i, (k ) 
t , W t 

))
. (5)

Note that even if Subproblem (4) only involves the “physical”

tate variable X 

i 
t and the control variable U 

i 
t , a situation which

eems favorable to DP, it also involves two exogenous random pro-

esses, namely W and λ( k ) . The white noise Assumption 1 applies

or the first process W , but not for the second one λ( k ) , so that

he state of the system cannot be summarized by the physical

tate X 

i 
t ! Moreover if we just use the fact that λ(k ) 

t is measurable

ith respect to the past noises, the state of the system must in-

orporate all noises prior to time t , that is, ( W 0 , . . . , W t ) . The state

ize of the subproblem increases with time. Without some addi-

ional knowledge on the process λ( k ) , DP cannot be applied in a

traightforward manner: something has to be compressed in order

o use Dynamic Programming. 

. Dual approximate dynamic programming 

In Strugarek (2006) , for a very specific instance of Problem (1),

he author exhibited the dynamics of the optimal multiplier of the

oupling constraint (1d) . Hence it was possible to come down to
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u  

t  

S  

t  

o  
he Markovian framework and to use DP to solve the subprob-

ems (4) with an augmented space, namely the “physical” state X 

i 
t 

nd the state associated to the multiplier’s dynamics. Following

his idea for a general Problem (1), Barty et al. (2010) proposed to

hoose a parameterized dynamics for the multiplier: then solving

he subproblems using DP became possible, the parameters defin-

ng the multiplier dynamics being updated at each iteration of the

zawa algorithm. This new approach, called Dual Approximate Dy-

amic Programming (DADP), has then largely improved through

 series of PhD theses ( Alais, 2013; Girardeau, 2010 and Leclère,

014 ) both from the theoretical and from the practical point of

iew. We give here a brief overview of the current DADP method. 

.1. DADP core idea and associated algorithm 

In order to overcome the obstacle explained at Section 2.4 con-

erning the measurability of random variables λ(k ) 
t , we choose a

andom variable Y t at each time t , each Y t being measurable with

espect to the noises 
(
W 0 , . . . , W t 

)
up to time t . We call Y =

Y 0 , . . . , Y T −1 

)
the information process associated to Problem (1). 

.1.1. Method foundation 

The core idea of DADP is to replace the multiplier λ(k ) 
t by its

onditional expectation E [ λ(k ) 
t | Y t ] with respect to Y t . From an in-

uitive point of view, the resulting optimization problem will be a

ood approximation of the original one if Y t is close to the random

ariable λ(k ) 
t . Note that we require that the information process is

ot influenced by controls because introducing a dependency of

he conditioning term with respect to the control would lead to

ery serious difficulties for optimization. 

Using this core idea, we replace Subproblem (4) by: 

in 

X i , U i 
E 

[ T −1 ∑ 

t=0 

(
L i t ( X 

i 
t , U 

i 
t , W t ) + K 

i ( X 

i 
T ) 

)
+ E [ λ(k ) 

t | Y t ] · �i 
t ( X 

i 
t , U 

i 
t , W t ) 

] 
, (6a) 

.t. X 

i 
t+1 = f i t ( X 

i 
t , U 

i 
t , W t ) , X 

i 
0 given (6b) 

 

i 
t � σ ( W 0 , . . . , W t ) . (6c) 

According to the Doob property ( Dellacherie & Meyer, 1975 ,

hapter 1, p. 18), the Y t -measurable random variable E [ λ(k ) 
t | Y t ]

an be represented by a measurable mapping μ(k ) 
t , that is, 

(k ) 
t (y ) = E 

[
λ(k ) 

t 

∣∣ Y t = y 
]
, (7)

o that Subproblem (6) in fact involves the two fixed random pro-

esses W and Y . If the process Y follows a non-controlled Marko-

ian dynamics driven by the noise process W , i.e. if there exist

ransition functions h t such that Y t+1 = h t ( Y t , W t ) then ( X 

i 
t , Y t ) is

 valid state for the subproblem and DP applies. 

.1.2. DADP algorithm 

Assume that the information process Y follows the dynamics

 t+1 = h t ( Y t , W t ) . 

