
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Efficient Smoothed Concomitant Lasso Estimation
for High Dimensional Regression
To cite this article: Eugene Ndiaye et al 2017 J. Phys.: Conf. Ser. 904 012006

 

View the article online for updates and enhancements.

You may also like
Lasso logistic regression to derive
workflow-specific algorithm performance
requirements as demonstrated for head
and neck cancer deformable image
registration in adaptive radiation therapy
Sarah Weppler, Colleen Schinkel, Charles
Kirkby et al.

-

Asymptotic for Lasso Estimator in High-
Dimensional Repeated Measurements
Model
Naser Oda Jassim and Andul Hussein
Saber Al-Mouel

-

Sparse Hardy function model of regional
velocity field from GNSS data
Xiannan Han, Guobin Chang, Nanshan
Zheng et al.

-

This content was downloaded from IP address 88.140.178.93 on 09/04/2022 at 17:15

https://doi.org/10.1088/1742-6596/904/1/012006
https://iopscience.iop.org/article/10.1088/1361-6560/ab9fc8
https://iopscience.iop.org/article/10.1088/1361-6560/ab9fc8
https://iopscience.iop.org/article/10.1088/1361-6560/ab9fc8
https://iopscience.iop.org/article/10.1088/1361-6560/ab9fc8
https://iopscience.iop.org/article/10.1088/1361-6560/ab9fc8
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012039
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012039
https://iopscience.iop.org/article/10.1088/1742-6596/1818/1/012039
https://iopscience.iop.org/article/10.1088/1361-6501/ac209d
https://iopscience.iop.org/article/10.1088/1361-6501/ac209d
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssfOQHjBAfwo5176tRNNDA19iYQlMrup5hP4RLSEowp8Z31P3UQ9S6RusSlFHYTI8p59vfbDHuvLUvR5Z6ECSO8eWC2Fqp0mPzoQWzcS1qkl_-2YLZOO9H31SBOIkLu57ZCtoKvjsTdBk0R3-mSYENOkq15VUAwIJ5ASOvY4D9Ori4AVSE1qf_kqn2iQ0w7EMwh1JJekQFiMqAM3pA6SWYErMqcjw4GnZNKuQ2-m9MpkPtRpE5o9yGeQ6b9lrNTXm6ebMcamGhmT2-RR0oZ75_z5QHqd559Fk4&sig=Cg0ArKJSzMwpugzd349z&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%2520


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

7th International Conference on New Computational Methods for Inverse Problems IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 904 (2017) 012006  doi :10.1088/1742-6596/904/1/012006

Efficient Smoothed Concomitant Lasso Estimation for
High Dimensional Regression

Eugene Ndiaye†, Olivier Fercoq†, Alexandre Gramfort†, Vincent
Leclère∗, and Joseph Salmon†
†LTCI, Télécom ParisTech, Université Paris-Saclay, 46 rue Barrault, 75013 Paris, France
∗Université Paris-Est, Cermics (ENPC), 77455 Marne-la-Vallée, France

Abstract.
In high dimensional settings, sparse structures are crucial for efficiency, both in term of

memory, computation and performance. It is customary to consider `1 penalty to enforce
sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example,
are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter
trading data fitting versus sparsity. For the Lasso theory to hold this tuning parameter should
be proportional to the noise level, yet the latter is often unknown in practice. A possible remedy
is to jointly optimize over the regression parameter as well as over the noise level. This has been
considered under several names in the literature: Scaled-Lasso, Square-root Lasso, Concomitant
Lasso estimation for instance, and could be of interest for uncertainty quantification. In this
work, after illustrating numerical difficulties for the Concomitant Lasso formulation, we propose
a modification we coined Smoothed Concomitant Lasso, aimed at increasing numerical stability.
We propose an efficient and accurate solver leading to a computational cost no more expensive
than the one for the Lasso. We leverage on standard ingredients behind the success of fast
Lasso solvers: a coordinate descent algorithm, combined with safe screening rules to achieve
speed efficiency, by eliminating early irrelevant features.