• The first step of the DADP algorithm at iteration k consists

of solving all the subproblems (6) with λ(k ) 
t fixed, that is,

with μ(k ) 
t (·) given. It is done by solving the Bellman functions

associated to each subproblem i , that is, 

V 

i, (k ) 
T 

(x i , y ) = K 

i (x ) , 

V 

i, (k ) 
t (x i , y ) = E 

[
Q 

i, (k ) 
t (x i , y, W t ) 

]
, 
r
where Q 

i, (k ) 
t (x i , y, w t ) is the value of 

min 

u i 
L i t (x i , u 

i , w t ) + μ(k ) 
t (y ) · �i 

t (x i , u 

i , w t ) + V 

i, (k ) 
t+1 

(
x i t+1 , y 

i 
t+1 

)
s.t. x i t+1 = f i t (x i , u 

i , w t ) , 

y t+1 = h t (y, w t ) . 

Storing the argmin obtained during the Bellman resolution, we

obtain the optimal feedback laws γ i, (k ) 
t as functions of both the

state ( x i , y ) and the noise w t at time t . These functions allow to

compute the optimal state and control processes ( U 

i , ( k ) , X 

i , ( k ) )

of subproblem i at iteration k . Starting from X 

i, (k ) 
0 

= X 

i 
0 the op-

timal control and state variables are obtained by applying the

optimal feedback laws from t = 0 up to T − 1 : 

U 

i, (k ) 
t = γ i, (k ) 

t ( X 

i, (k ) 
t , Y t , W t ) , 

X 

i, (k ) 
t+1 

= f i t ( X 

i, (k ) 
t , U 

i, (k ) 
t , W t ) . 

• The second step of the DADP algorithm consists of updating

the multiplier process λ( k ) . Instead of updating the multipliers

themselves by the standard gradient formula 

λ(k +1) 
t = λ(k ) 

t + ρt 

( N ∑ 

i =1 

�i 
t 

(
X 

i, (k ) 
t , U 

i, (k ) 
t , W t 

))
, (8) 

it is sufficient to deal with their conditional expectations w.r.t.

Y t . Using the optimal processes X 

i , ( k ) and U 

i , ( k ) obtained at the

previous step of the algorithm for all subproblems, the condi-

tional deviation from the coupling constraint is represented by

a measurable mapping 	(k ) 
t : 

	(k ) 
t (y t ) = E 

[ N ∑ 

i =1 

�i 
t 

(
X 

i, (k ) 
t , U 

i, (k ) 
t , W t 

) ∣∣∣ Y t = y t 

] 
. (9)

Gathering the functional representations (7) and (9) of the con-

ditional multiplier and of the conditional deviation, the gradi-

ent update reduces to the following functional expression: 

μ(k +1) 
t (·) = μ(k ) 

t (·) + ρt 	
(k ) 
t (·) . (10)

This last equation is equivalent to the multipliers conditional

expectation update: 

E 

[
λ(k +1) 

t 

∣∣ Y t 

]
= E 

[
λ(k ) 

t 

∣∣ Y t 

]
+ ρt E 

[ N ∑ 

i =1 

�i 
t 

(
X 

i, (k ) 
t , U 

i, (k ) 
t , W t 

) ∣∣∣ Y t 

] 
. (11) 

From a practical point of view, computing the gradients using

Formula (9) , instead of (8) opens the way to important numer-

ical improvements in the DADP algorithm. Indeed, instead of a

gradient formula in a large space, we can use more sophisti-

cated direction descent algorithms: as a matter of fact, if the

support of the random variable Y t is finite, it becomes possi-

ble to efficiently implement a quasi-Newton method, thus ob-

taining a much faster convergence than the one of the standard

gradient ascent method (see Section 4.3.2 for details). 

DADP algorithm is depicted in Fig. 2 . 

.2. DADP interpretations 

The DADP method, as it has been presented up to now, makes

se of an approximation of the optimal multiplier, that is, the mul-

iplier λt is replaced by its conditional expectation E 

[
λt 

∣∣ Y t 
]
.

uch an approximation is equivalent to a decision-rule approach for

he dual problem (see also Kuhn, Wiesemann, & Georghiou, 2011 ),

btained by imposing that the dual variables λt is measurable with

espect to Y t . 
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DADP may also be viewed as a relaxation of the constraints in

the primal problem. More precisely, we replace the almost sure

coupling constraint (1d) by the following conditional expectation

constraint, 

E 

[ N ∑ 

i =1 

�i 
t ( X 

i 
t , U 

i 
t , W t ) 

∣∣∣ Y t 

] 
= 0 . (12)

Proposition 1. Assume that the Lagrangian associated with this re-

laxed problem has a saddle point. Then the DADP algorithm on Prob-

lem (1) can be interpreted as the Uzawa algorithm applied to the re-

laxed Problem. 