1. Introduction
In the context of high dimensional regression where the number of features is greater than
the number of observations, standard least squares need some regularization to both avoid over-
fitting and ease the interpretation of discriminant features. Among the least squares with sparsity
inducing regularization, the Lasso [27], using the `1 norm as a regularizer, is the most standard
one. It hinges on a regularization parameter governing the trade-off between data fitting and
sparsity of the estimator, and requires careful tuning. Though this estimator is well understood
theoretically, the choice of the tuning parameter remains an open and critical question in practice
as well as in theory. For the Lasso, statistical guarantees [5] rely on choosing the tuning parameter
proportional to the noise level, a quantity that is usually unknown. Besides, the noise level is
of practical interest since it is required in the computation of model selection criterions such as
AIC, BIC, SURE or in the construction of confidence sets. A convenient way to estimate both
the regression coefficient and the noise level is to perform a joint estimation.

The most famous road for this joint estimation was inspired by the robust theory developed by
Huber [14], particularly in the context of location-scale estimation. Indeed, Owen [20] extended
it to handle sparsity inducing penalty, leading to a jointly convex optimization formulation. Since
then, his estimator has appeared under various name, and we coined it the Concomitant Lasso.

http://creativecommons.org/licenses/by/3.0
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Later, the same formulation was mentioned in [1], in a response to [23], and was thoroughly
analyzed in [25], under the name Scaled-Lasso. Similar results were independently obtained
in [4] for the same estimator, though with a different formulation. While investigating pivotal
quantities, Belloni et al proposed to solve the following convex program: modify the standard
Lasso by removing the square in the data fitting term. Thus, they termed their estimator the
Square-root Lasso (see also [6]). A second approach leading to this formulation was also proposed
by [28] to account for noise in the design matrix in an adversarial scenario. Interestingly their
robust construction led exactly to the Square-root Lasso formulation.

Under standard design assumption (see [5]), it is proved that the Scaled/Square-root Lasso
reaches optimal rates for sparse regression, with the additional benefit that the regularization
parameter is independent of the noise level [4, 25]. Moreover, a practical study [22] has shown
that the Concomitant Lasso estimator, or its debiased version (see for instance [3, 15] for a
discussion on least-squares refitting), is particularly well suited for estimating the noise level.

Among the solutions to compute the Concomitant Lasso, two roads have been explored.
Considering the Scaled-Lasso formulation, Sun and Zhang [24, 25] have proposed an iterative
procedure that alternates Lasso and noise estimation steps, the later leading to rescaling the
tuning parameter iteratively. On the other hand, considering the Square-root Lasso formulation,
Belloni et al [4] have leaned on second order cone programming solvers, e.g., TFOCS [2].

Despite the appealing properties listed above, among which the superiority of the theoretical
results is the most striking, no consensus for an efficient solver has yet emerged. Our contribution
aims at providing a more numerically stable formulation, called the Smoothed Concomitant
Lasso. This variant allows to obtain a fast solver based on coordinate descent. Then, we propose
dedicated safe rules, as introduced in [9, 12] for the Lasso. We show similar accelerations for the
Smoothed Concomitant Lasso, both on real and simulated data. Overall, our method presents
the same computational cost as for the Lasso, but enjoys the nice features mentioned earlier in
terms of statistical properties.

2. Concomitant estimator
Next we present our estimator and some important properties. Proofs are in [17, Appendix].

Notation For any integer d ∈ N, we denote by [d] the set {1, . . . , d}. Our observation vector
is y ∈ Rn (assumed to be nonzero) and the design matrix X = [X1, . . . , Xp] ∈ Rn×p has p
explanatory variables or features. The Euclidean norm is written ‖·‖, the `1 norm ‖·‖1, the `∞
norm ‖·‖∞, and the matrix transposition of a matrix Q is denoted by Q>. We note B∞ the unit
ball with the `∞ norm. For real numbers a and b, a∨ b stands for the maximum of a and b. We
denote Sτ the soft-thresholding operator at level τ > 0, Sτ (x) = sign(x)(|x| − τ)+. For a closed
convex set C, we write ΠC the projection. The sub-gradient of a convex function f : Rd → R at x
is defined as ∂f(x) = {z ∈ Rd : ∀y ∈ Rd, f(x)−f(y) ≥ z>(x−y)}. We denote by ιC the indicator
function of a set C defined as ιC(x) = 0 if x ∈ C and ιC(x) = ∞ if x /∈ C. We recall that the
sub-differential ∂‖·‖1 of the `1 norm is the set-valued function sign(·), defined element-wise for
all j ∈ [d] by sign(xj) = 1 if xj > 0, by sign(xj) = −1 if xj < 0 and by sign(xj) = [−1, 1] if
xj = 0. For a set S ⊂ [p], we denote by PX,S = XS

(
X>S XS

)+
X>S the projection operator onto

Span{Xj : j ∈ S}, where A+ represents the Moore-Penrose pseudo-inverse. We note tr(X) the
trace of matrix X and Σ̂ = X>X/n the normalized Gram matrix of X.

2.1. Concomitant Lasso
Let us first introduce the Concomitant Lasso estimator, following the formulation proposed
in [20, 25], and present some properties obtained due to convexity and duality.
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Definition 1. For λ > 0, the Concomitant Lasso estimator β̂(λ) is defined as a solution of the
primal optimization problem

(β̂(λ), σ̂(λ)) ∈ arg min
β∈Rp,σ>0

Pλ(β, σ) :=
‖y −Xβ‖2

2nσ
+
σ

2
+ λ ‖β‖1 . (1)

Theorem 1. Denoting ∆X,λ =
{
θ ∈ Rn : ‖X>θ‖∞ ≤ 1, λ

√
n‖θ‖ ≤ 1

}
, the dual formulation of

the Concomitant Lasso reads

θ̂(λ) ∈ arg max
θ∈∆X,λ

Dλ(θ) := 〈y, λθ〉. (2)

For an optimal primal vector β̂(λ), σ̂(λ) = ‖y−Xβ̂(λ)‖/
√
n. Moreover, Fermat’s rule reads as the

link-equation between primal and dual solutions y = nλσ̂(λ)θ̂(λ) +Xβ̂(λ) and the sub-differential
inclusion X>(y −Xβ̂(λ)) ∈ nλσ̂(λ)∂ ‖·‖1 (β̂(λ)).

As defined in (1), the Concomitant Lasso estimator is ill-defined: the set over which we
optimize is not closed and no solution may exist. We circumvent this difficulty by considering
instead the Fenchel biconjugate of the objective function (for more details, see [17, Appendix C]).
The actual objective function accepts σ ≥ 0 as soon as y = Xβ. In the rest of the paper, we will
write (1) instead of the minimization of the biconjugate as a slight abuse of notation.

A principled way to estimators regularization parameters of Lasso-type programs is to
use cross-validation over a fixed set of parameters. Usually, a geometrical grid λt =
λL

max10−δ(t−1)/(T−1), t ∈ [T ] is used. scikit-learn [10] and glmnet [13] set δ = 3.

2.2. Critical parameters for the Concomitant Lasso
As for the Lasso, the null vector is optimal for the Concomitant Lasso problem as soon as the
regularization parameter becomes too large, as detailed in the next proposition.
Proposition 1. We have β̂(λ) = 0 for all λ ≥ λmax := ‖X>y‖∞/(‖y‖

√
n).

However, for the Concomitant Lasso, there is another extreme. Indeed, there exists a critical
parameter λmin such that the Concomitant Lasso is equivalent to the Basis Pursuit for all
λ ≤ λmin and gives an estimate σ̂(λ) = 0. The Basis Pursuit and its dual are given by
β̂BP ∈ arg minβ∈Rp:y=Xβ ‖β‖1 and θ̂BP ∈ arg maxθ∈Rn:‖X>θ‖∞≤1 〈y, θ〉.

Proposition 2. For any θ̂BP ∈ arg maxθ∈Rn:‖X>θ‖∞≤1 〈y, θ〉 and any λ ≤ λmin := 1/(‖θ̂BP‖
√
n),

(β̂BP, 0) is optimal for Pλ and θ̂BP is optimal for Dλ.