Proof. Consider the duality term E 

[
E [ λ(k ) 

t | Y t ] · �i 
t ( X 

i 
t , U 

i 
t , W t ) 

]
which appears in the cost function of subproblem i in DADP. This

term can be written equivalently E 

[
λ(k ) 

t · E [�i 
t ( X 

i 
t , U 

i 
t , W t ) | Y t ] 

]
,

which corresponds to the dualization of the coupling constraint

handled in the relaxed problem. �

DADP thus consists of replacing an almost-sure constraint by its

conditional expectation w.r.t. the information variable Y t . From this

interpretation, we deduce that the optimal value provided by DADP

is a guaranteed lower bound of the optimal value of Problem (1). 

3.3. Admissibility recovery 

Solving the relaxed problem, that is Problem (1), where con-

straints (1d) is replaced by the less binding constraints (12) , does

not necessarily yield a solution admissible for Problem (1). Never-

theless it produces at each time t a set of N local Bellman func-

tions V i, ∞ 

t , each depending on the extended state (x i t , y t ) . We use

these functions to produce an approximation V ∞ 

t of the “true” Bell-

man function V t of the global state 
(
x 1 t , . . . , x 

N 
t 

)
by simply summing

the local Bellman functions: 

 

∞ 

t 

(
x 1 t , . . . , x 

N 
t , y t 

)
= 

N ∑ 

i =1 

V 

i, ∞ 

t 

(
x i t , y t 

)
. 

We then obtain an admissible feedback policy for Problem (1): for

any value of the state 
(
x 1 t , . . . , x 

N 
t 

)
, any value of the information y t 

and any value of the noise w t at time t , the control value is ob-

tained by solving the following one-step DP problem 

min 

(u 1 t , ... ,u 
N 
t ) 

N ∑ 

i =1 

L i t 
(
x i t , u 

i 
t , w 

i 
t 

)
+ V 

∞ 

t+1 

(
x 1 t+1 , . . . , x 

N 
t+1 , y t+1 

)
, 

s.t. x i t+1 = f i t 

(
x i t , u 

i 
t , w 

i 
t 

)
, i ∈ � 1 , N� , 

y t+1 = h t 

(
y i t , w 

i 
t 

)
, 

N ∑ 

i =1 

�i 
t (x i t , u 

i 
t , w t ) = 0 . 

In this framework, DADP can be viewed as a tool allowing to com-

pute approximated Bellman functions for Problem (1) which in

turns yields an online admissible feedback policy for Problem (1). 

Applying this online feedback policy along a bunch of noises

scenarios allows to compute a Monte Carlo approximation of the

cost, which is accordingly a stochastic upper bound of the optimal

value of Problem (1). 

3.4. Theoretical and practical questions 

The theoretical questions linked to DADP are addressed in

Leclère (2014) , and the practical ones in Girardeau (2010) and Alais

(2013) . 
.4.1. Theoretical questions 

In the DADP approach, we treat the coupling constraints of a

tochastic optimization problem by duality methods and solve it

sing the Uzawa algorithm. The Uzawa algorithm is a dual as-

ent method which is usually described in an Hilbert space such

s L 2 (�, A , P , R 

n ) , but we cannot guarantee the existence of an

ptimal multiplier in such a space. To overcome the difficulty, the

pproach consists of extending the setting to the non-reflexive Ba-

ach space L ∞ (�, A , P , R 

n ) , to give conditions for the existence of

n optimal multiplier in L 1 
(
�, A , P ;R 

n 
)

(rather than in the dual

pace of L ∞ ) and to study the Uzawa algorithm convergence in this

pace. 

.4.2. Practical questions 

An important practical question is the choice of the information

ariables Y t . We present here some possibilities. 

1. Perfect memory : Y t = 

(
W 0 , . . . , W t 

)
. 

From the measurability properties of λ(k ) 
t , we have E [ λ(k ) 

t |
Y t ] = λ(k ) 

t , that is, there is no approximation! Indeed a valid

state for each subproblem is 
(
X t , W 0 , . . . , W t 

)
: the state is

growing with time. 

2. Minimal information : Y t = 0 . 

Here λ(k ) 
t is approximated by its expectation E [ λ(k ) 

t ] . The infor-

mation variable does not deliver any online information, and a

valid state for subproblem i is X 

i 
t . 

3. Dynamic information : Y t+1 = h t 
(
Y t , W t+1 

)
. 