2.3. Smoothed Concomitant Lasso
We can guarantee the existence of minimizers to the Concomitant Lasso (see [17, Appendix C]),
even if σ̂(λ) = 0, but the problem becomes more and more ill-conditioned. The previous
proposition shows that for too small λ’s, a Basis Pursuit solution will always be found, though
numerically this might be challenging to get. Indeed, when λ approaches λmin, a coordinate
descent algorithm (similar to the one described in Algorithm 1) starts to become significantly
slower. To avoid this issue, we propose a slight modification of the objective function by adding
a constraint on σ, which corresponds to a noise level limit σ0. We refer to this method as the
Smoothed Concomitant Lasso following the terminology introduced by Nesterov in [19].

Definition 2. For λ > 0 and σ0 > 0, the Smoothed Concomitant Lasso estimator β̂(λ,σ0) and its
associated noise level estimate σ̂(λ,σ0) are defined as solutions of the primal optimization problem

arg min
β∈Rp,σ∈R

Pλ,σ0(β, σ) :=
‖y −Xβ‖2

2nσ
+
σ

2
+ λ ‖β‖1 + ι[σ0,+∞[(σ). (3)
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Remark 1. Concurrently to our work, [16] proposed a similar smoothing strategy on the Square-
root Lasso formulation, equivalent to our formulation. They also show in [16, Theorem 3.7] that
the Smoothed Concomitant Lasso preserves the statistical consistency of the Concomitant Lasso:
it achieves the minimax optimal rate of convergence as soon as λ ≥ 24

√
log(p)/n and σ0 ≤ σ/4.

Theorem 2. The dual formulation of the Smoothed Concomitant Lasso reads

θ̂(λ,σ0) = arg max
θ∈∆X,λ

Dλ,σ0(θ) := 〈y, λθ〉+ σ0

(
1

2
− λ2n

2
‖θ‖2

)
, (4)

for ∆X,λ =
{
θ ∈ Rn : ‖X>θ‖∞ ≤ 1, ‖θ‖ ≤ 1/(λ

√
n)
}
. Associated to an optimal β̂(λ,σ0), we must

have σ̂(λ,σ0) = σ0 ∨ (‖y −Xβ̂(λ,σ0)‖/
√
n). Also, the link-equation y = nλσ̂(λ,σ0)θ̂(λ,σ0) +Xβ̂(λ,σ0)

and the sub-differential inclusion X>(y −Xβ̂(λ,σ0)) ∈ nλσ̂(λ,σ0)∂‖·‖1(β̂(λ,σ0)) hold.

Remark 2. Since Dλ,σ0(θ) is strongly concave and ∆X,λ is convex and closed, θ̂(λ,σ0) is unique.

In practice, the choice of σ0 can be motivated as follows:

• Suppose we have prior information on the minimal noise level expected in the data. Then
we can set σ0 as this bound. Indeed, if σ̂(λ,σ0) > σ0, then the constraint σ ≥ σ0 is not
active and the minimizers of Problem (3) are also minimizers of Problem (1). The Smoothed
Concomitant Lasso estimator will only be different from the Concomitant Lasso estimator
when the prediction given by the Concomitant Lasso violates the a priori information.
• Without prior information we can consider a given accuracy ε, and set σ0 = ε. Then, the

theory of smoothing [19] tells us that any ε/2-solution to Problem (3) is an ε-solution to
Problem (1). Thus we obtain the same solutions, but as an additional benefit we have a
control on the conditioning of the problem.
• If departing slightly from the Concomitant Lasso estimator is not too big of an issue,

one can also use an arbitrary proportion of the initial estimation of the noise variance
i.e., σ0 = ‖y‖/

√
n × 10−α. This was our choice in practice, and we have set α = 2. Indeed,

taking a large enough value for σ0 leads to less numerical issues.

A similar reasoning to Proposition 1 gives the following critical parameter.

Proposition 3. We have β̂(λ,σ0) = 0, for all λ ≥ λmax := ‖X>y‖∞/(n (σ0 ∨ (‖y‖/
√
n))).

2.4. Duality gap and link with the Lasso
By comparing Fermat’s rule in Theorems 1 and 2, one can remark that if β̂(λ,σ0) is a solution
of the Smoothed Concomitant Lasso, then it is also a solution of the Lasso with regularization
parameter λσ̂(λ,σ0). The following proposition estimates the quality (in term of duality gap) of a
primal-dual vector in the Lasso path compared to Concomitant Lasso path. Denoting GL

σλ(β, θ)
the duality gap for the standard lasso, one can easily show that

Proposition 4. ∀β ∈ Rp, θ ∈ ∆X,λ, σ ≥ σ0, G
L
σλ(β, θ) ≤ σGλ,σ0(β, σ, θ).

Hence, as ∀λ, σ̂(λ) ≤ ‖y‖/
√
n, if the duality gap for the Smoothed Concomitant Lasso is

small, so is the duality gap for the Lasso with the corresponding regularization parameter.

3. Safe screening rules
In order to achieve greater computational efficiency, we propose new safe screening rules (using
the terminology introduced in [9]) for our problem and we compare their performance. The
principle underlying safe screening rules is as follows: one can discard inactive features from the
optimization problem, thanks to the sub-differential inclusion in Theorem 2 and to a safe region
R such that θ̂(λ,σ0) ∈ R. Indeed if maxθ∈R |X>j θ| < 1 then |X>j θ̂(λ,σ0)| < 1 and thus β̂(λ,σ0)

j = 0.
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Algorithm 1: CD4SCL – Coordinate Descent for the Smoothed Concomitant Lasso with
Gap Safe screening

Input : X, y, ε,K, fce(= 10), λ, σ0, β, σ
A ← [p]
for k ∈ [K] do

if k mod fce = 1 then
Compute θ as in Proposition 6
if Gλ,σ0 (β, σ, θ) = Pλt,σ0 (β, σ)−Dλt,σ0 (θ) ≤ ε. then // Stopping criterion

break
Update A thanks to Proposition 5 // Screening test

for j ∈ A do // Loop over coordinates
βj ← Snσλt/‖Xj‖2

(
βj −X>j (Xβ − y)/‖Xj‖2

)
// Soft-thresholding step

σ ← σ0 ∨ (‖y −Xβ‖/
√
n)) // Noise estimation step

Output: β, σ, A

Since the dual objective of the Smoothed Concomitant Lasso is λ2σ0n-strongly concave, we
can provide a dynamic and converging SAFE sphere region R, following [18].

Proposition 5 (Gap Safe rule). For all (β, σ, θ) ∈ Rp × R+ × ∆X,λ, then for r =√
2Gλ,σ0(β, σ, θ)/(λ2σ0n), we have θ̂(λ,σ0) ∈ B(θ, r). Thus, if |X>j θ|+r ‖Xj‖ < 1 then β̂(λ,σ0)

j = 0.

4. Algorithmic details
4.1. Smoothed Concomitant Lasso algorithm (SC)
We first present the inner loop of our main algorithm, i.e., the implementation of coordinate
descent for the Smoothed Concomitant Lasso. In Algorithm 1, we denote by A the active set,
i.e., the set of coordinates that we have not been screened out. For safe screening rules, this set
is guaranteed to contain the support of the optimal solution.

The fast solver we used for the Smoothed Concomitant Lasso, rely on the two following key
features: coordinate descent and Gap Safe screening rules.

4.2. Coordinate descent
The algorithm we consider to compute the Smoothed Concomitant Lasso is coordinate descent, an
efficient way to solve Lasso-type problem (even for multiple values of parameters) [13]. Previous
attempts mainly focused on iteratively alternating Lasso steps along with noise level estimation
[25], or conic programming [2]. In [16], written concurrently to this work, the authors consider
ISTA, a first order method using full gradient information at each iteration.