This choice corresponds to a number of possibilities, as mim-

icking the state of another unit, or adding a hidden dynamics.

A valid state for subproblem i is 
(
X 

i 
t , Y t 

)
. 

The question of accelerating the DADP algorithm by using

 more sophisticated method than the simple gradient ascent

ethod in the multiplier update step has been discussed at the

nd of Section 3.1.2 . Numerical experiments have shown that it

as a great impact on the convergence speed of the method

see Section 4.3.2 ). Another improvement would be to replace the

tandard Lagrangian by an augmented Lagrangian. 

. Numerical experiments 

In this section, we present numerical results obtained on a large

election of hydro valleys. Some of these valleys (see Fig. 4 ) corre-

pond to academic examples, in the sense that their characteris-

ics (size of dams, range of controls, inflows values) do not rely on

xisting valleys. These examples allow us to quantify the perfor-

ance of different optimization methods (DP, DADP and SDDP) on

roblems of increasing size, from a valley incorporating 4 dams,

nd thus solvable by DP, up to a valley with 30 dams, and thus

acing the curse of dimensionality ( Sections 4.3 and 4.4 ). We also

resent two instances corresponding to more realistic hydro val-

eys, where the models respect the orders of magnitude of the dam

izes of existing valleys ( Section 4.5 ). 

All the results presented here have been obtained using a

.4 gigahertz, 4 cores – 8 threads Intel ® Xeon 

® E3 based computer.

.1. Application of DADP to a hydro valley 

We go back to the problem formulation presented at

ection 2.2 . In order to implement the DADP algorithm, we dualize

he coupling constraints 

 

i +1 
t − g i t ( X 

i 
t , U 

i 
t , W 

i 
t , Z 

i 
t ) = 0 , (13)

nd we denote by λi +1 
t the associated multiplier (random variable).

When minimizing the dual problem at iteration k of the al-

orithm, the product of (13) with a given multiplier by λi +1 , (k ) 
t 
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Fig. 4. Some academic examples of hydro valleys. 
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s  
s additive with respect to the dams, that is, the term - λi +1 , (k ) 
t ·

 

i 
t 

(
X 

i 
t , U 

i 
t , W 

i 
t , Z 

i 
t 

)
pertains to dam i subproblem, whereas the term

i +1 , (k ) 
t · Z 

i +1 
t pertains to dam i + 1 subproblem, hence leading to

 dam by dam decomposition for the dual problem maximization

n ( X , U , Z ) at λi +1 , (k ) 
t fixed. 

.1.1. DADP implementation 

The DADP method consists of choosing a multiplier process Y

nd then replacing the coupling constraints by their conditional

xpectations with respect to Y t . Here we adopt the choice Y t = 0

minimal information), so that Constraints (13) are replaced in the

pproximated problem by their expectations: 

 

[
Z 

i +1 
t − g i t ( X 

i 
t , U 

i 
t , W 

i 
t , Z 

i 
t ) 

]
= 0 . (14)

he expression of Subproblem (6) attached to dam i reads 

min 

 

i 
, Z i , X i 

E 

[ T −1 ∑ 

t=0 

(
L i t 

(
X 

i 
t , U 

i 
t , W 

i 
t , Z 

i 
t 

)
+ E 

[
λi, (k ) 

t 

]
· Z 

i 
t (15a) 

− E 

[
λi +1 , (k ) 

t 

]
· g i t 

(
X 

i 
t , U 

i 
t , W 

i 
t , Z 

i 
t 

))
+ K 

i 
(
X 

i 
T 

)] 
, 

(15b) 

.t. X 

i 
t+1 = f i t ( X 

i 
t , U 

i 
t , W t ) , X 

i 
0 given (15c) 

 

i 
t � σ ( W 0 , . . . , W t ) . (15d) 

Because of the crude relaxation due to a constant Y i t , the

ultipliers λi, (k ) 
t appear only in the subproblems by means of

heir expectations E [ λi, (k ) 
t ] , so that all subproblems involve a 1-

imensional state variable, that is, the dam stock X 

i 
t , and hence

re easily solvable by Dynamic Programming. We denote by ( U 

i , ( k ) ,

 

i , ( k ) , X 

i , ( k ) ) the optimal solution of each subproblem i , and by

 

i, (k ) (x i ) the Bellman function obtained for each dam i at time t . 
t 
With the choice of constant information variables Y i t , the coor-

ination update step (11) reduces to 

 

[
λi, (k +1) 

t 

]
= E 

[
λi, (k ) 

t 

]
+ρt E 

[ 
Z 

i +1 , (k ) 
t − g i t 

(
X 

i, (k ) 
t , U 

i, (k ) 
t , W 

i 
t , Z 

i, (k ) 
t 

)]
(16) 

hat is, a collection of deterministic equations involving the expec-

ation of (13) which is easily estimated by a Monte Carlo approach.