Here we provide a simple and efficient coordinate descent approach, cf. Algorithm 1. Our
primal objective Pλ,σ0 can be written as the sum of a convex differentiable function f(β, σ) =
‖y − Xβ‖2/(2nσ) + σ/2 and of a separable function g(β, σ) = λ‖β‖1 + ι[σ0,+∞[(σ). Moreover,
for σ ≥ σ0 > 0, the gradient of f is Lipschitz continuous. Hence, we know that the coordinate
descent method converges to a minimizer of our problem [29]. We choose to update the variable
σ every other iteration because this can be done at a negligible cost.

Our stopping criterion is based on the duality gap defined by Gλ,σ0(β, σ, θ) = Pλ,σ0(β, σ) −
Dλ,σ0(θ). This requires the computation of a dual feasible point as follows.

Proposition 6. Let (βk)k∈N be a sequence that converges to β̂(λ,σ0). Then (θk)k∈N built as
θk = y−Xβk

λnσ0∨‖X>(y−Xβk)‖∞∨λ
√
n‖y−Xβk‖

converges to θ̂(λ,σ0). Hence Gλ,σ0(βk, σk, θk)→k→+∞ 0.

5. Numerical experiments
We compare the estimation performance and computation times of standard deviation estimators
which are presently the state-of-the-art in high dimensional settings. We refer to [22] for a recent
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σ̂OR σ̂M−CV σ̂M−LS σ̂i σ̂D2

‖y−PX,S?y‖√
n−|S?|

‖y−Xβ̂λcvM ‖√
n−|ŜλcvM |

‖y−P
X,ŜM

y‖
√
n−|ŜM|

‖y(i
′)−P

X(i′),Ŝi
y(i

′)‖
√
n/2−|Ŝi|

(
1+

pm̂2
1

(n+1)m̂2

)
‖y‖2

n
− m̂1‖X>y‖2√

n(n+1)m̂2

Table 1: The estimator β̂M are obtained by a methodM andM−LS is its least square refitting.
We note S� = {j ∈ [p], β�j 6= 0}, Di = (y(i), X(i))i∈[2] is a split in two parts of the observations,
and Ŝi the support selected after a cross-validation on the part Di. The RCV estimator is
σ̂RCV = ((σ̂2

1 + σ̂2
2)/2)1/2, and m̂1 = tr(Σ̂)/p and m̂2 = tr(Σ̂2)/p− (tr(Σ̂))2/(pn).

comparison. In our simulations1 we use the common setup: y = Xβ? + σε where ε ∼ N (0, Idn)
and X ∈ Rn×p follows a multivariate normal distribution with covariance Σ = (ρ|i−j|)i,j∈[p]. We
define β? = αβ where the coordinates of β are drawn from a standard Laplace distribution and
we randomly set s% of them to zero. The scalar α is chosen in order to satisfy a prescribed
signal to noise ratio denoted snr: α =

√
snr× σ2/β>Σβ.

The procedures we have compared are summarized in Table 1. Namely, our reference is the
oracle estimator (OR) σ̂OR, the cross-validated estimator (CV) σ̂M−CV whith a parameter λcv
chosen by 5-fold cross-validation, the least-square refitting estimator (LS) σ̂M−LS , the refitted
cross-validation (RCV) σ̂RCV and σ̂D2 the estimator introduced in [8].

We run all the following algorithms over the non-increasing sequence λt =
λmax10−δ(t−1)/(T−1), t ∈ [T ] with the default value δ = 2, T = 100. The regularization grid
for the joint estimations (Scaled-Lasso, with solver from [25] (SZ), Smoothed Concomitant Lasso
(SC), Square-root Lasso [4] (SQRT-Lasso) and the estimator introduced in [23] (SBvG)) begins
at λmax given in Proposition 3. We set Smoothed Concomitant Lasso with the default value
σ0 = ‖y‖/

√
n × 10−2. As explained in Section 2.3 this choice improves numerical efficiency at

the cost of departing slightly from the Concomitant Lasso estimator in the low noise regime. The
grid for the Lasso (L) estimators begins with λL

max = ‖X>y‖∞/n. The Lasso with the universal
parameter λ =

√
2 log(p)/n is denoted (L_U) and SZ refers to Concomitant Lasso with the

quantile regularization described in [26] in Fig. 1(c).

5.1. Computational performance
Figure 1(a) presents on the Leukemia dataset the computation times observed for the different
CV methods. The Smoothed Concomitant Lasso is based on the coordinate descent algorithm
described in this paper and written in Python and Cython to generate low level C code, offering
high performance. When a Lasso solver is needed, we have used the one from scikit-learn,
that is coded similarly. For SZ_CV, computations are quite heavy as one uses the alternating
algorithm proposed in [25]. Depending on the regularization parameter (for instance when one
approaches λmin) the SZ_CV method is quite intractable and the algorithm faces the numerical
issues mentioned earlier. The generic solver used for SBvG and SQRT-Lasso, is the CVXPY
package [7], explaining why these methods are two orders of magnitude slower than a Lasso.
In contrast, our solver reaches similar computing time w.r.t. an efficient Lasso solver, with the
additional benefit of jointly estimating the coefficients and the standard deviation of the noise.

Figure 1(b) shows the benefit one can obtain thanks to the safe screening rule introduced
above. Indeed, the Gap Safe rule greatly benefits from the convergence of the dual vector,
leading to smaller and smaller safe sphere as the iterations proceeds [12, 18].

5.2. Performance of standard deviation estimators
As noted earlier in [11], spurious correlations can strongly affect sparse regression and usually
lead to large biases. This makes the standard deviation estimation very challenging and affects
1 Source code available at https://github.com/EugeneNdiaye/smoothed_concomitant_lasso

https://github.com/EugeneNdiaye/smoothed_concomitant_lasso
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(a) Times to run simulations using synthetic dataset. (b) Time to reach convergence using Leukemia
dataset.

(c) Estimated performance using synthetic dataset. (d) Estimated distribution of the optimal λopt.

Figure 1: (a): comparisons of the computational times using different estimation method (time
presented relative to the mean time of the Lasso). (b): speed up using screening rules for
the Smoothed Concomitant Lasso w.r.t. to duality gap and for (λt)t∈[100]. The dimensions of
Leukemia dataset are (n = 72, p = 7129). (c): comparison of quality of different estimators
of the noise σ normalized to 1. The synthetic datasets are generated with the settings
(n = 100, p = 500, ρ = 0.6, snr = 5, s = 0.9, 50 replications). (d): comparisons of the distribution
of optimal regularizer λopt under different levels of noise.

the cross-validation estimator based on the Lasso as they usually underestimate the standard
deviation. The phenomenon is amplified when one uses least squares refitting on the cross-
validated Lasso, as noticed in [22]. Results are presented as boxplots in Fig. 1(c) (see [17,
Appendix B] for additional settings).

We have observed that SC and SZ are efficient in high sparsity settings with low correlations,
correcting for the positive bias of the estimator from [23] (SBvG). In [22], it was also argued
that a cross-validation estimator based on Lasso is more stable and performs better when the
sparsity decreases and when the snr increases. Note that this is not the case when performing
cross-validation with the Concomitant Lasso. Here, we show that the latter achieves similar
performance as the Lasso. It is worth noting that our method is consistently good over the
whole experiments we conducted especially when applying least squares refitting.

Another appealing property of the Smoothed Concomitant Lasso compared to the Lasso is
the invariance of the optimal λopt := arg minλ∈(λt)t∈[T ]

‖Xβ̂(λ,σ0) −Xβ?‖2 w.r.t. different levels
of noise. We show on Fig. 1(d) a kernel density plot of its distribution on synthetic data with
different values of σ. A similar experiment was performed in [16] leading to the same conclusion
with an optimal λ chosen by a train/test procedure.

6. Conclusion
We have explored the joint estimation of the coefficients and noise level for `1 regularized
regression. We have corrected some numerical drawbacks of the Concomitant Lasso estimator
by proposing a smoother formulation, leading to the Smoothed Concomitant Lasso. A fast
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algorithm, combining coordinate descent and safe screening rules was investigated achieved the
same numerical efficiency than for the Lasso while estimating the noise level. Future research
would extend our work to general data-fitting terms [20], and combine sketching techniques [21].
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