Assume that DADP converges, leading to optimal Bellman func-

ions V i, ∞ 

t . We know that the initial almost-sure coupling con-

traints are not satisfied. To recover admissibility, we use the

euristic rule proposed at Section 3.3 , solving the following deter-

inistic one-step DP problem: 

min 

u 1 , ... ,u N ) 

N ∑ 

i =1 

L i t 
(
x i , u 

i , w 

i 
t , z 

i 
)

+ V 

∞ 

t+1 

(
x 1 t+1 , . . . , x 

N 
t+1 

)
, (17a) 

.t. x i t+1 = f i t 

(
x i , u 

i , w 

i 
t , z 

i 
) ∀ i, (17b) 

 

i +1 = g i t (x i , u 

i , w 

i 
t , z 

i ) ∀ i. (17c) 

.1.2. Complete process 

We can summarize the whole process as follows. In the opti-

ization stage we first compute the local Bellman functions V i, ∞ 

t ,

nd form the approximate global Bellman functions V ∞ 

t by sum-

ing the local ones. In the simulation stage , we evaluate by Monte-

arlo the strategy induced by V ∞ 

t . We draw a large number of

oise scenario, and compute the admissible control values along

ach scenario by solving Problem (17), from t = 0 to t = T − 1 , and

toring payoffs. 

.2. SDDP implementation 

As explained in Section 4.3 , the controls of the original prob-

em are discrete, which is a difficulty for SDDP implementation

hough recent extension has been proposed in Zou, Ahmed, and

un (2017) . In the optimization stage we relax the integrity con-

traints to obtain relaxed Bellman value functions V ∞ 

t . Then, in the
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simulation stage, we use these relaxed Bellman value functions to

design policies taking into account the discrete controls by solving

problems akin to Problem (17). Furthermore, we consider that the

spillage is a control variable, so as to render the dynamics linear,

which is the convex-costs SDDP framework. 

The whole process of SDDP is as follows. In the optimization

stage, lower approximations of Bellman functions V t are built iter-

atively. At iteration k , the procedure consists of two passes. 

• During the forward pass , we sample a scenario of noise. We

then simulate a stock trajectory by using the current approxi-

mation of the Bellman functions. This is done by successively

solving one-step DP problem, akin to Problem (17), where V ∞ 

t+1 
is replaced by its current piecewise linear outer-approximation,

to determine the next stock value. Note that each of these one-

step DP problem is a continuous quadratic programming (QP)

problem. 
• In the backward pass , duality theory allows to find subgradient

of lower approximations of the Bellman functions. This subgra-

dients are computed along the trajectory obtained during the

forward pass, and used to construct valid cuts, that is hyper-

planes that are lower than the Bellman functions. Those cuts

are then added to the current outer-approximations of the Bell-

man functions. 

In order to assess the convergence of the SDDP algorithm, we

compute (say every 20 iterations of SDDP) a Monte Carlo approx-

imation of the expected cost value with its associated 95% con-

fidence interval, and compare the upper value of the confidence

interval with the lower bound provided by SDDP up to a given

threshold in order to stop the algorithm (see Shapiro, 2011 ). In

our experiments, the Monte Carlo simulation has been made us-

ing 10,0 0 0 scenarios, and the relative convergence threshold was

around 0.5%. The simulation stage is identical to the one described

at Section 4.1.2 using the global Bellman’s value function obtained

by SDDP. 

We have used a version of SDDP implemented in Julia (Stoch-

DynamicProgramming package 2 ) built on top of the JuMP package

used as a modeler (see Dunning, Huchette, & Lubin, 2017 ). The

QP problems are solved using CPLEX 12.5. Every 10 iterations, re-

dundant cuts are removed thanks to the limited memory level-

1 heuristic described in Guigues (2017) . Indeed, without cuts re-

moval, the resolution of each QP becomes too slow as the number

of cuts increases along iterations. 

4.3. Results obtained for academic valleys 

We model a first collection of hydro valleys including from 4 to

12 dams, with arborescent geometries (see Fig. 4 ). 

The optimization problem is stated on a time horizon of one

year, with a monthly time step ( T = 12 ). All the dams have more or

less the same maximal volume. The maximal amount of turbinated

water for each dam varies with the location of the dam in the val-

ley (more capacity for a downstream dam than for an upstream

dam), as well as the random inflows in a dam (more inflow for an

upstream dam than for a downstream dam). We assume discrete

probability laws with finite supports for the inflows, and deter-

ministic market prices. We also assume that the available turbine

controls are discrete, so that each dam is in fact modeled using a

discrete Markov chain. These valleys do not correspond to realistic

valleys, in the sense that a true valley incorporates dams with very

heterogeneous sizes. 
2 See the github link https://github.com/JuliaStochOpt/StochDynamic 

Programming.jl . 
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.3.1. SDDP convergence 

We first illustrate the convergence of the SDDP algorithm for

he 8-Dams valley on Fig. 5 (note that most of the valleys display

 similar convergence pattern). As explained at Section 4.2 , the ex-

ct lower bound given by SDDP (black curve) increases along the

terations, and the gap between this lower bound and the upper

alue of the confidence interval (red curve) is less than 0.5% at it-

ration 140. 

Note that, in our experiments, this stopping criterion approxi-

ately matches the classical SDDP convergence stopping criterion

roposed in Pereira and Pinto (1991) corresponding to the fact

hat the lower bound provided by SDDP becomes greater than the

ower value of the confidence interval. 

.3.2. DADP convergence 

Let us first detail the method used for the update of the mul-

ipliers involved by DADP. Thanks to the choice of constant in-

ormation variables, the gradient expression involved in the up-

ate formula (16) is an expectation, that can be approximated by

 Monte Carlo approach. We draw a collection of statistically inde-

endent scenarios of { W t } and then compute at iteration k of DADP

he optimal solutions 
{

X 

i, (k ) 
t , U 

i, (k ) 
t , Z 

i, (k ) 
t 

}
of Subproblem (15) along

ach scenario. One has to note that this collection of scenarios is

ndependent of the one used during the simulation stage of the

omplete process described at Section 4.1.2 . We thus obtain real-

zations of 
(
Z 

i +1 , (k ) 
t − g i t ( X 

i, (k ) 
t , U 

i, (k ) 
t , W 

i 
t , Z 

i, (k ) 
t ) 

)
, whose arithmetic

ean gives the (approximated) gradient component at time t for

he coupling between dam i and dam i + 1 . This gradient can be

sed either in the standard steepest ascent method such as in (16) ,

r in a more sophisticated algorithm such as the conjugate gradi-

nt or the quasi-Newton method. We use in our numerical exper-

ments a solver (limited memory BFGS) of the MODULOPT library

rom INRIA by Gilbert and Jonsson (2007) . For all the valleys we

tudied, the convergence was fast (around 100 iterations regardless

f the problem size). Fig. 6 represents the evolution of the multi-

liers λi 
t for the 8-Dams valley along the iterations of the algo-

ithm. 

The order of magnitude of the optimal multipliers decreases

ith the geographical position of the link in the hydro valley. Nev-

rtheless, the convergence rate is very similar for all links: this

ractical consideration remains true for almost all valleys, and it

xplains why the number of iterations required for the DADP con-

ergence does not vary too much with the size of the valley. 

.3.3. Methods comparison 

We solve Problem (1) for the first collection of academic valleys

y 3 different methods: 

1. the standard Dynamic Programming method (DP), when possi-

ble, 

2. the SDDP presented at Section 4.2 , 

3. the DADP method. 

All these methods produce Bellman functions (optimization

tage described at Section 4.1.2 ), whose quality is evaluated by

he simulation stage of Section 4.1.2 . The obtained results are

iven in Table 1 . The lines “CPU time” correspond to the time (in

inute) needed to compute the Bellman functions (optimization

tage only), whereas the lines “value” indicate the cost obtained by

onte Carlo on the initial model (simulation stage, performed us-

ng a 10 0,0 0 0 scenarios sample, except for the 12-Dams valley for

hich a smaller sample set was used to reduce the computational

oad). The comparisons between the different cost values for the

ame valley are thus relevant. For both SDDP and DADP, we also

ive the lower bound corresponding to the Bellman value obtained

t the end of the optimization stage. 

https://github.com/JuliaStochOpt/StochDynamicProgramming.jl
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Fig. 5. Convergence of SDDP for the 8-Dams valley. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Table 1 

Results obtained by DP, SDDP and DADP. 

Valley 4-Dams 6-Dams 8-Dams 10-Dams 12-Dams 

DP CPU time 1600 ′ ∼ 10 8 ′ ∼ ∞ ∼ ∞ ∼ ∞ 

DP value −3743 N.A. N.A. N.A. N.A. 

SDDP CPU time 6 ′ 10 ′ 13 ′ 50 ′ 97 ′ 

SDDP value −3742 −7027 −11 , 830 −17 , 070 ∼ −17 , 0 0 0 

SDDP lower bound −3754 −7050 −11 , 960 −17 , 260 −19 , 490 

DADP CPU time 7 ′ 12 ′ 18 ′ 24 ′ 22 ′ 

DADP value −3667 −6816 −11 , 570 −16 , 760 ∼ −17 , 0 0 0 

DADP lower bound −3996 −7522 −12 , 450 −17 , 930 −20 , 480 

Gap DADP/SDDP 2.0 % 3.0 % 2.2 % 1.8 % ? 
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We first note that a direct use of DP is only possible for the

-Dams valley: it corresponds to the well-known curse of di-

ensionality inherent to DP. The value given by DP is the true

ptimal cost value for the 4-Dams valley and can be used as the

eference value. The SDDP method, although relying on the in-

egrity constraints relaxation in the optimization stage (hence a

ot so tight lower bound), gives excellent results for the 4-Dams

alley: we thus elect SDDP as the reference method in order to

valuate the DADP method. Note that the CPU time remains rea-

onable, the optimization problems inside SDDP corresponding to

 continuous linear-quadratic formulation (here solved using the

PLEX commercial solver). 

emark 2. Note however that all the methods we are comparing

ace the curse of dimensionality associated to the combinatorics

f the control during the simulation stage, as the controls asso-

iated to the whole valley have to be enumerated at each time t

long each scenario. This is the reason why the values obtained

or the 12-Dams valley have been computed using 10 0 0 scenarios

10 0,0 0 0 for the others valleys) and hence are not so accurate. 

We now turn to the DADP method. We first notice that the

ower bound given by the method is rather bad (as a consequence

f solving a problem with relaxed coupling constraints in the op-

imization stage), but the values obtained in the simulation stage

re reasonable compared to the ones given by SDDP (as indicated
y the last line of Table 1 ). The most noticeable point is that the

PU time needed for the optimization stage seems to grow more

lowly for DADP than for SDDP. This aspect will be highlighted in

ection 4.4 . 

Let us finally materialize more finely the difference in the re-

ults between SDDP and DADP. Beyond average values given in

able 1, Fig. 7 represents the payoff empirical probability laws (op-

imal cost over the time horizon), obtained by the simulation stage

sing 10 0,0 0 0 scenarios, for both SDDP and DADP. We observe

hat, although the expectations are fairly close, the shapes of the

wo distributions differ significantly. 

.4. Challenging the curse of dimensionality 

The experiments made in Section 4.3 seem to indicate that

ADP is less sensitive to the size of the valley than the SDDP

ethod. In order to validate this observation, we design a new col-

ection of academic hydro valleys incorporating from 14 up to 30

ams. It is of course no longer possible to perform the simulation

tage for these instances: the combinatorics induced by the set of

ossible values of the controls is too large to allow simulation of

he valley behavior along a large set of scenarios. We thus limit

urselves to the computation of the Bellman functions (optimiza-

ion stage). The corresponding results are reported in Table 2 . 
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Fig. 6. 8-Dams multipliers: dam 1 → dam 2, dam 3-4 → dam 5, dam 2-5 → dam 6, dam 7 → dam 8. 

Fig. 7. 4-Dams payoff distributions: SDDP (left) — DADP (right). 

Table 2 

SDDP and DADP comparison for large academic valleys. 

Valley 14-Dams 18-Dams 20-Dams 25-Dams 30-Dams 

SDDP CPU time 210 ’ 585 ’ 970 ’ 1560 ’ 2750 ’ 

SDDP lower bound −32 , 024 −46 , 917 −61 , 454 −79 , 440 −100 , 430 

DADP CPU time 40’ 50’ 75’ 140’ 150’ 

DADP lower bound −32 , 981 −48 , 095 −62 , 802 −80 , 993 −101 , 990 
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Fig. 8. CPU time comparison. 

Fig. 9. Two realistic hydro valleys. 
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Table 3 

Results obtained by SDDP and DADP. 

Valley Vicdessos Dordogne 

SDDP CPU time 9 ’ 17 ’ 

SDDP value −2244 −22 , 150 

SDDP lower bound −2258 −22 , 310 

DADP CPU time 9 ’ 210 ’ 

DADP value −2238 −21 , 650 

DADP lower bound −2286 −22 , 990 

Gap DADP/SDDP −0 . 3 % −2 . 2 % 
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It appears that the CPU time required for the DADP method

rows linearly with the number of dams, while the growth rate

f SDDP is more or less exponential. Fig. 8 shows how the CPU

ime varies for the three methods. As expected, DP is only imple-

entable for small instances, say up to 5 dams. Eventually, the

imits of SDDP and DADP have not really be reached, but DADP

isplays a near linear rate of CPU time allowing to tackle instances

f even greater size. 

.5. Results for two realistic valleys 

We finally model two hydro valleys corresponding to existing

ystems in France, namely the Vicdessos valley and the Dordogne

iver (see Fig. 9 ). 

The optimization problem is stated again on a one year horizon,

ith a monthly time step. What mainly differ here from the aca-

emic examples used at Section 4.3 are the characteristics of the

ams. For example, the Dordogne river valley encompasses large

ams (as “Bort” whose capacity is say 400) and small dams (as

Mareges” the capacity of which is equal to 35, that is, ten times
maller). This heterogeneity induces numerical difficulties, for ex-

mple the requirement to have a wide range of possible controls

or the small downstream reservoirs, or the need to use a fine dis-

retization for the state grid in DP-like methods. We again assume

iscrete probability laws with finite support for the inflows, and

e also assume that the available turbine controls are discrete. 

The comparison results of SDDP and DADP are given in Table 3 .

As for the academic examples, SDDP displays the best results

nd is therefore used as the reference. The large number of possi-

le discrete controls penalizes the DADP method, although the gap

etween SDDP and DADP remains limited. 

. Conclusion 

In this article, we have depicted a method called DADP which

llows to tackle large-scale stochastic optimal control problems in

iscrete time, such as the ones found in the field of energy man-

gement. We have presented the practical aspects of the method,

ithout deepening in the theoretical issues arising in the founda-

ions of the method. Lots of numerical experiments have been pre-

ented on hydro valley problems (“chained models”), which com-

lements the ones already made on unit commitment problems

“flower models”) ( Barty et al., 2010 ). The main conclusions are

hat DADP converges fast and gives near-optimal results even when

sing a “crude” relaxation (here a constant information process Y ).

ore precisely, DADP allows to deal with optimization problems

hat are out of the scope of standard Dynamic Programming, and

eats SDDP for very large hydro valleys in terms of CPU time. We

hus hope to be able to implement DADP for very large stochastic

ptimal control problems such as the ones encountered in smart

anagement of urban districts, involving hundreds of houses and

hus hundred of states variables. Such problems are formulated

n a short-term time scale (typically a one day horizon with 15

inutes time steps), and incorporate on/off devices. In that new

ontext, controls will have to be modeled using discrete variables

whereas this assumption was not mandatory for the study pre-

ented in this paper). Moreover, on a short-term time scale, the

andomness of the markets prices plays an important role, and it

ill thus be necessary to take them into account as a noise in the

roblem. 

We plan to extend this study in two directions. First to im-

lement the DADP method for general spatial structures (not only

flower models” or “chain model”, but “smart-grid models” involv-

ng a generic graph). The second direction is to implement more

ophisticated decomposition methods than price decomposition.

n the one hand we want to use decomposition schemes such

hat resource allocation or interaction prediction principle ( Cohen,

978 ). On the other hand we want to use augmented Lagrangian

ased methods such as alternating direction method of multiplier

ADMM) and proximal decomposition algorithm (PDA) for decom-

osition in order to obtain the nice convergence properties of this

ind of methods (see Lenoir & Mahey, 2017 for a survey). 

Finally, let us mention that a theoretical work has begun in

rder to provide foundations of the method ( Leclère, 2014 ). It
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includes conditions for existence of a multiplier in the L 1 space

when the optimization problem is posed in L ∞ and conditions for

convergence of the Uzawa algorithm in L ∞ . A lot of work remains

to be done on these questions, mainly to relax the continuity as-

sumption in order to be able to deal with extended functions, and

to obtain more general assumptions ensuring the convergence of

the Uzawa algorithm. 
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